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Abstract

Scientific data are being generated at an ever-increasing rate. The Biomedical and

Healthcare Data Discovery Index Ecosystem (bioCADDIE) is an NIH-funded Data

Discovery Index that aims to provide a platform for researchers to locate, retrieve, and

share research datasets. The bioCADDIE 2016 Dataset Retrieval Challenge was held to

identify the most effective dataset retrieval methods. We aimed to assess the value of

Medical Subject Heading (MeSH) term-based query expansion to improve retrieval. Our

system, based on the open-source search engine, Elasticsearch, expands queries by

identifying synonyms from the MeSH vocabulary and adding these to the original query.

The number and relative weighting of MeSH terms is variable. The top 1000 search

results for the 15 challenge queries were submitted for evaluation. After the challenge,

we performed additional runs to determine the optimal number of MeSH terms and

weighting. Our best overall score used five MeSH terms with a 1:5 terms:words weight-

ing ratio, achieving an inferred normalized distributed cumulative gain (infNDCG) of

0.445, which was the third highest score among the 10 research groups who participated

in the challenge. Further testing revealed our initial combination of MeSH terms and

weighting yielded the best overall performance. Scores varied considerably between

queries as well as with different variations of MeSH terms and weights. Query expansion

using MeSH terms can enhance search relevance of biomedical datasets. High variability

between queries and system variables suggest room for improvement and directions for

further research.
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Introduction

Biomedicine is seeing substantial growth in research

generating large sets of data (1,2). Biomedical datasets are

highly variable and can range from collections of genomic

sequences to large clinical data repositories from the

electronic health record (EHR) and other sources. Numerous

datasets are now available for researchers in various reposi-

tories such as the National Center for Biotechnology

Information’s (NCBI) Gene Expression Omnibus (GEO) (3),

Reference Sequence (RefSeq) (4), the database of genotypes

and phenotypes (dbGap) (5), and many more. Recognizing

the need to facilitate integration of data from various sour-

ces, the National Institute of Health (NIH) Big Data to

Knowledge (BD2K) initiative funded development of

Biomedical and Healthcare Data Discovery Index Ecosystem

(bioCADDIE), which aims to provide a platform to retrieve

relevant metadata about entire datasets.

Shared tasks enable researchers from many different

institutions to work together at solving a common scien-

tific challenge. In biomedicine, shared tasks such as

bioASQ (6), JNLPBA (7), bioNLP (8) and BioCreative (9)

have contributed significantly to the field. Shared tasks

have also played a considerable role in the advancement of

Information Retrieval (IR) methods. One such shared task

is the National Institute of Standards of Technology’s

(NIST) yearly challenge evaluation, the Text REtrieval

Conference (TREC, http://nist.trec.gov) (10–12). During

TREC challenges, participants are provided test collections

and topics to configure an IR system and provide search

output. Results are then pooled from all participating

research groups and judged for relevance (13).

To improve the existing prototype search engine and

determine the best approaches for indexing and retrieving

records in bioCADDIE, the organizers held a challenge

evaluation based on the TREC format. In the bioCADDIE

2016 Dataset Retrieval Challenge, participants were

provided a database with sample queries and were tasked

to develop a high-performance IR system. For a full

description of the bioCADDIE 2016 challenge, including

details of the shared task, test queries and links to datasets

please see the overview paper (14).

Query expansion is a collection of methods used to im-

prove search results through reformulation of the original

search query, often with the addition and re-weighting of

related terms. The technique is widely used in the biomed-

ical domain and has yielded positive results in many IR

tasks (15–18). Manual query expansion depends on user

input to help select relevant terms (19), while automatic

query expansion is performed entirely by the IR system

with no additional user intervention. Query expansion

techniques can vary with the determination of a number of

variables involved in the process – the selection of related

terms, the number of terms to add, and re-weighting of the

new terms can all have a significant impact on the effects

of query expansion (20).

The terms identified through query expansion can be lex-

ically related such as in a thesaurus or vocabulary system, or

statistically related such as in co-occurrence in a document

collection. Lexically related terms can link terms across dif-

ferent vocabulary systems, e.g. a laymen’s term like ‘cancer’

to a more clinical term like ‘carcinoma’. Statistically related

terms can help reduce the ambiguity of a single query term

by providing contextual information (21). Query expansion

using lexically-related terms from curated, domain-specific

vocabularies such as the Medical Subject Headings (MeSH)

of the National Library of Medicine (NLM), has been

shown to have a positive effect in many biomedical litera-

ture retrieval tasks (17,19,22–25).

The best number of related terms and term weighting to

use for query expansion, as well as techniques to do so,

vary significantly among different methodologies. Abdulla

et al. (16) evaluated four different methods of query expan-

sion using the TREC 2006 and 2007 Genomic data-sets,

and found the best number of terms ranged from 3 to 40

depending on the methodology used. Voorhees (21) eval-

uated query expansion using with lexically related terms

using WordNet (26). She found that overly aggressive

expansion with many terms reduced result quality, and

that scores were marginally improved to a similar degree

for all evaluated term weighting lighter than 1:1.

The bioCADDIE database, with its metadata about

datasets, offers an opportunity to evaluate IR methods

such as query expansion in a novel context. Our primary

objective for the bioCADDIE 2016 dataset retrieval chal-

lenge was to enhance the baseline search functionality of

an open source search platform by assessing automatic

query expansion using lexically-related terms from the

MeSH vocabulary and re-weighting of these terms.

Because dataset retrieval is a relatively new undertaking,

we opted to initially develop an approach that used a min-

imum amount of resources and allowed for fast and itera-

tive prototyping.

After challenge completion, we performed additional ana-

lysis using the relevance judgments qrels file. This allowed us

to further assess our methods as well as determine the

optimal number of MeSH synonyms and weighting to use

for the best system performance.

Materials and methods

Our system is based on the open-source software,

Elasticsearch v5.0.0, which acts as our core search engine.
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We used the Natural Language Toolkit (NLTK) module

for Python (27) to perform basic query preprocessing, and

the Biopython module (28) using the NLM’s Entrez service

(29) to query the MeSH database and return relevant

MeSH terms. All software settings were left as default ex-

cept for the Java virtual machine heap size, which was

changed to 1 g to better utilize available system memory.

Table 1 provides a list of all software dependencies.

Dataset and import

The 2016 bioCADDIE Search Retrieval Challenge data-

base contains metadata records for 794 992 datasets from

19 different repositories. More details about the challenge

database, including available metadata fields, can be

found in the overview manuscript (30). To manage devel-

opment with such a large database, we used a Python script

to perform a fully-automatic import of all data. The

Elasticsearch database is non-relational and stores data as

independent documents. The structure of each document

can be customized, but by default is derived from the

source data. This allowed us to import the supplied JSON

files directly into Elasticsearch as independent documents

and, with a few exceptions, keep the underlying structured

metadata fields intact. During the import process, the

default Elasticsearch Standard Analyzer performed tokeni-

zation of all fields based on a Unicode standard algorithm

(31) to build the search index. Sixty-three files were not

successfully imported due to parsing errors.

Search

Our search method is diagrammed in Figure 1, and Figure

2 provides an example of query processing and resulting

MeSH terms using an actual query from the challenge.

First, the query was normalized to lower case and common

words and phrases such as ‘search for’ were removed using

a regular expression. English stop words, as defined by the

NLTK python module, were also removed. This prepro-

cessing step resulted in the creation of our ‘baseline query’.

The baseline query was then tokenized into an array of

individual tokens using NLTK’s tokenizer method. Each

token was passed to the NLM’s Entrez service to find and

fetch related terms from the MeSH database. Terms were

returned sequentially, the order of which was determined

by the Entrez service’s default settings.

The maximum MeSH terms returned for each token

was capped at a variable number, however not all tokens

would necessarily return the maximum number of results.

All returned MeSH terms were combined as a single string

to create an additional clause in the Elasticsearch query ob-

ject. This entire ‘MeSH query’ was weighted against the

baseline query via a ‘boost’ parameter, then combined with

a ‘should’ clause using the Elasticsearch_dsl Python mod-

ule. The cause defines terms as not required, but if found

in results the results are considered more relevant (32). The

final combined query was passed to Elasticsearch and

results were output to a text file in the specified treceval

formatting.

Table 1. Software dependencies

Role Software

Indexing and Query Processor Elasticsearch 5.0.0 (https://www.elastic.co/downloads/Elasticsearch)

Programming Language Python 3.5 (https://www.python.org/downloads/)

Natural Language Processing (NLP) Framework Natural Language Tool Kit (NLTK) (http://www.nltk.org/book/)

Python Application Programming Interface (API) to Search Service Elasticsearch-py (https://Elasticsearch-py.readthedocs.io/en/master/)

Elasticsearch_dsl (https://Elasticsearch-dsl.readthedocs.io/en/latest/)

API to Entrez BioPython (http://biopython.org/wiki/Biopython)

Other Dependencies Oracle Java Runtime Environment 1.8

Operating System Microsoft Windows 10 64-bit

Figure 1. Method overview.
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Challenge submission

Each participating group was provided six training queries

and 15 test queries. We did not incorporate the training

queries into our methods. Results from up to five runs per

participating group were pooled for relevance judgments.

Relevance judgments for records retrieved for each query

were performed by the challenge organizers (30). The tre-

ceval package was used to provide results to participating

groups, with a focus on the parameters of inferred average

precision (infAP), inferred normalized discounted cumula-

tive gain (infNDCG), normalized discounted cumulative

gain at 10 records (NDCG@10), precision at 10 documents

for fully and partially relevant records (P@10þ partial),

and precision at 10 documents for only fully relevant

records (P@10-partial).

The challenge organizers chose infNDCG as the

primary judgment for this shared task (14). Discounted

Cumulative Gain (DCG) is an aggregation of recall and

precision that is calculated based on each document

returned in a ranked result batch. Relevance of documents

as well as document ranking order is used in the calcula-

tion, with more relevant documents ranking higher yield-

ing higher scores. Normalized DCG (NDCG) normalizes

this score from 0 to 1.0 to facilitate comparison across

different queries (13). Inferred scores, such as infNDCG,

are used to estimate a result’s quality when the relevance

of all documents is unable to be determined.

We submitted five runs for the initial challenge, as

detailed in Table 2. Each run contained 1000 results per

query. Run OHSU-1 used only the baseline query as

input to Elasticsearch. Runs OHSU-2 through OHSU-4

combined the baseline query with the MeSH query as

described above and were limited to five MeSH terms per

token with varying weights applied. Run OHSU-5 was lim-

ited to 20 MeSH terms per token and was weighted at 1:2.

Results

Challenge results

The official results for all OHSU runs are summarized in

Table 3, and a comparison of the best runs of all challenge

participants, based on infNDCG, is provided in Figure 3.

At the time of publication, the official results are the only

information we have regarding other groups’ participation

in the challenge. Our highest scoring run, OHSU-4, used

five MeSH terms with a relative weight of 1:5 to achieve

an infNDCG of 0.4454 – the third highest in the challenge.

When limited to the top ten documents retrieved, OHSU-4

achieved an NDCG@10 of 0.6122 and P@10-partial of

Figure 2. Example query processing.
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0.76. The baseline run, OHSU-1, did not score as high in

infNDCG at 0.3965; however, when limited to top ten

documents both NDCG@10 (0.6006) and P@10-partial

(0.7467) scored comparably.

Expanded results

Using the resulting qrels file in conjunction with the tre-

ceval package, we performed score validation and further

experimentation. First, we performed a breakdown of our

scores by individual query using settings that match our

best performing run, OHSU-4 as well as the baseline query.

We found that scores vary considerably between queries

for both the baseline as well as using query expansion.

These results are shown in Figure 4. Compared with the

baseline run, OHSU-4 performs 31–96% better in

infNDCG in 5 of the 15 test queries (queries 1, 7, 8, 11

and 14), performs worse, at �21%, with only one query

(query 5), and imparts little difference for the remaining

queries.

We also performed an array of runs to determine the

optimal number of MeSH terms and term weighting for

our system. Figure 5 shows the average infNDCG across

all queries for varying numbers of MeSH terms and

weights. The settings used with run OHSU-4, with 5

MeSH terms at a 1:5 weighting, still achieves the best

results when averaged over all queries.

Further analysis of individual queries with regard to

optimal number of MeSH terms and weights reveals

settings are highly variable depending on the query. Table

4 lists the best MeSH term number and weights for each

query, along with the resulting theoretical best infNDCG

for each query and the difference from the baseline

infNDCG scores.

Discussion

Key findings

Our results demonstrate that MeSH-based automatic query

expansion and term re-weighting improve on our baseline

search system to achieve scores that are comparable with

other leading research groups in the bioCADDIE challenge.

Our best performance in the official challenge results is

achieved using query expansion limited to five MeSH

terms per query token with a relatively light weighting,

and yields an overall improvement in infNDCG of 11%

over the baseline system. This is approximately near the

middle of the range of improvement seen in other studies

using vocabulary-based query expansion techniques

(16,18,24).

Our attempts to fine-tune the number of MeSH terms

and relative weights to improve system performance did

not yield an improvement in overall scores. After extensive

testing, we found that the number of MeSH terms and

weights that achieve the best performance for our system

was the same combination as initially chosen for our

highest-scoring challenge submission run.

Performing additional analysis using the qrels file, we

found that our scores between individual queries varied

significantly—a phenomenon that is commonly seen in

TREC evaluations (22,25). Compared with the baseline

scores, the overall score improvement with query expan-

sion can largely be attributed to higher scores seen in a

handful of queries. Classically, query expansion performs

well on average but can struggle greatly with some particu-

lar queries (15). Our system perhaps limits the negative

components of query expansion through our use of the

‘should’ clause in Elasticsearch. By not requiring expansion

terms in results, in addition to a lighter weighting against

the baseline query, poorly matched MeSH terms may

impart a smaller effect on results, yet the benefits from

well-matched synonyms are still applied.

We also found that the best number of MeSH terms and

weights to use varies significantly between queries,

although for many queries, a range of settings achieves re-

sults similar to the best. If our system were theoretically

able to select the optimal number of MeSH terms

and weighting to use for each query, as demonstrated

in Table 4, the application of MeSH term-based query ex-

pansion would not perform >2% worse than the baseline

Table 2. Submission run characteristics

Run ID Max Mesh

Terms per token

MeSH Term Relative

Weight (MeSH:Baseline)

OHSU-1 NA NA

OHSU-2 5 1:01

OHSU-3 5 1:02

OHSU-4 5 1:05

OHSU-5 20 1:02

Table 3. Official OHSU bioCADDIE challenge results

Run ID infAP infNDCG NDCG@10 P@10 P@10

(þpartial) (�partial)

OHSU-1 0.3193 0.3965 0.6006 0.7467 0.3333

OHSU-2 0.1396 0.4024 0.3953 0.48 0.1933

OHSU-3 0.1921 0.4405 0.5345 0.6533 0.28

OHSU-4 0.2862 0.4454 0.6122 0.76 0.3333

OHSU-5 0.083 0.3156 0.2531 0.34 0.1133

Bolded scores emphasize high performance runs.
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system for any query and would result in>10% score im-

provement for 9 of the 15 queries.

While intriguing, these findings can be difficult to inter-

pret and there are many complexities to consider. First, as

we use the ‘should’ clause for expansion terms, using a

very light weighting is nearly equivalent to not using query

expansion at all. Second, the total number of MeSH terms

returned for each token may not be equal to the set cap

and thus not be the actual number used for expansion.

Third, the terms returned from the Entrez service for many

Figure 3. Official bioCADDIE challenge results—all participants, best infNDCG.

Figure 4. Score breakdown by query.

Figure 5. MeSH terms and Weight analysis.
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queries appear to be irrelevant. Finally, the variable with

the largest effect on scores are the queries themselves.

Nevertheless, these data suggest the key to gaining the

full benefit from query expansion techniques partly lies

within a system’s ability to either predict which queries

would benefit from expansion and selectively apply query

expansion to those queries, or even predict the best relative

weighting to use for each query. This prediction could be

based on many factors such as query length or perhaps

some estimate of the quality of synonym terms. A predic-

tion algorithm could even be trained by using judged chal-

lenge databases like bioCADDIE; however, due to the high

variability between queries, it is likely many more queries

would need to be judged for relevance before this could

yield satisfactory results.

Limitations and implications for further work

Numerous improvements to our methods could be imple-

mented that would likely further improve system perform-

ance. For example, many advanced techniques have

been described for obtaining and determining relevance of

synonym terms (16,18,21,24,33,34). One such method,

utilizing a graph database such as Neo4j (http://neo4j.org/

), could allow for direct mapping of MeSH terms with

associated clinical constructs (35). Using this approach,

query expansion using only MeSH terms that are directly

related to an identified construct such as disease or species

could be effectively implemented.

Our system does not directly address the ambiguity

problem of lexically related terms and simply includes

all fetched synonyms in the MeSH query. The system

somewhat compensates by use of the ‘should’ clause in

Elasticsearch. This may limit the negative impact that un-

related MeSH terms have and allow the more relevant

synonyms from other query terms to shape the final results.

Additionally, by limiting synonyms to the curated MeSH

database we increase the initial likelihood of finding

relevant terms. However, these methods could likely be im-

proved by implementing a system to filter or independently

weigh synonym terms based on a statistical relationship

model (36).

We did not attempt to fully utilize the structured

metadata of the bioCADDIE dataset and instead our

system essentially treated all fields as unstructured text

data. While our automatic import process identified 128

distinct metadata fields, a major limitation of the process is

that nested arrays were imported as flattened objects (37).

The fields in these objects were still searchable as text, but

the relationships between fields within each object are lost.

This, in addition to the fact that numerous fields were uti-

lized by only a sparse number of individual datasets led us

to focus efforts elsewhere. However, consistent and stand-

ardized metadata fields could be very powerful in enhanc-

ing search of this nature, and further studies to evaluate

novel methods of metadata use should be performed.

While the Elasticsearch Standard Analyzer performs

tokenization of all database fields, our initial parsing with

regular expression matching and use of NLP with the

NLTK only yields basic tokenization of the input query.

More advanced NLTK tools could be used to tag query

tokens with one or more metadata types, such as grammat-

ical type, data type or score such as uniqueness. Metadata

from tagged tokens could then be used for database filter-

ing, such as for a specific data type, disease state or species.

Metadata from tags could also be used to improve query

Table 4. Best Mesh Terms and Weight (Wt- Baseline:MeSH) per query compared with baseline score

Query Baseline infNDCG Best term Best Wt Theoretical Best infNDCG Improvement over baseline

1 0.470 10 1:6 0.673 0.20

2 0.382 4 1:1 0.608 0.23

3 0.691 5 1:10 0.688 0.00

4 0.442 4 1:4 0.449 0.01

5 0.306 2 1:5 0.305 0.00

6 0.495 4 1:1 0.631 0.14

7 0.303 5 1:1 0.884 0.58

8 0.181 4 1:4 0.244 0.06

9 0.350 10 1:2 0.631 0.28

10 0.305 10 1:5 0.375 0.07

11 0.369 10 1:6 0.67 0.30

12 0.290 2 1:8 0.284 �0.01

13 0.235 10 1:1 0.243 0.01

14 0.435 5 1:6 0.611 0.18

15 0.696 1 1:1 0.746 0.05
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expansion, e.g. by limiting expansion to nouns or the most

unique terms, or by filtering the related MeSH terms in a

similar fashion as above. Additionally, the NLM’s

MetaMap tool could be used to perform tokenization of

the input query. MetaMap has many advantages including

mapping input queries directly to the Unified Medical

Language System (UMLS). Concepts which would allow

far greater control over the selection of query expansion

terms (38). More advanced systems have successfully used

MetaMap in this fashion (33).

Evaluation of variables such as optimal number of

MeSH terms and weighting after challenge completion

using the resulting qrels file has many limitations. This

challenge evaluated only 15 queries and the qrels file

only contained relevance judgments from a sampling

of documents from submitted runs (30). Any novel

documents returned from additional runs would not have

an associated relevance judgment and thus should not

result in an increased score. Further, it is possible that

additional runs may be more likely to retrieve documents

using similar methods as submitted challenge runs, result-

ing in artificially higher scores. Efforts to test more queries

and judge more documents for relevance would enhance

the reliability of the bioCADDIE challenge dataset as an IR

testbed and reduce bias introduced by the specifics of any

particular query or search method.

Another potential area for improvement involves the

analysis and storage of the bioCADDIE database. While

Elasticsearch’s default import and analysis methods allow

establishing a working search engine quickly, using

Elasticsearch as a primary database has many limitations.

Storing the working database in a separate relational or

graph database and using a connection to the Elasticsearch

cluster would allow more control over the analysis and use

of metadata stored in bioCADDIE. This would more easily

allow the correct mapping of all existing metadata fields as

well as techniques to clean the database, such as joining

metadata fields that contain the same data but are of a

different name. This would also support the creation of

entirely new metadata fields that could be populated from

various techniques, such as the analysis of bioCADDIE’s

free-text data fields or even by scraping online databases

such as PubMed.

Conclusion

Our submission to the 2016 bioCADDIE search retrieval

challenge showed that MeSH term-based query expansion

can be used to enhance search retrieval of metadata for

biomedical datasets. Further testing demonstrates that are

appropriate MeSH term number and weight selection is

important for the best query expansion results. While our

system has significant room for improvement, we were

able to achieve competitive results without the use of com-

plex techniques such as machine learning algorithms.

Future experiments would benefit from more test queries

and relevance judgments, advanced NLP and query expan-

sion techniques, custom database designs and better

utilization of Elasticsearch tools to take advantage of

structured metadata fields.
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