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Thepassivity problem for a class of stochastic neural networks systems (SNNs)with varying delay and leakage delay has been further
studied in this paper. By constructing a more effective Lyapunov functional, employing the free-weighting matrix approach, and
combining with integral inequality technic and stochastic analysis theory, the delay-dependent conditions have been proposed such
that SNNs are asymptotically stable with guaranteed performance. The time-varying delay is divided into several subintervals and
two adjustable parameters are introduced; more information about time delay is utilised and less conservative results have been
obtained. Examples are provided to illustrate the less conservatism of the proposed method and simulations are given to show the
impact of leakage delay on stability of SNNs.

1. Introduction

During the past several decades, neural networks have gained
great attention because of their potential application in pat-
tern classification, reconstruction ofmoving image, and com-
binatorial optimization. In addition, time delay is a natural
phenomenon frequently encountered in various dynamic sys-
tems such as electronic, chemical systems, long transmission
lines in pneumatic systems, biological systems, and economic
and rolling mill systems. Delays in neural networks can cause
oscillation, instability, and divergence, which are very often
the main sources of poor performance of designed neural
networks. So the stability analysis and state estimation of
neural networks with various time delays have been widely
investigated bymany researchers; see [1–8] and the references
therein.

Furthermore, when modeling real nervous systems,
stochastic disturbance is one of main resources of the per-
formance degradations when applying the neural networks,
because the synaptic transmission is a noisy process intro-
duced by random fluctuation from the release of neurotrans-
mitter and other probabilistic causes. In recent years, the
stability analysis for stochastic neural networks with time
delay has become a hot research topic; by virtue of various
inequality technics and 𝑀-matrix theory, many important

research results about neural networks with different type of
time delays, such as constant delay, time-varying delay, or
distributed delay, have been reported; see, for example, [8–
14] and the references therein.

The passivity theory, which originated from circuit the-
ory, plays an important role in the analysis of stability of
linear or nonlinear systems. The main character of passivity
theory is that the passive properties of a system can keep the
system internally stable. Because it is a very effective tool in
studying the stability of uncertain or nonlinear systems, the
passivity theory has been used widely in fuzzy control [15],
complexity [16], synchronization [17], signal processing [18],
and adaptive control [19].

Recently, based on the Lyapunov-Krasovskii theory, pas-
sivity and dissipativity analysis of neural networks with var-
ious delays and uncertainties have been discussed and many
interesting results have been reported [20–28].

In [29–35], based on the Lyapunov-Krasovskii, LMI
method, and a delay fractioning technique, the passivity and
robust passivity of stochastic neural networks with delays and
uncertainties have been studied; some sufficient conditions
on the passivity of neural networks with delays have been
obtained. In [31], authors investigated passivity of the stochas-
tic neural networks with time-varying delays and parameters
uncertainties by applying free-weighting matrix and the
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lower conservatism results are obtained by comparing with
the existing results.

On the other hand, in many practical problems, a typical
time delay called leakage delay or forgetting delay exists in
dynamical system, which has a tendency to destabilize the
system; it has been one of the research hot topics recently and
many research achievements have been reported [20, 36–42].

As pointed out in [36], neural networkswith leakage delay
are a class of important neural networks, and time delay in
the leakage term also has great impact on the dynamics of
neural networks; sometimes it hasmore significant effect than
other kinds of delays on dynamics of neural networks; the
stability analysis of neural networks system involving leakage
delay has been researched extensively; see, for example, [37–
40] and the references therein. Very recently, in [42], by
virtue of free weight matrix and LMIs method, the passivity
problem for a class of stochastic neural networks with leakage
delay is studied; the sufficient condition making the system
passive is presented, but leakage delay under consideration is
a constant; but, in practical dynamical systems, the leakage
delay can be time-varying, which is often more general and
complex than leakage delay being a constant. To the best of
authors’ knowledge, no research results have been reported
about the condition that leakage delay is time-varying, which
motivates our idea.

Motivated by the aforementioned discussions, this paper
focuses on the passivity problem for a class of stochastic
neural networks (SNNs) system with time-varying delay and
leakage delay; by constructing a new Lyapunov functional, a
set of sufficient conditions are derived to ensure the passivity
performance for a class of stochastic neural networks with
time-varying delays and leakage delay. By virtue of the
delay decomposition idea [8], combining with some integral
inequality technic [7], or free-weighting matrix approach [9,
26], two adjustable parameters are introduced and made full
use of. All results are established in the form of LMIs and can
be solved easily by using the interior algorithms, which can
be efficiently solved byMatlab LMI Toolbox and no tuning of
parameters is required. Finally, numerical examples are given
to demonstrate the effectiveness and less conservatism of the
proposed approach.

The main contributions of this paper are summarized as
follows:

(i) The leakage delay studied is time-varying, so the
researchmodel ismore general and complex than that
in [42].

(ii) The neuron activation function is assumed to satisfy
sector-bounded condition, which is more general and
less restrictive than Lipschitz condition, so the less
conservatism results can be expected.

(iii) The derivative of time-varying can be extended to be
more than 1.

(iv) How the leakage delay affects the stability result is
discussed.

Notation. Throughout this paper, if not explicit, matrices
are assumed to have compatible dimensions. The notation

𝑀 > (≥, <, ≤) 0 means that the symmetric matrix 𝑀 is
positive-definite (positive-semidefinite, negative, and nega-
tive-semidefinite). 𝜆min(⋅) and 𝜆max(⋅) denote the minimum
and the maximum eigenvalue of the corresponding matrix;
the superscript “𝑇” stands for the transpose of a matrix;
the shorthand diag{⋅ ⋅ ⋅ } denotes the block diagonal matrix;
‖ ⋅ ‖ represents the Euclidean norm for vector or the spectral
norm ofmatrices. 𝐼 refers to an identity matrix of appropriate
dimensions. E{⋅} stands for the mathematical expectation; ∗
means the symmetric terms. Sometimes, the arguments of a
function will be omitted in the analysis when no confusion
can arise.

2. System Description

Consider the SNNs with time-varying delay as follows:

𝑑𝑥 (𝑡) = [−𝐴𝑥 (𝑡 − 𝛿 (𝑡)) +𝑊0𝑓 (𝑥 (𝑡))

+𝑊1𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝑢 (𝑡)] 𝑑𝑡

+ 𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑢 (𝑡)) 𝑑𝜔 (𝑡) ,

𝑦 (𝑡) = 𝑓 (𝑥 (𝑡)) ,

(1)

where 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡)]
𝑇

∈ R𝑛 is the neural
state vector and 𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡), . . . , 𝑢𝑛(𝑡)]

𝑇 is the input.
𝑦(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡)]

𝑇

∈ R𝑛 is the output; 𝑊0,𝑊1 ∈

R𝑛 are the connection weight matrix and the delayed
connection weight matrix, respectively; 𝐴 = diag(𝑎1, 𝑎2,
. . . , 𝑎
𝑛
) is a positive diagonal matrix; 𝑓(𝑥(𝑡)) = [𝑓1(𝑥(𝑡)),

𝑓2(𝑥(𝑡)), . . . , 𝑓𝑛(𝑥(𝑡))]
𝑇

∈ R𝑛 is the neuron activation
function with 𝑓(0) = 0; 𝑛 denotes the number of neurons
in neural networks; 𝜔(𝑡) = [𝜔1(𝑡), 𝜔2(𝑡), . . . , 𝜔𝑚(𝑡)]

𝑇

∈ R𝑚

is an 𝑚-dimension Brownian motion defined on a complete
probability space (Ω,F, 𝑃), satisfying

E {𝑑𝜔 (𝑡)} = 0,

E {𝑑𝜔
2
(𝑡)} = 𝑑𝑡.

(2)

𝜏(𝑡) is the transmission delay and is assumed to satisfy

0 ≤ 𝜏 (𝑡) ≤ 𝜏,

− 𝜇 ≤ ̇𝜏 (𝑡) ≤ 𝜇.

(3)

𝛿(𝑡) is the leakage delay that satisfies

𝛿 (𝑡) ≤ 𝛿,

̇𝛿 (𝑡) ≤ 𝜌
𝛿
,

(4)

where 𝜏, 𝜇, 𝛿, 𝜌
𝛿
are some positive scalar constants.

Assumption 1. For 𝑖 ∈ {1, 2, . . . , 𝑛} and ∀𝑥, 𝑦 ∈ R, 𝑥 ̸= 𝑦, the
neuron activation function 𝑓(⋅) is continuous and bounded
and satisfies

[𝑓 (𝑥) −𝑓 (𝑦) −Λ 1 (𝑥 − 𝑦)]
𝑇

⋅ [𝑓 (𝑥) −𝑓 (𝑦) −Λ 2 (𝑥 − 𝑦)] < 0,
(5)

where Λ 1 and Λ 2 are some constant known matrices.
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Remark 2. In this paper, the above assumption is made on
neuron activation function, which is called sector-bounded
neuron activation function. When Λ 1 = Λ 2 = −Λ, condition
(5) becomes

[𝑓 (𝑥) −𝑓 (𝑦)]
𝑇

[𝑓 (𝑥) −𝑓 (𝑦)]

≤ (𝑥 −𝑦)
𝑇

Λ
𝑇

Λ (𝑥−𝑦) .

(6)

So it is less restrictive than the descriptions on both the sig-
moid activation functions and the Lipschitz-type activation
functions.

Assumption 3. There exist three constantmatricesΣ1,Σ2, and
Σ3 such that

|𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑢 (𝑡))|
2

≤
Σ1𝑥 (𝑡)



2
+
Σ2𝑥 (𝑡 − 𝜏 (𝑡))



2
+
Σ3𝑢 (𝑡)



2
.

(7)

Definition 4 (see [22]). The delayed SNNs are said to stochas-
tically passive if there exists a scalar 𝛾 ≥ 0 such that

2E∫

𝑡

0
𝑦
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠 ≥ − 𝛾E∫

𝑡

0
𝑢
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠 (8)

for all 𝑡 ≥ 0 and for all solution of (1) with 𝑥(0) = 0.

Remark 5. The different output equation can lead to different
definitions. In [31, 42], the output equation expression is
𝑦(𝑡) = 𝑓(𝑥(𝑡)) and 𝑦(𝑡) = 𝐺𝑓(𝑥(𝑡)), respectively. In order
to compare our result with that in [42], we take 𝐺 = 𝐼, so we
have the same definition as that in [42].

At first, we give the following lemmas which will be used
frequently in the proof of the our main results.

Lemma 6 (see [4]). For any constant symmetric positive
defined matrix 𝐽 ∈ R𝑚×𝑚, scalar 𝜂, and the vector function
] : [0, 𝜂] → R𝑚, the following inequality holds:

𝜂∫

𝜂

0
]𝑇 (𝑠) 𝐽] (𝑠) 𝑑𝑠 ≥ (∫

𝜂

0
] (𝑠) 𝑑𝑠)

𝑇

𝐽 (∫

𝜂

0
] (𝑠) 𝑑𝑠) . (9)

Lemma 7 (see [5]). For given proper dimensions constant
matrices Φ1, Φ2, and Φ3, where Φ𝑇1 = Φ1 and Φ

𝑇

2 = Φ2 > 0,
we have Φ1 + Φ

𝑇

3Φ
−1
2 Φ3 < 0 such that only and only if

[
Φ1 Φ

𝑇

3

∗ −Φ2
] < 0,

𝑜𝑟 [

−Φ2 Φ3

∗ Φ1
] < 0.

(10)

Lemma 8 (see [7]). For given function 𝜏(𝑡) satisfying 𝜇1 ≤

̇𝜏(𝑡) ≤ 𝜇2, there exist nonnegative functions 𝜆1(𝑡) ≥ 0 and
𝜆2(𝑡) ≥ 0 satisfying 𝜆1(𝑡) + 𝜆2(𝑡) = 1 such that the following
equation holds:

̇𝜏 (𝑡) = 𝜇1𝜆1 (𝑡) + 𝜇2𝜆2 (𝑡) . (11)

Lemma 9 (see [7]). For any real vectors a and b and any
matrix 𝑄 > 0 with appropriate dimensions, it follows that
±2𝑎𝑇𝑏 ≤ 𝑎

𝑇

𝑄𝑎 + 𝑏
𝑇

𝑄
−1
𝑏.

3. Main Results

In this section, a delay-dependent leakage delay method
is developed to guarantee the stochastic passive results of
system (1), so we have the followingTheorem 10.

Theorem 10. Given scalars 𝜏 > 0, 0 < 𝛼 < 1, 0 < 𝛽 < 1,
𝜆 > 0, 𝜌

𝜎
> 0, and 0 < 𝜇 and proper matrix Σ

𝑖
(𝑖 = 1, 2, 3),

the SNNs described by (1) are stochastically passive in the sense
of Definition 4, if there exist positive matrices 𝑃 > 0, 𝑄 > 0,
𝑄
𝑗
> 0 (𝑗 = 1, 2, . . . , 5), and 𝑅

𝑙
> 0 (𝑙 = 1, 2, . . . , 5), positive

diagonal matrices 𝐹
𝑗
> 0 (𝑗 = 1, 2), positive constants 𝜖1, 𝜖2,

𝛾 > 0, and real matrices 𝑀, 𝑁,𝑈, 𝑆, and 𝑍 of appropriate
dimensions such that the following LMIs hold:

𝑃+ 𝜏𝑅4 ≤ 𝜆𝐼, (12)

[
[
[
[
[

[

Ψ
𝑖
+ Ω
𝑇

𝑄
−1
Ω 𝑀 𝑁

∗ −
1
𝛼𝜏

𝑅4 0

∗ ∗ −
1

(1 − 𝛼) 𝜏
𝑅4

]
]
]
]
]

]

< 0,

𝑖 = 1, 2,

(13)

[
[
[
[
[
[

[

Ψ
𝑖
+ Ω
𝑇

𝑄
−1
Ω 𝑈 𝑆

∗ −
1
𝛽𝜏

𝑅4 0

∗ ∗ −
1

(1 − 𝛽) 𝜏
𝑅4

]
]
]
]
]
]

]

< 0,

𝑖 = 1, 2,

(14)

where

Ψ
𝑖
= (Ψ
𝑚×𝑛

)15×15 ,

Ψ1,1

= 𝑄1 +𝑅1 + 𝛿
2
𝑅2 −𝑃𝐴−𝐴

𝑇

𝑃− 𝜖1𝐹1 +𝜆Σ
𝑇

1Σ1

+𝑀1 +𝑀
𝑇

1 ,

Ψ1,2 = −𝑍1𝐴+𝑀
𝑇

2 ,

Ψ1,3 = −𝑀1 +𝑀
𝑇

3 +𝑁1,

Ψ1,4 = 𝑀
𝑇

4 −𝑁1 +𝑈1,

Ψ1,5 = 𝑀
𝑇

5 −𝑈1 + 𝑆1,

Ψ1,6 = 𝑀
𝑇

6 − 𝑆1,

Ψ1,7 = 𝐴
𝑇

𝑃𝐴+𝑀
𝑇

7 ,

Ψ1,8 = 𝑍1𝑊0 +𝑃𝑊0 + 𝜖1𝐹2 +𝑀
𝑇

8 ,

Ψ1,9 = 𝑍1𝑊1 +𝑃𝑊1 +𝑀
𝑇

9 ,

Ψ1,10 = −𝑍1 +𝑀
𝑇

10,
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Ψ1,11 = 𝑍1 +𝑃+𝑀
𝑇

11,

Ψ1,12 = 𝑀
𝑇

1 −𝑀12,

Ψ1,13 = 𝑀
𝑇

13 −𝑁1,

Ψ1,14 = 𝑀
𝑇

14 −𝑈1,

Ψ1,15 = 𝑀
𝑇

15 − 𝑆1,

Ψ2,2 = 𝑄𝜌
𝜎
− (1−𝜌

𝜎
) 𝑅1 −𝑍2𝐴,

Ψ2,3 = −𝐴
𝑇

𝑍
𝑇

3 −𝑀2 +𝑁2,

Ψ2,4 = −𝐴
𝑇

𝑍
𝑇

4 −𝑁2 +𝑈2,

Ψ2,5 = −𝐴
𝑇

𝑍
𝑇

5 −𝑈2 + 𝑆2,

Ψ2,6 = −𝐴
𝑇

𝑍
𝑇

6 − 𝑆2,

Ψ2,7 = −𝐴
𝑇

𝑍
𝑇

7 +𝐴
𝑇

𝑃𝐴𝜌
𝜎
,

Ψ2,8 = −𝐴
𝑇

𝑍
𝑇

8 +𝑍2𝑊0,

Ψ2,9 = −𝐴
𝑇

𝑍
𝑇

9 +𝑍2𝑊1,

Ψ2,10 = −𝐴
𝑇

𝑍
𝑇

10 −𝐴
𝑇

𝑍
𝑇

3 ,

Ψ2,11 = 𝑍2 −𝐴
𝑇

𝑍
𝑇

11,

Ψ2,12 = −𝐴
𝑇

𝑍
𝑇

12 −𝑀12,

Ψ2,13 = −𝐴
𝑇

𝑍
𝑇

13 −𝑁2,

Ψ2,14 = −𝐴
𝑇

𝑍
𝑇

14 −𝑈2,

Ψ2,15 = −𝐴
𝑇

𝑍
𝑇

15 − 𝑆2,

Ψ3,3 = (1−𝛼 ̇𝜏 (𝑡)) (𝑄2 −𝑄1) −𝑀3 −𝑀
𝑇

3 +𝑁3 +𝑁
𝑇

3 ,

Ψ3,4 = −𝑁3 −𝑀
𝑇

3 +𝑁
𝑇

3 +𝑈3,

Ψ3,5 = −𝑀
𝑇

5 +𝑁
𝑇

5 −𝑈3 + 𝑆3,

Ψ3,6 = −𝑀
𝑇

6 +𝑁
𝑇

6 − 𝑆3,

Ψ3,7 = −𝑀
𝑇

7 +𝑁
𝑇

6 ,

Ψ3,8 = 𝑍3𝑊0 −𝑀
𝑇

8 +𝑁
𝑇

8 ,

Ψ3,9 = 𝑍3𝑊1 −𝑀
𝑇

9 +𝑁
𝑇

9 ,

Ψ3,10 = −𝑍3 −𝑀
𝑇

10 +𝑁
𝑇

10,

Ψ3,11 = 𝑍3 −𝑀
𝑇

11 +𝑁
𝑇

11,

Ψ3,12 = −𝑀
𝑇

12 +𝑁
𝑇

12 −𝑀3,

Ψ3,13 = −𝑁3 −𝑀
𝑇

13 +𝑁
𝑇

13,

Ψ3,14 = −𝑀
𝑇

14 +𝑁
𝑇

14 −𝑈3,

Ψ3,15 = −𝑀
𝑇

15 +𝑁
𝑇

15 − 𝑆3,

Ψ4,4

= (1− ̇𝜏 (𝑡)) (𝑄3 −𝑄2) − 𝜖2𝐹1 +𝜆Σ
𝑇

2Σ2 −𝑁4 −𝑁
𝑇

4

+𝑈
𝑇

4 +𝑈4,

Ψ4,5 = −𝑁
𝑇

5 +𝑈
𝑇

5 −𝑈4 + 𝑆4,

Ψ4,6 = −𝑁
𝑇

6 +𝑈
𝑇

4 − 𝑆4,

Ψ4,7 = −𝑁
𝑇

7 +𝑈
𝑇

7 ,

Ψ4,8 = 𝑍4𝑊0 −𝑁
𝑇

8 +𝑈
𝑇

8 ,

Ψ4,9 = 𝑍4𝑊1 −𝑁
𝑇

9 − 𝜖2𝐹2 +𝑈
𝑇

9 ,

Ψ4,10 = −𝑍4 −𝑁
𝑇

10 +𝑈
𝑇

10,

Ψ4,11 = 𝑍4 −𝑁
𝑇

11 +𝑈
𝑇

11,

Ψ4,12 = −𝑁
𝑇

12 −𝑀4 +𝑈
𝑇

12,

Ψ4,13 = −𝑁
𝑇

13 −𝑁13 +𝑈
𝑇

14,

Ψ4,14 = −𝑁
𝑇

14 +𝑈
𝑇

14 −𝑈4,

Ψ4,15 = −𝑁
𝑇

15 +𝑈
𝑇

15 − 𝑆4,

Ψ5,5

= (1− (1−𝛽) ̇𝜏 (𝑡)) (𝑄4 −𝑄3) −𝑈5 −𝑈
𝑇

5 + 𝑆5

+ 𝑆
𝑇

5 ,

Ψ5,6 = −𝑈
𝑇

6 + 𝑆
𝑇

6 − 𝑆5,

Ψ5,7 = −𝑈
𝑇

7 + 𝑆
𝑇

7 ,

Ψ5,8 = 𝑍5𝑊0 −𝑈
𝑇

8 + 𝑆
𝑇

8 ,

Ψ5,9 = 𝑍5𝑊1 −𝑈
𝑇

9 + 𝑆
𝑇

9 ,

Ψ5,10 = −𝑍5 −𝑈
𝑇

10 + 𝑆
𝑇

10,

Ψ5,11 = 𝑍5 −𝑈
𝑇

11 + 𝑆
𝑇

11,

Ψ5,12 = −𝑈
𝑇

12 −𝑀5 + 𝑆
𝑇

12,

Ψ5,13 = −𝑈
𝑇

13 + 𝑆
𝑇

13 −𝑁5,

Ψ5,14 = −𝑈
𝑇

14 −𝑈5 + 𝑆
𝑇

14,

Ψ5,15 = −𝑈
𝑇

15 + 𝑆
𝑇

15 − 𝑆5,

Ψ6,6 = −𝑄4 − 𝑆6 − 𝑆
𝑇

6 ,

Ψ6,7 = − 𝑆
𝑇

7 ,

Ψ6,8 = 𝑍6𝑊0 − 𝑆
𝑇

8 ,

Ψ6,9 = 𝑍6𝑊1 − 𝑆
𝑇

9 ,

Ψ6,10 = − 𝑆
𝑇

10 −𝑍6,

Ψ6,11 = − 𝑆
𝑇

11𝑍6,
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Ψ6,12 = −𝑀6 − 𝑆
𝑇

12,

Ψ6,13 = −𝑁6 − 𝑆
𝑇

13,

Ψ6,14 = −𝑈14 − 𝑆
𝑇

14,

Ψ6,15 = − 𝑆
𝑇

15 − 𝑆6,

Ψ7,7 = −𝑅2,

Ψ7,8 = 𝑍7𝑊0 −𝐴
𝑇

𝑃𝑊0,

Ψ7,9 = 𝑍7𝑊1 −𝐴
𝑇

𝑃𝑊1,

Ψ7,10 = −𝑍7,

Ψ7,11 = 𝑍7 −𝐴
𝑇

𝑃,

Ψ7,12 = −𝑀7,

Ψ7,13 = −𝑁7,

Ψ7,14 = −𝑈7,

Ψ7,15 = − 𝑆7,

Ψ8,8 = − 𝜖1𝐼 +𝑄5 +𝑍8𝑊0 +𝑊
𝑇

0 𝑍
𝑇

8 ,

Ψ8,9 = 𝑊
𝑇

0 𝑍
𝑇

9 ,

Ψ8,10 = 𝑊
𝑇

0 𝑍
𝑇

10 −𝑍
𝑇

8 ,

Ψ8,11 = 𝑊
𝑇

0 𝑍
𝑇

11 − 𝐼 +𝑍
𝑇

8 ,

Ψ8,12 = 𝑊
𝑇

0 𝑍
𝑇

12 −𝑀12,

Ψ8,14 = 𝑊
𝑇

0 𝑍
𝑇

14 −𝑈8,

Ψ8,13 = 𝑊
𝑇

0 𝑍
𝑇

13 −𝑁8,

Ψ8,15 = 𝑊
𝑇

0 𝑍
𝑇

15 − 𝑆8,

Ψ9,9 = − (1− ̇𝜏 (𝑡)) 𝑄5 −Λ 2𝐼 +𝑊
𝑇

1 𝑍
𝑇

9 +𝑍9𝑊1,

Ψ9,10 = 𝑊
𝑇

1 𝑍
𝑇

10 −𝑍9,

Ψ9,11 = 𝑍9 +𝑊
𝑇

1 𝑍
𝑇

11,

Ψ9,12 = −𝑀9 +𝑊
𝑇

1 𝑍
𝑇

12,

Ψ9,13 = −𝑁9 +𝑊
𝑇

1 𝑍
𝑇

13,

Ψ9,14 = −𝑈9 +𝑊
𝑇

1 𝑍
𝑇

14,

Ψ9,15 = − 𝑆9 +𝑊
𝑇

1 𝑍
𝑇

15,

Ψ10,10 = 𝑍10 +𝑍
𝑇

10 + 𝜏𝑅3,

Ψ10,11 = 𝑍10 −𝑍
𝑇

11,

Ψ10,12 = −𝑀10 −𝑍
𝑇

12,

Ψ10,13 = −𝑍
𝑇

13 −𝑁10,

Ψ10,14 = −𝑍
𝑇

14 −𝑈10,

Ψ10,15 = −𝑍
𝑇

15 − 𝑆10,

Ψ11,11 = 𝑍
𝑇

11 +𝑍11 − 𝛾𝐼 + 𝜆Σ
𝑇

3Σ3,

Ψ11,12 = 𝑍
𝑇

12 −𝑀11,

Ψ11,13 = 𝑍
𝑇

13 −𝑁11,

Ψ11,14 = 𝑍
𝑇

14 −𝑈11,

Ψ11,15 = 𝑍
𝑇

15 − 𝑆11,

Ψ12,12 = −
1
𝛼𝜏

𝑅3 −𝑀12 −𝑀
𝑇

12,

Ψ12,13 = −𝑀
𝑇

13 −𝑁12,

Ψ12,14 = −𝑀
𝑇

14 −𝑈12,

Ψ12,15 = −𝑀
𝑇

15 − 𝑆12,

Ψ13,13 = −
1

(1 − 𝛼) 𝜏
𝑅3 −𝑁13 −𝑁

𝑇

13,

Ψ13,14 = −𝑈13 −𝑁
𝑇

14,

Ψ13,15 = −𝑁
𝑇

15 − 𝑆13,

Ψ14,14 = −𝑅3
1
𝛽𝜏

−𝑈14 −𝑈
𝑇

14,

Ψ14,15 = −𝑈
𝑇

15 − 𝑆14,

Ψ15,15 = −
1

(1 − 𝛽) 𝜏
𝑅3 − 𝑆15 − 𝑆

𝑇

15,

Ω = [√𝜌
𝜎
𝑃𝐴 0 0 0 0 0 0 0 0 0 0 0 0 0 0] .

(15)

Ψ1 and Ψ2 are defined as replacing ̇𝜏(𝑡) in Ψ
𝑖
by 𝜇 and −𝜇,

respectively. Consider

𝑀 = [𝑀
𝑇

1 𝑀
𝑇

2 𝑀
𝑇

3 𝑀
𝑇

4 𝑀
𝑇

5 𝑀
𝑇

6 𝑀
𝑇

7 𝑀
𝑇

8 𝑀
𝑇

9 𝑀
𝑇

10 𝑀
𝑇

11 𝑀
𝑇

12 𝑀
𝑇

13 𝑀
𝑇

14 𝑀
𝑇

15]
𝑇

,

𝑁 = [𝑁
𝑇

1 𝑁
𝑇

2 𝑁
𝑇

3 𝑁
𝑇

4 𝑁
𝑇

5 𝑁
𝑇

6 𝑁
𝑇

7 𝑁
𝑇

8 𝑁
𝑇

9 𝑁
𝑇

10 𝑁
𝑇

11 𝑁
𝑇

12 𝑁
𝑇

13 𝑁
𝑇

14 𝑁
𝑇

15]
𝑇

,

𝑈 = [𝑈
𝑇

1 𝑈
𝑇

2 𝑈
𝑇

3 𝑈
𝑇

4 𝑈
𝑇

5 𝑈
𝑇

6 𝑈
𝑇

7 𝑈
𝑇

8 𝑈
𝑇

9 𝑈
𝑇

10 𝑈
𝑇

11 𝑈
𝑇

12 𝑈
𝑇

13 𝑈
𝑇

14 𝑈
𝑇

15]
𝑇

,

𝑆 = [𝑆
𝑇

1 𝑆
𝑇

2 𝑆
𝑇

3 𝑆
𝑇

4 𝑆
𝑇

5 𝑆
𝑇

6 𝑆
𝑇

7 𝑆
𝑇

8 𝑆
𝑇

9 𝑆
𝑇

10 𝑆
𝑇

11 𝑆
𝑇

12 𝑆
𝑇

13 𝑆
𝑇

14 𝑆
𝑇

15]
𝑇

,

𝑍 = [𝑍
𝑇

1 𝑍
𝑇

2 𝑍
𝑇

3 𝑍
𝑇

4 𝑍
𝑇

5 𝑍
𝑇

6 𝑍
𝑇

7 𝑍
𝑇

8 𝑍
𝑇

9 𝑍
𝑇

10 𝑍
𝑇

11 𝑍
𝑇

12 𝑍
𝑇

13 𝑍
𝑇

14 𝑍
𝑇

15]
𝑇

.

(16)
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Proof. For the convenience of proof, we denote

𝑔 (𝑡) = −𝐴𝑥 (𝑡 − 𝛿 (𝑡)) +𝑊0𝑓 (𝑥 (𝑡))

+𝑊1𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝑢 (𝑡) ,

𝜎 (𝑡) = 𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑢 (𝑡)) ;

(17)

then system (1) can be rewritten as

𝑑𝑥 (𝑡) = 𝑔 (𝑡) 𝑑𝑡 + 𝜎 (𝑡) 𝑑𝜔 (𝑡) . (18)

Choose a Lyapunov-Krasovskii functional candidate as
𝑉(𝑥(𝑡)) = ∑

6
𝑖=1 𝑉𝑖(𝑥(𝑡), 𝑡), where

𝑉1 (𝑥 (𝑡) , 𝑡) = [𝑥 (𝑡) −𝐴∫

𝑡

𝑡−𝛿(𝑡)

𝑥 (𝑠) 𝑑𝑠]

𝑇

𝑃[𝑥 (𝑡)

−𝐴∫

𝑡

𝑡−𝛿(𝑡)

𝑥 (𝑠) 𝑑𝑠] ,

𝑉2 (𝑥 (𝑡) , 𝑡) = ∫

𝑡

𝑡−𝛿(𝑡)

𝑥
𝑇

(𝑠) 𝑅1𝑥
𝑇

(𝑠) 𝑑𝑠

+ 𝛿∫

0

−𝛿(𝑡)

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑅2𝑥
𝑇

(𝑠) 𝑑𝑠 𝑑𝜃,

𝑉3 (𝑥 (𝑡) , 𝑡) = ∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑄1𝑥 (𝑠) 𝑑𝑠

+∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑄2𝑥 (𝑠) 𝑑𝑠

+∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝑥
𝑇

(𝑠) 𝑄3𝑥 (𝑠) 𝑑𝑠

+∫

𝑡−𝜑(𝑡)

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑄4𝑥 (𝑠) 𝑑𝑠,

𝑉4 (𝑥 (𝑡) , 𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

𝑓
𝑇

(𝑠) 𝑄5𝑓 (𝑠) 𝑑𝑠,

𝑉5 (𝑥 (𝑡) , 𝑡) = ∫

0

−𝜏

∫

𝑡

𝑡+𝑠

𝑔
𝑇

(𝜃) 𝑅3𝑔 (𝜃) 𝑑𝜃 𝑑𝑠,

𝑉6 (𝑥 (𝑡) , 𝑡) = ∫

0

−𝜏

∫

𝑡

𝑡+𝑠

𝜎
𝑇

(𝜃) 𝑅4𝜎 (𝜃) 𝑑𝜃 𝑑𝑠,

(19)

where 𝜑(𝑡) = 𝜏(𝑡) + 𝛽(𝜏 − 𝜏(𝑡)) and 0 < 𝛼 < 1 and 0 < 𝛽 < 1.
Then, the stochastic differential of 𝑉(𝑥(𝑡), 𝑡) along system (1)
can be obtained as follows:

𝑑𝑉 (𝑥 (𝑡) , 𝑡) = L𝑉 (𝑥 (𝑡) , 𝑡) 𝑑𝑡

+ 2𝑥 (𝑡)
𝑇

𝑃𝑔 (𝑡) 𝑑𝜔 (𝑡) ,

(20)

where

L𝑉 (𝑥 (𝑡) , 𝑡) =

6
∑

𝑖=1
L𝑉
𝑖
(𝑥 (𝑡) , 𝑡) . (21)

So by Lemma 9, the following inequalities can be
obtained:

L𝑉1 (𝑥 (𝑡) , 𝑡)

= 2 [𝑥 (𝑡) −𝐴∫

𝑡

𝑡−𝛿(𝑡)

𝑥 (𝑠) 𝑑𝑠]

𝑇

𝑃𝑔 (𝑡)

+ trace {𝜎𝑇 (𝑡) 𝑃𝜎 (𝑡)}

≤ − 2𝑥𝑇 (𝑡) 𝑃𝐴𝑥 (𝑡) + 2𝑥𝑇 (𝑡) 𝑃𝑊0𝑓 (𝑥 (𝑡))

+ 2𝑥𝑇 (𝑡) 𝑃𝑊1𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) + 2𝑥𝑇 (𝑡) 𝑃𝑢 (𝑡)

+ 2 [∫
𝑡

𝑡−𝛿(𝑡)

𝑥 (𝑠) 𝑑𝑠]

𝑇

𝐴
𝑇

𝑃𝐴𝑥 (𝑡)

− 2 [∫
𝑡

𝑡−𝛿(𝑡)

𝑥 (𝑠) 𝑑𝑠]

𝑇

𝐴
𝑇

𝑃𝑊0𝑓 (𝑥 (𝑡))

− 2 [∫
𝑡

𝑡−𝛿(𝑡)

𝑥 (𝑠) 𝑑𝑠]

𝑇

𝐴
𝑇

𝑃𝑊1𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2 [∫
𝑡

𝑡−𝛿(𝑡)

𝑥 (𝑠) 𝑑𝑠]

𝑇

𝐴
𝑇

𝑃𝐴𝑥 (𝑡 − 𝛿 (𝑡)) 𝜌
𝜎

− 2 [∫
𝑡

𝑡−𝛿(𝑡)

𝑥 (𝑠) 𝑑𝑠]

𝑇

𝐴
𝑇

𝑃𝑢 (𝑡)

+ trace {𝜎𝑇 (𝑡) 𝑃𝜎 (𝑡)}

+ 𝑥
𝑇

(𝑡) 𝑃𝐴𝑄
−1
𝐴
𝑇

𝑃𝑥 (𝑡) 𝜌
𝜎

+𝑥
𝑇

(𝑡 − 𝛿 (𝑡)) 𝑄𝑥 (𝑡 − 𝛿 (𝑡)) 𝜌
𝜎
,

(22)

where 𝑔(𝑡) = −𝐴𝑥(𝑡)−𝜌
𝜎
𝐴𝑥(𝑡−𝛿(𝑡))+𝑊0𝑓(𝑥(𝑡))+𝑊1𝑓(𝑥(𝑡−

𝜏(𝑡))) + 𝑢(𝑡),

L𝑉2 (𝑥 (𝑡) , 𝑡) ≤ 𝑥
𝑇

(𝑡) 𝑅1𝑥 (𝑡) − (1−𝜌
𝜎
)

⋅ 𝑥
𝑇

(𝑡 − 𝛿 (𝑡)) 𝑅1𝑥 (𝑡 − 𝛿 (𝑡)) + 𝛿
2
𝑥
𝑇

(𝑡) 𝑅2𝑥 (𝑡)

−∫

𝑡

𝑡−𝛿(𝑡)

𝑥
𝑇

(𝑠) 𝑑𝑠𝑅2 ∫
𝑡

𝑡−𝛿(𝑡)

𝑥 (𝑠) 𝑑𝑠,

L𝑉3 (𝑥 (𝑡) , 𝑡) = 𝑥
𝑇

(𝑡) 𝑄1𝑥 (𝑡) + (1−𝛼 ̇𝜏 (𝑡))

⋅ 𝑥
𝑇

(𝑡 − 𝛼𝜏 (𝑡)) (𝑄2 −𝑄1) 𝑥 (𝑡 − 𝛼𝜏 (𝑡))

+ (1− ̇𝜏 (𝑡)) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) (𝑄3 −𝑄2) 𝑥 (𝑡 − 𝜏 (𝑡))

+ (1− (1−𝛽) ̇𝜏 (𝑡)) 𝑥
𝑇

(𝑡 − 𝜑 (𝑡)) (𝑄4 −𝑄3)

⋅ 𝑥 (𝑡 − 𝜑 (𝑡)) − 𝑥
𝑇

(𝑡 − 𝜏)𝑄4𝑥 (𝑡 − 𝜏) ,

L𝑉4 (𝑥 (𝑡) , 𝑡) = 𝑓
𝑇

(𝑥 (𝑡)) 𝑄5𝑓 (𝑥 (𝑡)) − (1− ̇𝜏 (𝑡))

⋅ 𝑓
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄5𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) ,
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L𝑉5 (𝑥 (𝑡) , 𝑡) = 𝜏𝑔 (𝑡)
𝑇

𝑅3𝑔 (𝑡)

−∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝑔
𝑇

(𝑠) 𝑅3𝑔 (𝑠) 𝑑𝑠

−∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝑔
𝑇

(𝑠) 𝑅3𝑔 (𝑠) 𝑑𝑠

−∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝑔
𝑇

(𝑠) 𝑅3𝑔 (𝑠) 𝑑𝑠

−∫

𝑡−𝜑(𝑡)

𝑡−𝜏

𝑔
𝑇

(𝑠) 𝑅3𝑔 (𝑠) 𝑑𝑠,

L𝑉6 (𝑥 (𝑡) , 𝑡) = 𝜏𝜎
𝑇

(𝑡) 𝑅4𝜎 (𝑡)

−∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝜎
𝑇

(𝑠) 𝑅4𝜎 (𝑠) 𝑑𝑠

−∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝜎
𝑇

(𝑠) 𝑅4𝜎 (𝑠) 𝑑𝑠

−∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝜎
𝑇

(𝑠) 𝑅4𝜎 (𝑠) 𝑑𝑠

−∫

𝑡−𝜑(𝑡)

𝑡−𝜏

𝜎
𝑇

(𝑠) 𝑅4𝜎 (𝑠) 𝑑𝑠.

(23)

By Lemma 6, it is easy to know that

−∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝑔
𝑇

(𝑠) 𝑅3𝑔 (𝑠) 𝑑𝑠

≤ −
1

𝛼𝜏 (𝑡)
∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝑔
𝑇

(𝑠) 𝑑𝑠𝑅3 ∫
𝑡

𝑡−𝛼𝜏(𝑡)

𝑔 (𝑠) 𝑑𝑠

≤ −
1
𝛼𝜏

∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝑔
𝑇

(𝑠) 𝑑𝑠𝑅3 ∫
𝑡

𝑡−𝛼𝜏(𝑡)

𝑔 (𝑠) 𝑑𝑠,

−∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝑔
𝑇

(𝑠) 𝑅3𝑔 (𝑠) 𝑑𝑠

≤ −
1

(1 − 𝛼) 𝜏
∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝑔
𝑇

(𝑠) 𝑑𝑠𝑅3 ∫
𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝑔 (𝑠) 𝑑𝑠,

−∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝑔
𝑇

(𝑠) 𝑅3𝑔 (𝑠) 𝑑𝑠

≤ −
1
𝛽𝜏

∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝑔
𝑇

(𝑠) 𝑑𝑠𝑅3 ∫
𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝑔 (𝑠) 𝑑𝑠,

−∫

𝑡−𝜑(𝑡)

𝑡−𝜏

𝑔
𝑇

(𝑠) 𝑅3𝑔 (𝑠) 𝑑𝑠

≤ −
1

(1 − 𝛽) 𝜏
∫

𝑡−𝜑(𝑡)

𝑡−𝜏

𝑔
𝑇

(𝑠) 𝑑𝑠𝑅3 ∫
𝑡−𝜑(𝑡)

𝑡−𝜏

𝑔 (𝑠) 𝑑𝑠.

(24)

For arbitrary matrices 𝑀, 𝑁, 𝑈, 𝑆, and 𝑍 with compatible
dimensions, we have

𝜃1 (𝑡) = 2𝜁𝑇 (𝑡)𝑀[𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝛼𝜏 (𝑡))

−∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝑔 (𝑠) 𝑑𝑠 −∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠)] = 0,
(25)

𝜃2 (𝑡) = 2𝜁𝑇 (𝑡)𝑁[𝑥 (𝑡 − 𝛼𝜏 (𝑡)) − 𝑥
𝑇

(𝑡 − 𝜏 (𝑡))

−∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝑔 (𝑠) 𝑑𝑠 −∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠)] = 0,

(26)

𝜃3 (𝑡) = 2𝜁𝑇 (𝑡) 𝑈 [𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥
𝑇

(𝑡 − 𝜑 (𝑡))

−∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝑔 (𝑠) 𝑑𝑠 −∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠)] = 0,

(27)

𝜃4 (𝑡) = 2𝜁𝑇 (𝑡) 𝑆 [𝑥 (𝑡 − 𝜑 (𝑡)) − 𝑥
𝑇

(𝑡 − 𝜏)

−∫

𝑡−𝜑(𝑡)

𝑡−𝜏

𝑔 (𝑠) 𝑑𝑠 −∫

𝑡−𝜑(𝑡)

𝑡−𝜏

𝜎 (𝑠) 𝑑𝑤 (𝑠)] = 0,

(28)

𝜃5 (𝑡) = 2𝜁𝑇 (𝑡) 𝑍 [−𝐴𝑥 (𝑡 − 𝛿 (𝑡)) − 𝑔 (𝑡)

+𝑊0𝑓 (𝑥 (𝑡)) +𝑊1𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝑢 (𝑡)] = 0,
(29)

where

𝜁
𝑇

(𝑡) = [𝑎
1,1

𝑎
1,2

𝑎
1,3

𝑎
1,4

𝑎
1,5

𝑎
1,6

𝑎
1,7

𝑎
1,8

𝑎
1,9

𝑎
1,10

𝑎
1,11

𝑎
1,12

𝑎
1,13

𝑎
1,14

𝑎
1,15

] , (30)

where

𝑎
1,1

= 𝑥
𝑇

(𝑡) ,

𝑎
1,2

= 𝑥
𝑇

(𝑡 − 𝛿 (𝑡)) ,

𝑎
1,3

= 𝑥
𝑇

(𝑡 − 𝛼𝜏 (𝑡)) ,

𝑎
1,4

= 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) ,

𝑎
1,5

= 𝑥
𝑇

(𝑡 − 𝜑 (𝑡)) ,

𝑎
1,6

= 𝑥
𝑇

(𝑡 − 𝜏) ,

𝑎
1,7

= ∫

𝑡

𝑡−𝛿(𝑡)

𝑥
𝑇

(𝑠) 𝑑𝑠,
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𝑎
1,8

= 𝑓
𝑇

(𝑥 (𝑡)) ,

𝑎
1,9

= 𝑓
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) ,

𝑎
1,10

= 𝑔
𝑇

(𝑡) ,

𝑎
1,11

= 𝑢
𝑇

(𝑡) ,

𝑎
1,12

= ∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝑔
𝑇

(𝑠) 𝑑𝑠,

𝑎
1,13

= ∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝑔
𝑇

(𝑠) 𝑑𝑠,

𝑎
1,14

= ∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝑔
𝑇

(𝑠) 𝑑𝑠,

𝑎
1,15

= ∫

𝑡−𝜑(𝑡)

𝑡−𝜏

𝑔
𝑇

(𝑠) 𝑑𝑠.

(31)

From Assumptions 3 and (12), we can get

trace {𝜎𝑇 (𝑡) (𝑃 + 𝜏𝑅4) 𝜎 (𝑡)} ≤ 𝜆 [𝑥
𝑇

(𝑡) Σ
𝑇

1Σ1𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) Σ
𝑇

2Σ2𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑢
𝑇

(𝑡) Σ
𝑇

3Σ3𝑢 (𝑡)] .

(32)

In addition, fromAssumption 1, the following inequalities
can be deduced:

(𝑓 (𝑥 (𝑡)) −Λ 1𝑥 (𝑡))
𝑇

(𝑓 (𝑥 (𝑡)) −Λ 2𝑥 (𝑡)) ≤ 0,

(𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) −Λ 1𝑥 (𝑡 − 𝜏 (𝑡)))
𝑇

⋅ (𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) −Λ 2𝑥 (𝑡 − 𝜏 (𝑡))) ≤ 0.

(33)

It is clear that for any scalars 𝜖1 > 0 and 𝜖2 > 0, there exist
diagonal matrices 𝐹1 ≥ 0, 𝐹2 ≥ 0, and Λ

𝑖
(𝑖 = 1, 2) such that

the following inequality hold:

0 ≤ − 𝜖1 [
𝑥 (𝑡)

𝑓 (𝑥 (𝑡))
]

𝑇

[

𝐹1 𝐹2

∗ 𝐼
] [

𝑥 (𝑡)

𝑓 (𝑥 (𝑡))
] = 𝜃6 (𝑡) ,

0 ≤ − 𝜖2 [
𝑥 (𝑡 − 𝜏 (𝑡))

𝑓 (𝑥 (𝑡) − 𝜏 (𝑡))
]

𝑇

⋅ [

𝐹1 𝐹2

∗ 𝐼
] [

𝑥 (𝑡 − 𝜏 (𝑡))

𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))
] = 𝜃7 (𝑡) ,

(34)

where

𝐹1 =
Λ
𝑇

1Λ 1 + Λ
𝑇

2Λ 1
2

,

𝐹2 = −
Λ
𝑇

1 + Λ
𝑇

2
2

.

(35)

In order to get the passive condition, we introduce the
following inequality:

L𝑉 (𝑥 (𝑡) , 𝑡) − 2𝑦𝑇 (𝑡) 𝑢 (𝑡) − 𝛾𝑢
𝑇

(𝑡) 𝑢 (𝑡)

≤ L𝑉 (𝑥 (𝑡) , 𝑡) − 2𝑓𝑇 (𝑥 (𝑡)) 𝑢 (𝑡) − 𝛾𝑢
𝑇

(𝑡) 𝑢 (𝑡)

+

7
∑

𝑖=1
𝜃
𝑖
(𝑡) .

(36)

On the other hand, for formulas (25)–(28), we further have

− 2𝜁𝑇 (𝑡)𝑀∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠)

≤ 𝜁
𝑇

(𝑡)𝑀𝑅
−1
4 𝑀
𝑇

𝜁 (𝑡)

+ (∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠))

𝑇

𝑅4 ∫
𝑡

𝑡−𝛼𝜏(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠) ,

− 2𝜁𝑇 (𝑡)𝑁∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠)

≤ 𝜁
𝑇

(𝑡)𝑁𝑅
−1
4 𝑁
𝑇

𝜁 (𝑡)

+(∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠))

𝑇

𝑅4 ∫
𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠) ,

− 2𝜁𝑇 (𝑡) 𝑈∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠)

≤ 𝜁
𝑇

(𝑡) 𝑈𝑅
−1
4 𝑈
𝑇

𝜁 (𝑡)

+(∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠))

𝑇

𝑅4 ∫
𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠) ,

− 2𝜁𝑇 (𝑡) 𝑆 ∫
𝑡−𝜑(𝑡)

𝑡−𝜏

𝜎 (𝑠) 𝑑𝑤 (𝑠)

≤ 𝜁
𝑇

(𝑡) 𝑆𝑅
−1
4 𝑆
𝑇

𝜁 (𝑡)

+(∫

𝑡−𝜑(𝑡)

𝑡−𝜏

𝜎 (𝑠) 𝑑𝑤 (𝑠))

𝑇

𝑅4 ∫
𝑡−𝜑(𝑡)

𝑡−𝜏

𝜎 (𝑠) 𝑑𝑤 (𝑠) .

(37)

At the same time, from the character of Itô integrals, we
can obtain that

E{∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝜎
𝑇

(𝑠) 𝑑𝑤 (𝑠) 𝑅4 ∫
𝑡

𝑡−𝛼𝜏(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠)}

= E{∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝜎
𝑇

(𝑠) 𝑅4𝜎 (𝑠) 𝑑𝑠} ,

(38)
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E{∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝜎
𝑇

(𝑠) 𝑑𝑤 (𝑠) 𝑅4 ∫
𝑡−𝛼𝜏(𝑡)

𝑡−𝜏1(𝑡)
𝜎 (𝑠) 𝑑𝑤 (𝑠)}

= E{∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝜎
𝑇

(𝑠) 𝑅4𝜎 (𝑠) 𝑑𝑠} ,

(39)

E{∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝜎
𝑇

(𝑠) 𝑑𝑤 (𝑠) 𝑅4 ∫
𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝜎 (𝑠) 𝑑𝑤 (𝑠)}

= E{∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝜎
𝑇

(𝑠) 𝑅4𝜎 (𝑠) 𝑑𝑠} ,

(40)

E{∫

𝑡−𝛿(𝑡)

𝑡−𝜏

𝜎
𝑇

(𝑠) 𝑑𝑤 (𝑠) 𝑅4 ∫
𝑡−𝜑(𝑡)

𝑡−𝜏

𝜎 (𝑠) 𝑑𝑤 (𝑠)}

= E{∫

𝑡−𝜑(𝑡)

𝑡−𝜏

𝜎
𝑇

(𝑠) 𝑅4𝜎 (𝑠) 𝑑𝑠} .

(41)

By substituting (22)-(23) into (20) and considering (36),
then taking expectation on both sides of (20), and then using
(38), we can get

E𝑑𝑉 (𝑥 (𝑡) , 𝑡) − 2E𝑦𝑇 (𝑡) 𝑢 (𝑡) − 𝛾E𝑢
𝑇

(𝑡) 𝑢 (𝑡)

= EL𝑉 (𝑥 (𝑡) , 𝑡) − 2E𝑦𝑇 (𝑡) 𝑢 (𝑡) − 𝛾E𝑢
𝑇

(𝑡) 𝑢 (𝑡)

≤ E𝜁
𝑇

(𝑡) (Ψ
𝑖
+Ω
𝑇

𝑄
−1
Ω+𝑀𝑅

−1
4 𝑀
𝑇

+𝑁𝑅
−1
4 𝑁
𝑇

+𝑈𝑅
−1
4 𝑈
𝑇

+ 𝑆𝑅
−1
4 𝑆
𝑇

) 𝜁 (𝑡) , 𝑖 = 1, 2.

(42)

By Lemma 8, there exist nonnegative functions 𝜆1(𝑡) and
𝜆2(𝑡) satisfying 𝜆1(𝑡) + 𝜆2(𝑡) = 1 such that

Ψ = 𝜆1 (𝑡) Ψ1 +𝜆2 (𝑡) Ψ2. (43)

Substituting (43) into (42), then (42) can be rewritten as

E𝑑𝑉 (𝑥 (𝑡) , 𝑡) − 2E𝑦𝑇 (𝑡) 𝑢 (𝑡) − 𝛾E𝑢
𝑇

(𝑡) 𝑢 (𝑡)

≤ 𝜆1 (𝑡) 𝜃1 (𝑡) 𝜁
𝑇

(𝑡)

⋅ [Ψ1 +Ω
𝑇

𝑄
−1
Ω+𝑀𝑅

−1
4 𝑀
𝑇

+𝑁𝑅
−1
4 𝑁
𝑇

] 𝜁 (𝑡)

+ 𝜆1 (𝑡) 𝜃2 (𝑡) 𝜁
𝑇

(𝑡)

⋅ [Ψ2 +Ω
𝑇

𝑄
−1
Ω+𝑀𝑅

−1
4 𝑀
𝑇

+𝑁𝑅
−1
4 𝑁
𝑇

] 𝜁 (𝑡)

⋅ 𝜆2 (𝑡) 𝜃1 (𝑡) 𝜁
𝑇

(𝑡)

⋅ [Ψ1 +Ω
𝑇

𝑄
−1
Ω+𝑈𝑅

−1
4 𝑈
𝑇

+ 𝑆𝑅
−1
4 𝑆
𝑇

] 𝜁 (𝑡)

+ 𝜆2 (𝑡) 𝜃2 (𝑡) 𝜁
𝑇

(𝑡)

⋅ [Ψ2 +Ω
𝑇

𝑄
−1
Ω+𝑈𝑅

−1
4 𝑈
𝑇

+ 𝑆𝑅
−1
4 𝑆
𝑇

] 𝜁 (𝑡) ,

(44)

where 𝜃1(𝑡) = 𝜏(𝑡)/𝜏 ≥ 0, 𝜃2(𝑡) = (𝜏 − 𝜏(𝑡))/𝜏 ≥ 0.

So we can get that the following matrix inequalities hold:

Ψ
𝑖
+Ω
𝑇

𝑄
−1
Ω+𝑀𝑅

−1
4 𝑀
𝑇

+𝑁𝑅
−1
4 𝑁
𝑇

< 0,

𝑖 = 1, 2,
(45)

Ψ
𝑖
+Ω
𝑇

𝑄
−1
Ω+𝑈𝑅

−1
4 𝑈
𝑇

+ 𝑆𝑅
−1
4 𝑆
𝑇

< 0,

𝑖 = 1, 2.
(46)

By virtue of Lemma 7, (45) and (46) are equivalent to (13) and
(14), respectively, so we can get that

E𝑑𝑉 (𝑥 (𝑡) , 𝑡) − 2E𝑦𝑇 (𝑡) 𝑢 (𝑡) − 𝛾E𝑢
𝑇

(𝑡) 𝑢 (𝑡) < 0; (47)

then integrating on both sides of (47) from 0 to 𝑡, we can
obtain

2E∫

𝑡

0
𝑦
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠 ≥ E𝑉 (𝑥 (𝑡) , 𝑡) −E𝑉 (𝑥0, 0)

− 𝛾E∫

𝑡

0
𝑢 (𝑠) 𝑢 (𝑠) 𝑑𝑠

≥ − 𝛾E∫

𝑡

0
𝑢
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠.

(48)

It indicates that system (1) is stochastically passive in the sense
of Definition 4. This completes the proof.

Remark 11. In [42], the delay interval is divided into three
subintervals, which are [−𝜏2, −𝜏(𝑡)], [−𝜏(𝑡), −𝜏1], and [−𝜏1, 0].
In this paper, the new Lyapunov function proposed in Theo-
rem 10 is based on the decomposition of delay interval [−𝜏, 0]
into four subintervals, which are [−𝛼𝜏(𝑡), 0], [−𝜏(𝑡), −𝛼𝜏(𝑡)],
[−𝜑(𝑡), −𝜏(𝑡)], and [−𝜏, −𝜏(𝑡)]. By using the lower bound and
upper bound of delay derivative ̇𝜏(𝑡), the idea of delay fraction
can be successfully applied to cases of both constant and time-
varying delay, so less conservatism results can be expected.

When the leakage delay is constant, namely, 𝛿(𝑡) = 𝛿 and
𝜌
𝜎
= 0, neural network system (1) will become the following

model:

𝑑𝑥 (𝑡) = [−𝐴𝑥 (𝑡 − 𝛿) +𝑊0𝑓 (𝑥 (𝑡))

+𝑊1𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝑢 (𝑡)] 𝑑𝑡

+ 𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑢 (𝑡)) 𝑑𝜔 (𝑡) ,

𝑦 (𝑡) = 𝑓 (𝑥 (𝑡)) .

(49)

This system has been studied in [42]; then for system (49) we
have the following Corollary 12.

Corollary 12. Given scalars 𝜏 > 0, 0 < 𝛼 < 1, 0 < 𝛽 < 1,
𝜆 > 0, and 0 < 𝜇 and proper matrices Σ

𝑖
(𝑖 = 1, 2, 3), the

SNNs described by (49) are stochastically passive in the sense
of Definition 4, if there exist positive matrices 𝑃 > 0, 𝑄

𝑗
>

0 (𝑗 = 1, . . . , 5), and 𝑅
𝑙
> 0 (𝑙 = 1, . . . , 5), positive diagonal

matrices 𝐹
𝑗
> 0 (𝑗 = 1, 2), positive constants 𝛾 > 0, 𝜖1, 𝜖2,
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and real matrices𝑀,𝑁,𝑈, 𝑆, and𝑍 of appropriate dimensions
such that the following LMIs hold:

𝑃+ 𝜏𝑅4 ≤ 𝜆𝐼, (50)

[
[
[
[
[

[

Ψ
𝑖
( ̇𝜏 (𝑡)) 𝑀 𝑁

∗ −
1
𝛼𝜏

𝑅4 0

∗ ∗ −
1

(1 − 𝛼) 𝜏
𝑅4

]
]
]
]
]

]

< 0, 𝑖 = 1, 2, (51)

[
[
[
[
[
[

[

Ψ
𝑖
( ̇𝜏 (𝑡)) 𝑈 𝑆

∗ −
1
𝛽𝜏

𝑅4 0

∗ ∗ −
1

(1 − 𝛽) 𝜏
𝑅4

]
]
]
]
]
]

]

< 0, 𝑖 = 1, 2, (52)

where

Ψ2,2 = −𝑅1 −𝑍2𝐴,

Ψ2,7 = 0.
(53)

Ψ1( ̇𝜏(𝑡)) and Ψ2( ̇𝜏(𝑡)) are defined as replacing ̇𝜏(𝑡) in Ψ
𝑖
( ̇𝜏(𝑡))

by 𝜇 and −𝜇, respectively; the other terms have the same
expression as that in Theorem 10.

It is well known that the Markovian jump systems (MJSs)
are a special class of hybrid systems, which have the advantage
in modeling the dynamic systems subject to abrupt variation
in their structures, such as component failures and sudden
environmental disturbance. Many researches about the sta-
bility analysis, impulsive response, and state estimation on the
neural networks with Markovian jumping parameters have
been obtained; see [44–47] and references therein. Recently
[48] has studied the passivity of stochastic neural networks
with Markovian jumping parameters; the same method can
be used to a system with Markovian jumping parameters and
it still leaves much room to reduce the conservatism, which
motivates our aim.

Let 𝑟
𝑡
, 𝑡 ≥ 0, be a right-continuous Markov chain defined

on a complete probability space (Ω,F, 𝑃) and taking discrete
values in a finite state space 𝑆 = {1, 2, . . . , 𝑁} with generator
Π = (𝜋

𝑖𝑗
)
𝑁×𝑁

given by

𝑃 {𝑟 (𝑡 +Δ) = 𝑗 | 𝑟 (𝑡) = 𝑖}

=

{

{

{

𝜋
𝑖𝑗
Δ + 𝑜 (Δ) , 𝑖 ̸= 𝑗,

1 + 𝜋
𝑖𝑗
Δ + 𝑜 (Δ) , 𝑖 = 𝑗,

(54)

whereΔ > 0 and 𝜋
𝑖𝑗
≥ 0 is the transition rate from 𝑖 to 𝑗while

𝜋
𝑖𝑖
= −∑

𝑗 ̸=𝑖
𝜋
𝑖𝑗
.

For the purpose of simplicity, in the sequel, for each 𝑟
𝑡
=

𝑖 ∈ 𝑆, 𝐴(𝑟
𝑡
), 𝑊0(𝑟𝑡), and 𝑊1(𝑟𝑡) are denoted by 𝐴

𝑖
, 𝑊0𝑖, 𝑊1𝑖,

and so on. Throughout the paper, we assume that 𝜔(𝑡) and

𝑟(𝑡) are independent. Then when the leakage delay does not
exist, system (1) will become the one as follows:

𝑑𝑥 (𝑡) = [−𝐴
𝑖
𝑥 (𝑡) +𝑊0𝑖𝑓 (𝑥 (𝑡))

+𝑊1𝑖𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝑢 (𝑡)] 𝑑𝑡

+ 𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑖, 𝑢 (𝑡)) 𝑑𝜔 (𝑡)

𝑦 (𝑡) = 𝑓 (𝑥 (𝑡)) .

(55)

This system has been studied in [43] and good results have
been obtained. In order to testify the effectiveness of our
methods, we give the followingTheorem 13.

Theorem 13. Given scalars 𝜏 > 0, 0 < 𝛼 < 1, 0 < 𝛽 < 1,
𝜆
𝑖
> 0, and 0 < 𝜇 and proper matrices Σ

𝑛
(𝑛 = 1, 2, 3), the

SNNs described by (1) are stochastically passive in the sense of
Definition 4, if there exist positive matrices 𝑃

𝑖
> 0, 𝑄 > 0,

𝑄
𝑗
> 0 (𝑗 = 1, . . . , 5), and 𝑅

𝑙
> 0 (𝑙 = 1, 2, . . . , 5), positive

diagonal matrices 𝐹
𝑗
> 0 (𝑗 = 1, 2), positive constants 𝜖1𝑖, 𝜖2𝑖,

𝛾 > 0, and real matrices 𝑀
𝑖
, 𝑁
𝑖
, 𝑈
𝑖
, 𝑆
𝑖
, and 𝑍

𝑖
of appropriate

dimensions such that the following LMIs hold:

𝑃
𝑖
+ 𝜏𝑅4 ≤ 𝜆

𝑖
𝐼, (56)

[
[
[
[
[

[

Ψ
𝜅
( ̇𝜏 (𝑡)) 𝑀

𝑖
𝑁
𝑖

∗ −
1
𝛼𝜏

𝑅4 0

∗ ∗ −
1

(1 − 𝛼) 𝜏
𝑅4

]
]
]
]
]

]

< 0, 𝜅 = 1, 2 (57)

[
[
[
[
[
[

[

Ψ
𝜅
( ̇𝜏 (𝑡)) 𝑈

𝑖
𝑆
𝑖

∗ −
1
𝛽𝜏

𝑅4 0

∗ ∗ −
1

(1 − 𝛽) 𝜏
𝑅4

]
]
]
]
]
]

]

< 0, 𝜅 = 1, 2, (58)

where

Ψ
𝑖
( ̇𝜏 (𝑡)) = (Ψ

𝑚×𝑛
)13×13 ,

Ψ1,1 = 𝑄1 +𝑅1 +
𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
−𝑃
𝑖
𝐴
𝑖
−𝐴
𝑇

𝑖
𝑃
𝑖
− 𝜖1𝑖𝐹1

+𝜆
𝑖
Σ
𝑇

1𝑖Σ1𝑖 +𝑀1𝑖 +𝑀
𝑇

1𝑖,

Ψ1,2 = −𝑀1𝑖 +𝑀
𝑇

2𝑖 +𝑁1𝑖,

Ψ1,3 = 𝑀
𝑇

3𝑖 −𝑁1𝑖 +𝑈1𝑖,

Ψ1,4 = 𝑀
𝑇

4𝑖 −𝑈1𝑖 + 𝑆1𝑖,

Ψ1,5 = 𝑀
𝑇

5𝑖 − 𝑆1𝑖,

Ψ1,6 = 𝑍1𝑖𝑊0𝑖 +𝑃𝑊0𝑖 + 𝜖1𝑖𝐹2 +𝑀
𝑇

6𝑖,

Ψ1,7 = 𝑍1𝑖𝑊1𝑖 +𝑃
𝑖
𝑊1𝑖 +𝑀

𝑇

7𝑖,
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Ψ1,8 = −𝑍1𝑖 +𝑀
𝑇

8𝑖,

Ψ1,9 = 𝑍1𝑖 +𝑃+𝑀
𝑇

9𝑖,

Ψ1,10 = 𝑀
𝑇

1𝑖 −𝑀10𝑖,

Ψ1,11 = 𝑀
𝑇

11𝑖 −𝑁1𝑖,

Ψ1,12 = 𝑀
𝑇

12𝑖 −𝑈1𝑖,

Ψ1,13 = 𝑀
𝑇

13𝑖 − 𝑆1𝑖,

Ψ2,2 = (1−𝛼 ̇𝜏 (𝑡)) (𝑄2 −𝑄1) −𝑀2𝑖 −𝑀
𝑇

2𝑖 +𝑁2𝑖

+𝑁
𝑇

2𝑖,

Ψ2,3 = −𝑁2𝑖 −𝑀
𝑇

2𝑖 +𝑁
𝑇

2𝑖 +𝑈2𝑖,

Ψ2,4 = −𝑀
𝑇

4𝑖 +𝑁
𝑇

4𝑖 −𝑈2𝑖 + 𝑆2𝑖,

Ψ2,5 = −𝑀
𝑇

5𝑖 +𝑁
𝑇

5𝑖 − 𝑆2𝑖,

Ψ2,6 = 𝑍2𝑖𝑊0𝑖 −𝑀
𝑇

6𝑖 +𝑁
𝑇

6𝑖,

Ψ2,7 = 𝑍2𝑖𝑊1𝑖 −𝑀
𝑇

7𝑖 +𝑁
𝑇

7𝑖,

Ψ2,8 = −𝑍2𝑖 −𝑀
𝑇

8 +𝑁
𝑇

8 ,

Ψ2,9 = 𝑍2𝑖 −𝑀
𝑇

9𝑖 +𝑁
𝑇

9𝑖,

Ψ2,10 = −𝑀
𝑇

10𝑖 +𝑁
𝑇

10𝑖 −𝑀2𝑖,

Ψ2,11 = −𝑁2𝑖 −𝑀
𝑇

11𝑖 +𝑁
𝑇

11𝑖,

Ψ2,12 = −𝑀
𝑇

12𝑖 +𝑁
𝑇

12𝑖 −𝑈2𝑖,

Ψ2,13 = −𝑀
𝑇

13𝑖 +𝑁
𝑇

13𝑖 − 𝑆2𝑖,

Ψ3,3 = (1− ̇𝜏 (𝑡)) (𝑄3 −𝑄2) − 𝜖2𝑖𝐹1 +𝜆Σ
𝑇

2𝑖Σ2𝑖

−𝑁3𝑖 −𝑁
𝑇

3𝑖 +𝑈
𝑇

3𝑖 +𝑈3𝑖,

Ψ3,4 = −𝑁
𝑇

4𝑖 +𝑈
𝑇

4𝑖 −𝑈3𝑖 + 𝑆3𝑖,

Ψ3,5 = −𝑁
𝑇

5𝑖 +𝑈
𝑇

3𝑖 − 𝑆3𝑖,

Ψ3,6 = 𝑍3𝑖𝑊0𝑖 −𝑁
𝑇

6𝑖 +𝑈
𝑇

6𝑖,

Ψ3,7 = 𝑍3𝑖𝑊1𝑖 −𝑁
𝑇

7 − 𝜖2𝑖𝐹2 +𝑈
𝑇

7𝑖,

Ψ3,8 = −𝑍3𝑖 −𝑁
𝑇

8𝑖 +𝑈
𝑇

8𝑖,

Ψ3,9 = 𝑍3 −𝑁
𝑇

9 +𝑈
𝑇

9 ,

Ψ3,10 = −𝑁
𝑇

10 −𝑀3 +𝑈
𝑇

10,

Ψ3,11 = −𝑁
𝑇

11𝑖 −𝑁11𝑖 +𝑈
𝑇

11𝑖,

Ψ3,12 = −𝑁
𝑇

12𝑖 +𝑈
𝑇

12𝑖 −𝑈3𝑖,

Ψ3,13 = −𝑁
𝑇

13𝑖 +𝑈
𝑇

13𝑖 − 𝑆3𝑖,

Ψ4,4 = (1− (1−𝛽) ̇𝜏 (𝑡)) (𝑄4 −𝑄3) −𝑈4𝑖 −𝑈
𝑇

4𝑖

+ 𝑆4𝑖 + 𝑆
𝑇

4𝑖,

Ψ4,5 = −𝑈
𝑇

5𝑖 + 𝑆
𝑇

5𝑖 − 𝑆4𝑖,

Ψ4,6 = 𝑍4𝑖𝑊0𝑖 −𝑈
𝑇

6𝑖 + 𝑆
𝑇

6𝑖,

Ψ4,7 = 𝑍4𝑖𝑊1𝑖 −𝑈
𝑇

7𝑖 + 𝑆
𝑇

7𝑖,

Ψ4,8 = −𝑍4𝑖 −𝑈
𝑇

8𝑖 + 𝑆
𝑇

8𝑖,

Ψ4,9 = 𝑍4𝑖 −𝑈
𝑇

9𝑖 + 𝑆
𝑇

9𝑖,

Ψ4,10 = −𝑈
𝑇

10𝑖 −𝑀4𝑖 + 𝑆
𝑇

10𝑖,

Ψ4,11 = −𝑈
𝑇

11𝑖 + 𝑆
𝑇

11𝑖 −𝑁4𝑖,

Ψ4,12 = −𝑈
𝑇

12𝑖 −𝑈4𝑖 + 𝑆
𝑇

12𝑖,

Ψ4,13 = −𝑈
𝑇

13𝑖 + 𝑆
𝑇

13𝑖 − 𝑆4𝑖,

Ψ5,5 = −𝑄4 − 𝑆5𝑖 − 𝑆
𝑇

5𝑖,

Ψ5,6 = 𝑍5𝑖𝑊0𝑖 − 𝑆
𝑇

6𝑖,

Ψ5,7 = 𝑍5𝑖𝑊1𝑖 − 𝑆
𝑇

7 ,

Ψ5,8 = − 𝑆
𝑇

8𝑖 −𝑍5𝑖,

Ψ5,9 = − 𝑆
𝑇

9𝑖𝑍5𝑖,

Ψ5,10 = −𝑀5𝑖 − 𝑆
𝑇

10𝑖,

Ψ5,11 = −𝑁5𝑖 − 𝑆
𝑇

11𝑖,

Ψ5,12 = −𝑈12𝑖 − 𝑆
𝑇

12𝑖,

Ψ5,13 = − 𝑆
𝑇

13𝑖 − 𝑆5𝑖,

Ψ6,6 = − 𝜖1𝑖𝐼 +𝑄5 +𝑍6𝑖𝑊0𝑖 +𝑊
𝑇

0𝑖𝑍
𝑇

6𝑖,

Ψ6,7 = 𝑊
𝑇

0𝑖𝑍
𝑇

7𝑖,

Ψ6,8 = 𝑊
𝑇

0𝑖𝑍
𝑇

8𝑖 −𝑍
𝑇

6 ,

Ψ6,9 = 𝑊
𝑇

0𝑖𝑍
𝑇

9𝑖 − 𝐼 +𝑍
𝑇

6𝑖,

Ψ6,10 = 𝑊
𝑇

0𝑖𝑍
𝑇

10𝑖 −𝑀10𝑖,

Ψ6,12 = 𝑊
𝑇

0𝑖𝑍
𝑇

12𝑖 −𝑈6𝑖,

Ψ6,11 = 𝑊
𝑇

0𝑖𝑍
𝑇

11𝑖 −𝑁6𝑖,

Ψ6,13 = 𝑊
𝑇

0 𝑍
𝑇

13 − 𝑆6,

Ψ7,7 = − (1− ̇𝜏 (𝑡)) 𝑄5 − 𝜖2𝑖𝐼 +𝑊
𝑇

1𝑖𝑍
𝑇

7𝑖 +𝑍7𝑖𝑊1𝑖,

Ψ7,8 = 𝑊
𝑇

1𝑖𝑍
𝑇

8𝑖 −𝑍7𝑖,

Ψ7,9 = 𝑍7𝑖 +𝑊
𝑇

1 𝑍
𝑇

9𝑖,
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Ψ7,10 = −𝑀7𝑖 +𝑊
𝑇

1𝑖𝑍
𝑇

10𝑖,

Ψ7,11 = −𝑁7𝑖 +𝑊
𝑇

1𝑖𝑍
𝑇

11𝑖,

Ψ7,12 = −𝑈7𝑖 +𝑊
𝑇

1𝑖𝑍
𝑇

12𝑖,

Ψ7,13 = − 𝑆7𝑖 +𝑊
𝑇

1𝑖𝑍
𝑇

13𝑖,

Ψ8,8 = 𝑍8𝑖 +𝑍
𝑇

8𝑖 + 𝜏𝑅3,

Ψ8,9 = 𝑍8𝑖 −𝑍
𝑇

9𝑖,

Ψ8,10 = −𝑀8𝑖 −𝑍
𝑇

10𝑖,

Ψ8,11 = −𝑍
𝑇

11𝑖 −𝑁8𝑖,

Ψ8,12 = −𝑍
𝑇

12𝑖 −𝑈8𝑖,

Ψ8,13 = −𝑍
𝑇

13𝑖 − 𝑆8𝑖,

Ψ9,9 = 𝑍
𝑇

9𝑖 +𝑍9𝑖 − 𝛾𝐼 + 𝜆
𝑖
Σ
𝑇

3𝑖Σ3𝑖,

Ψ9,10 = 𝑍
𝑇

10𝑖 −𝑀9𝑖,

Ψ9,11 = 𝑍
𝑇

11𝑖 −𝑁9𝑖,

Ψ9,12 = 𝑍
𝑇

12𝑖 −𝑈9𝑖,

Ψ9,13 = 𝑍
𝑇

3𝑖 − 𝑆9𝑖,

Ψ10,10 = −
1
𝛼𝜏

𝑅3 −𝑀10𝑖 −𝑀
𝑇

10𝑖,

Ψ10,11 = −𝑀
𝑇

11𝑖 −𝑁10𝑖,

Ψ10,12 = −𝑀
𝑇

12𝑖 −𝑈10𝑖,

Ψ10,13 = −𝑀
𝑇

13𝑖 − 𝑆10𝑖,

Ψ11,11 = −
1

(1 − 𝛼) 𝜏
𝑅3 −𝑁11𝑖 −𝑁

𝑇

11𝑖,

Ψ11,12 = −𝑈11𝑖 −𝑁
𝑇

12𝑖,

Ψ11,13 = −𝑁
𝑇

13𝑖 − 𝑆11𝑖,

Ψ12,12 = −𝑅3
1
𝛽𝜏

−𝑈12𝑖 −𝑈
𝑇

12𝑖,

Ψ12,13 = −𝑈
𝑇

13𝑖 − 𝑆12𝑖,

Ψ13,13 = −
1

(1 − 𝛽) 𝜏
𝑅3 − 𝑆13𝑖 − 𝑆

𝑇

13𝑖.

(59)

Ψ1( ̇𝜏(𝑡)) and Ψ2( ̇𝜏(𝑡)) are defined as replacing ̇𝜏(𝑡) in Ψ
𝑖
( ̇𝜏(𝑡))

by 𝜇 and −𝜇, respectively. One has

𝑀
𝑖
= [𝑀

𝑇

1𝑖 𝑀
𝑇

2𝑖 𝑀
𝑇

3𝑖 𝑀
𝑇

4𝑖 𝑀
𝑇

5𝑖 𝑀
𝑇

6𝑖 𝑀
𝑇

7𝑖 𝑀
𝑇

8𝑖 𝑀
𝑇

9𝑖 𝑀
𝑇

10𝑖 𝑀
𝑇

11𝑖 𝑀
𝑇

12𝑖 𝑀
𝑇

13𝑖]
𝑇

,

𝑁
𝑖
= [𝑁
𝑇

1𝑖 𝑁
𝑇

2𝑖 𝑁
𝑇

3𝑖 𝑁
𝑇

4𝑖 𝑁
𝑇

5𝑖 𝑁
𝑇

6𝑖 𝑁
𝑇

7𝑖 𝑁
𝑇

8𝑖 𝑁
𝑇

9𝑖 𝑁
𝑇

10𝑖 𝑁
𝑇

11𝑖 𝑁
𝑇

12𝑖 𝑁
𝑇

13𝑖]
𝑇

,

𝑈
𝑖
= [𝑈
𝑇

1𝑖 𝑈
𝑇

2𝑖 𝑈
𝑇

3𝑖 𝑈
𝑇

4𝑖 𝑈
𝑇

5𝑖 𝑈
𝑇

6𝑖 𝑈
𝑇

7𝑖 𝑈
𝑇

8𝑖 𝑈
𝑇

9𝑖 𝑈
𝑇

10𝑖 𝑈
𝑇

11𝑖 𝑈
𝑇

12𝑖 𝑈
𝑇

13𝑖]
𝑇

,

𝑆
𝑖
= [𝑆
𝑇

1𝑖 𝑆
𝑇

2𝑖 𝑆
𝑇

3𝑖 𝑆
𝑇

4𝑖 𝑆
𝑇

5𝑖 𝑆
𝑇

6𝑖 𝑆
𝑇

7𝑖 𝑆
𝑇

8𝑖 𝑆
𝑇

9𝑖 𝑆
𝑇

10𝑖 𝑆
𝑇

11𝑖 𝑆
𝑇

12𝑖 𝑆
𝑇

13𝑖]
𝑇

,

𝑍
𝑖
= [𝑍
𝑇

1𝑖 𝑍
𝑇

2𝑖 𝑍
𝑇

3𝑖 𝑍
𝑇

4𝑖 𝑍
𝑇

5𝑖 𝑍
𝑇

6𝑖 𝑍
𝑇

7𝑖 𝑍
𝑇

8𝑖 𝑍
𝑇

9𝑖 𝑍
𝑇

10𝑖 𝑍
𝑇

11𝑖 𝑍
𝑇

12𝑖 𝑍
𝑇

13𝑖]
𝑇

.

(60)

Proof. Choose a Lyapunov-Krasovskii functional candidate
as 𝑉(𝑥(𝑡), 𝑡, 𝑖) = ∑

5
𝑁=1 𝑉𝑁(𝑥(𝑡), 𝑡, 𝑖), where

𝑉1 (𝑥 (𝑡) , 𝑡, 𝑖) = 𝑥 (𝑡)
𝑇

𝑃
𝑖
𝑥 (𝑡) ,

𝑉2 (𝑥 (𝑡) , 𝑡, 𝑖) = ∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑄1𝑥 (𝑠) 𝑑𝑠

+∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑄2𝑥 (𝑠) 𝑑𝑠

+∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝑥
𝑇

(𝑠) 𝑄3𝑥 (𝑠) 𝑑𝑠

+∫

𝑡−𝜑(𝑡)

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑄4𝑥 (𝑠) 𝑑𝑠,

𝑉3 (𝑥 (𝑡) , 𝑡, 𝑖) = ∫

𝑡

𝑡−𝜏(𝑡)

𝑓
𝑇

(𝑠) 𝑄5𝑓 (𝑠) 𝑑𝑠,

𝑉4 (𝑥 (𝑡) , 𝑡, 𝑖) = ∫

0

−𝜏

∫

𝑡

𝑡+𝑠

𝑔
𝑇

(𝜃) 𝑅3𝑔 (𝜃) 𝑑𝜃 𝑑𝑠,

𝑉5 (𝑥 (𝑡) , 𝑡, 𝑖) = ∫

0

−𝜏

∫

𝑡

𝑡+𝑠

𝜎
𝑇

(𝜃) 𝑅4𝜎 (𝜃) 𝑑𝜃 𝑑𝑠,

(61)
where 𝜑(𝑡) = 𝜏(𝑡) + 𝛽(𝜏 − 𝜏(𝑡)) and 0 < 𝛼 < 1 and 0 < 𝛽 < 1.

By the samemethod as that inTheorem 10, we can get that
the following inequalities hold:

E𝑑𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) − 2E𝑦𝑇 (𝑡) 𝑢 (𝑡) − 𝛾E𝑢
𝑇

(𝑡) 𝑢 (𝑡)

≤ E𝜁
𝑇

(𝑡) (Ψ
𝜅
( ̇𝜏 (𝑡)) +𝑀

𝑇

𝑖
𝑅
−1
4 𝑀
𝑖
+𝑁
𝑇

𝑖
𝑅
−1
4 𝑁
𝑖

+𝑈
𝑇

𝑖
𝑅
−1
4 𝑈
𝑖
+ 𝑆
𝑇

𝑖
𝑅
−1
4 𝑆
𝑖
) 𝜁 (𝑡) , 𝜅 = 1, 2,

(62)
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where

𝜁
𝑇

(𝑡) = [𝑏
1,1

𝑏
1,2

𝑏
1,3

𝑏
1,4

𝑏
1,5

𝑏
1,6

𝑏
1,7

𝑏
1,8

𝑏
1,9

𝑏
1,10

𝑏
1,11

𝑏
1,12

𝑏
1,13

] , (63)

where

𝑏1,1 = 𝑥
𝑇

(𝑡) ,

𝑏1,2 = 𝑥
𝑇

(𝑡 − 𝛼𝜏 (𝑡)) ,

𝑏1,3 = 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) ,

𝑏1,4 = 𝑥
𝑇

(𝑡 − 𝜑 (𝑡)) ,

𝑏1,5 = 𝑥
𝑇

(𝑡 − 𝜏) ,

𝑏1,6 = 𝑓
𝑇

(𝑥 (𝑡)) ,

𝑏1,7 = 𝑓
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) ,

𝑏1,8 = 𝑔
𝑇

(𝑡) ,

𝑏1,9 = 𝑢
𝑇

(𝑡) ,

𝑏1,10 = ∫

𝑡

𝑡−𝛼𝜏(𝑡)

𝑔
𝑇

(𝑠) 𝑑𝑠,

𝑏1,11 = ∫

𝑡−𝛼𝜏(𝑡)

𝑡−𝜏(𝑡)

𝑔
𝑇

(𝑠) 𝑑𝑠,

𝑏1,12 = ∫

𝑡−𝜏(𝑡)

𝑡−𝜑(𝑡)

𝑔
𝑇

(𝑠) 𝑑𝑠,

𝑏1,13 = ∫

𝑡−𝜑(𝑡)

𝑡−𝜏

𝑔
𝑇

(𝑠) 𝑑𝑠.

(64)

So by virtue of Lemma 7 and the same proof method of
Theorem 10, we can get that system (55) is stochastic pas-
sive.

4. Numerical Example and Simulation

In this section, three numerical examples are presented to
demonstrate the effectiveness of the developedmethod on the
obtained passive results.

Example 1. Consider neutral stochastic neural networks (1)
with the following parameters (Example 5 in [42]):

𝐴 = [

1.5 0
0 1.3

] ,

𝑊0 = [

0.5 0.2
0.4 0.3

] ,

𝑊1 = [

0.4 −0.1
0.1 0.2

] ,

Σ1 = [

0.1 0
0 0.1

] ,

Σ2 = [

0.2 0
0 0.2

] ,

Σ3 = [

0.3 0
0 0.4

] ,

𝛼 = 0.5,

𝛽 = 0.6,

𝜏 = 0.8,

𝜇 = 0.6.
(65)

Take the activation function as 𝑓1(𝑥(𝑡)) = 𝑓2(𝑥(𝑡)) =

tanh(𝑥), so it can be verified from Assumption 1 that 𝐹1 =

diag{0, 0} and 𝐹2 = diag{−0.5, −0.5}, and by using of the
Matlab LMI Control Toolbox, we find out a solution to LMIs
(12), (13), and (14) as follows:

𝑃 = [

0.1536 −0.0046
−0.0046 0.1497

] ,

𝑅1 = [

0.0812 −0.0415
−0.0415 0.0864

] ,

𝑅2 = [

1.4662 −0.4043
−0.4043 1.2144

] ,

𝑅3 = [

0.0088 −0.0058
−0.0058 0.0122

] ,

𝑅4 = [

0.0520 0.0051
0.0051 0.0565

] ,

𝑄1 = [

0.0881 −0.0174
−0.0174 0.0902

] ,

𝑄2 = [

0.0704 −0.0139
−0.0139 0.0717

] ,

𝑄3 = [

0.0529 −0.0102
−0.0102 0.0537

] ,
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Table 1:Maximum allowable bounds of 𝛿 for different 𝜌
𝜎
values and

𝛼 = 0.6, 𝛽 = 0.6, 𝜏 = 1.0, and 𝜇 = 0.6.

𝜌
𝜎

0.1 0.4 0.45
Theorem 10 0.5176 0.3251 —

Table 2: Maximum allowable bounds of 𝜏 for different 𝜇 values of
𝜌
𝜎
= 0.2 and 𝛿 = 0.2.

𝜇 0 0.5 0.8 1.1
𝜏 0.8267 0.7342 0.4682 0.3848

Table 3: Allowable upper bounds of 𝜏 for different values of 𝛿; 𝜌
𝜎
=

0.1 and 𝜇 = 0.5.

𝛿 0.1 0.05 0.1 0.4 0.45
𝜏 0.8367 0.7537 0.6415 0.2593 —

Table 4: Allowable upper bounds of 𝜏 for different values of 𝛿; 𝜇 =

0.5.

𝛿 0.01 0.05 0.1 0.4 0.45
Corollary 12 0.9293 0.7882 0.7023 0.3685 —
[42] 0.0005 — — — —

𝑄4 = [

0.0318 −0.0060
−0.0060 0.0322

] ,

𝑄 = [

0.0318 −0.0060
−0.0060 0.0322

] ,

𝛾 = 297.6609.
(66)

In order to testify the effectiveness of our proposed method,
many experiments have been done and the upper bounds of
delays 𝛿 and 𝜏 are listed from Tables 1 to 3, where “–” means
that LMIs (12)–(14) has no feasible solution. Table 1 shows the
maximum allowable upper bound 𝛿 for different values of 𝜌

𝜎
,

which means that the bound of the derivative of the leakage-
time-varying is very effective and plays an important role in
obtaining the feasible results.

From Table 2, we can see that when 𝜇 > 1, the feasible
solution can be obtained. From Table 3 we can see that when
fixing the value of 𝜇 and 𝜌

𝜎
, the allowable upper value of

𝜏 is effected by 𝛿, especially when 𝛿 = 0.45; the feasible
solution cannot be obtained. Especially, when leakage 𝛿(𝑡) =
𝛿, namely, leakage delay, is constant, the studied system will
become system (40), which has been researched in [42]; then
we have the following Example 2.

Example 2. Consider that stochastic neural networks (49)
have the sameparameters as that in [42], so fromCorollary 12,
we can have the following research results listed in Tables 4
and 5, which show the effect on 𝜏 for different 𝜇 and mutual
effect between 𝜏 and 𝛿.

From Table 4 we also can see that when the same
parameters in (2) and (3) of [42] are taken into account and

Table 5: Allowable upper bounds of 𝜏 with different values of 𝜇;
𝛼 = 0.4, 𝛽 = 0.6, and 𝛿 = 0.2.

𝜇 0 0.2 0.5 0.8 0.9 1.1
𝜏 0.3025 0.3004 0.2946 0.2886 0.2886 0.2886
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Figure 1: State curves of system (1) with input 𝑢(𝑡).

when 𝜆 is set by 1 and 𝛿 = 0.1 and𝑅1 = 𝑅2 = 0.1∗𝐼, by solving
(2) and (3) of [42], we can get thatmaximumvalue 𝜏 is 0.0005,
so our method has obtained the less conservatism than that
of [42].

In this example, when 𝑢(𝑡) =

[−0.3 cos(3.1𝑡) 0.7 sin(1.4𝑡)], Figure 1 shows the state curve
with 𝑢(𝑡). From Figure 1 we can see that when stochastic
disturbance and input exist, the systems with leakage
delay are unstable.

Remark 14. In [42], the sufficient conditions of passivity
about stochastic neural networks are given by LMIs, but the
solution is not given out, and the simulation about both
stochastic and leakage delay is not discussed, either. In our
discussion, the impact of leakage delay on stability of systems
is considered.

At the same time, when leakage delay is set by different
values, by taking the initial state [2, −1] and using the Matlab
software, a state curve is obtained as in Figure 2; Figure 2
shows the state curves of system (49) without input and 𝛿 is
0.6 and 𝜏 = 0.8; Figure 3 shows the state curves of system (49)
without input and 𝛿 is 0.2 and 𝜏 = 0.8.

When stochastic disturbance does not exit in system (49),
the state simulation curves of (49) are shown in Figure 4.

Figure 4 shows the state curves of system (49) without
stochastic disturbance and different leakage delay; from
Figure 4, we can see that when the leakage delay exits in
the neural networks system, state curve of system oscillates
sharply from the start point and then becomes asymptotically
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Figure 2: State curves of system (1) without input and 𝛿 is 0.6.
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Figure 3: State curves of system (49) with leakage delay 0.2.

stable; at the same time,we can find that the bigger the leakage
delay, the more serious the oscillation.

Remark 15. InCorollary 2 of [42], themaximumvalue of time
delay is 0.2, when leakage delay is set by 0.1. In our method,
combing the simulation curve with the value of 𝛿, when 𝛿 is
0.1, the maximum value of time delay which is guaranteeing
the fact that system (1) is stable can reach 1.2.

Remark 16. In [42], an example has been given to show
the effectiveness of passivity criteria, but how the leakage
delay affects the stability is not discussed. In our example,
simulations have been given and proved that leakage delay
can cause effect on the stability of neural networks.
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Figure 4: State curves of system (1) without input.

Example 3. Consider a two-neuron stochastic neural net-
work with Markovian jump parameters and mixed time
delays (56) with the following parameters [43]:

Mode 1

𝐴1 = [

4 0
0 3

] ,

𝑊01 = [

0 −0.5
0.5 0

] ,

𝑊1 = [

0.4 −0.5
0.5 0

] ,

Σ11 = [

0.2 0
0 0.5

] ,

Σ12 = [

0.5 0
0 0.2

] ,

Σ13 = [

0.3 0
0 0.2

] .

(67)

Mode 2

𝐴2 = [

3 0
0 4.5

] ,

𝑊02 = [

0 1
−1 1

] ,

𝑊12 = [

−1 −1
1 −2

] ,
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Σ21 = [

0.4 0
0 0.2

] ,

Σ22 = [

0.2 0
0 0.3

] ,

Σ23 = [

0.2 0
0 0.4

] .

(68)

Let the Markov process governing the mode switching have
generator

∏ = [

−1 1
0.5 −0.5

] . (69)

We take 𝑓
𝑗
(𝑥
𝑗
) = tanh(𝑥

𝑗
), 𝛼 = 0.5, 𝜇 = 0.5, 𝛽 = 0.6, and

𝜏(𝑡) = 0.7 + 0.1 cos(𝑡); by solving the LMI inTheorem 13, the
following feasible solutions can be obtained:

𝑃1 = [

112.9775 −8.7790
−8.7790 148.8517

] ,

𝑃2 = [

143.0854 −14.0663
−14.0663 105.4530

] ,

𝑄1 = [

357.2075 −34.0926
−34.0926 340.8987

] ,

𝑄2 = [

246.3834 −36.6553
−36.6553 210.3547

] ,

𝑄3 = [

117.8358 −22.8272
−22.8272 152.6593

] ,

𝑄4 = [

105.2710 −9.7393
−9.7393 117.4932

] ,

𝑄5 = [

144.1946 17.5976
17.5976 181.2422

] ,

𝑅1 = [

73.0134 −23.6982
−23.6982 86.0642

] ,

𝑅3 = [

48.8051 −13.1574
−13.1574 25.3595

] ,

𝑅4 = [

221.0378 10.8347
10.8347 212.3304

] ,

𝛾 = 414.5897,

𝜆1 = 416.0385,

𝜆2 = 437.0104,

Table 6: Allowable upper bounds of 𝜏 with different values of 𝜇;
𝛼 = 0.5 and 𝛽 = 0.6.

𝜇 0 0.4 0.8 1.1
[43] 0.3025 0.2946 0.1886 0.1826
Theorem 13 0.8226 0.6357 0.4786 0.2839
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Figure 5: State curves of system (55) with input.

𝜖1 = 434.0883,

𝜖2 = 184.0411.
(70)

At the same time, in order to testify the less conservatism of
our method, the allowable upper bounds of 𝜏 with different
values of 𝜇 have been compared with that in [43]; the results
are shown in Table 6.

From Table 6, we can see that even 𝜇 > 1; our methods
can improve existing research results.

On the other hand, we select 𝑥(0) = [0.6, −0.4]𝑇 and
𝑢(𝑡) = [sin(𝑡), 𝑡 ∗ cos(𝑡)]𝑇, and the following simulation
results can be obtained. Figure 5 shows the state curve of
system (56)with𝑢(𝑡), Figure 6 shows the state curve of system
(56) without 𝑢(𝑡), and Figure 7 shows the state switching
modes of system (56), so the simulation results further
prove that the two-neuron stochastic neural networks with
Markovian switching parameters is passive in the sense of
Definition 4.

5. Conclusions

In this paper, we have investigated the passivity problem for
a class of stochastic neural networks systems (SNNs) with
varying delay and leakage delay. By constructing a novel
Lyapunov functional and utilizing the delay fractionizing
technique, new passivity conditions have been established to
achieve the passivity performance. Moreover, in derivation
of the passivity criteria, it is assumed that the description
of the activation functions is more general than the com-
monly used Lipschitz conditions; the time-varying delay is
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Figure 7: The Markov chain of system (55).

divided into several subintervals; two adjustable parameters
are introduced so that more information about time delay
has been utilised. Finally, examples and simulations are
provided to illustrate the impact of leakage delay on stability
of neural networks and the less conservatismof the developed
approach.
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