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Abstract
During cytokinesis, the cell employs various molecular machineries to separate
into two daughters. Many signaling pathways are required to ensure temporal
and spatial coordination of the molecular and mechanical events. Cells can
also coordinate division with neighboring cells to maintain tissue integrity and
flexibility. In this review, we focus on recent advances in the understanding of
the molecular underpinnings of cytokinesis.
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Introduction
Cytokinesis requires remodeling of the cell cortex, constriction 
of the cleavage furrow, and finally severing of the plasma  
membrane. Many molecular and mechanical mechanisms are 
highly conserved across the many kingdoms of life and have been 
well studied in eukaryotic models, including yeast, amoebas, 
worms, flies, and mammalian cells, and in prokaryotic models1,2.  
In this review, we focus on a few eukaryotic molecular  
mechanisms that have received extensive interest during the past 
few years. Microtubules and actomyosin networks assemble the 
contractile machinery, which in many cases is the main driver 
of cleavage furrow formation3. The endosomal sorting com-
plex required for transport III (ESCRTIII) assists with recruiting  
membrane components to the midbody and then facilitates 
plasma membrane abscission4. The Aurora-B-dependent NoCut 
pathway regulates chromosome separation and clears lagging 
chromatids from the midbody5. In multicellular scenarios, 
dividing cells can coordinate with neighboring non-dividing 
cells through mechanotransduction via cell–cell junctions to  
ensure tissue integrity and flexibility6.

Cytokinesis requires microtubule dynamics, an 
assembly of actomyosin networks, and their 
regulators
Microtubules
The mitotic spindle plays multiple roles during cell division, 
including segregation of chromosomes, positioning of the 
cleavage furrow, and separation of daughter cells7. In addition 
to kinetochore microtubules, the spindle includes the astral  
microtubules and the central spindle. Astral microtubules  
contact the cortex and are pulled on by cortical dynein to help 
elongate the spindle. The central spindle is composed of two  
populations of microtubules, each emanating from the opposing 
poles that form anti-parallel bundles that span the spindle 
midzone. The central spindle maintains the structure of the  
mitotic spindle, which is under constant mechanical stress from 
the pulling forces placed on the astral microtubules. Recently, 
the mechanism of centralspindlin microtubule bundling 
and how central spindle structure maintains its integrity under 
mechanical stress has emerged. The non-motor subunit of  
centralspindlin in Caenorhabditis elegans, CYK-4, binds to the  
neck domain on MKLP1 and reconfigures MKLP1 dimer so 
that it can bundle the antiparallel microtubules8. Moreover, the 
C. elegans orthologues of human PRC1 interact directly with  
centralspindlin. Both PRC1 and centralspindlin are microtubule  
bundlers, and this interaction resists the cortical pulling 
forces exerted during cytokinesis to prevent midzone rupture  
(Figure 1A)9.

Actomyosin network
The progression of cytokinesis is coordinated by cortical acto-
myosin assembly, contraction, and resolution. In amoebozoan 
and metazoan cells, actin filaments assemble into bundles and/
or networks at the cleavage furrow. These networks confer the 
mechanical features of the cortex and mediate contractility. On the  
molecular and network scale, a combination of physi-
cal features, including myosin II contractility, actin polymer  
assembly/disassembly dynamics, and actin filament buckling,  
contribute to network contraction10.

Actin filaments go through dynamic assembly and disassembly 
during cytokinesis. Actin can be recruited to the cleavage  
furrow cortex through cortical flow or produced de novo at the 
cleavage furrow11,12. DIAPH3, a formin, is an actin nucleator 
that is recruited to the cleavage furrow cortex by Anillin13. In the 
human cervical carcinoma HeLa cell line, DIAPH3 nucleates 
only β-actin at the cleavage furrow, and this de novo synthesis of  
β-actin ensures stable furrow ingression14. Interestingly, the 
fission yeast formin Cdc12 is inhibited by the pulling forces  
generated by myosin II, which in turn facilitates contractile ring 
assembly by allowing the actin structures to condense, leading 
to ring assembly (Figure 1B)15. As cytokinesis proceeds, eventu-
ally the actin filaments have to be cleared from the intercellular 
bridge to allow abscission to complete16. Although classical 
activities such as cofilin-mediated actin disassembly contribute  
to this actin removal, Fremont et al. reported that in both human 
and Drosophila cells, the oxidation of actin by MICAL1, a 
redox enzyme, can also induce depolymerization of F-actin 
filaments at the intercellular bridge17. In HeLa cells, actin cap-
ping protein, a barbed-end actin-binding protein complex,  
also counteracts formin-dependent F-actin polymerization to  
modulate actin filament formation as furrow ingression proceeds 
towards abscission (Figure 1B)18. In fission yeast, the mechanisms 
of actin filament disassembly during ring constriction remain 
unclear19, but one possibility is that the actomyosin bundles 
are expelled from the contractile ring as the cleavage furrow  
cortex curvature increases20. Thus, actin dynamics are achieved  
through a combination of biochemical and mechanical events.

The motor protein myosin works cooperatively with actin to 
accomplish constriction, yet how myosin II is organized at the 
contractile ring is not thoroughly understood. Moreover, it is 
not completely clear whether a specific structural organization 
is even important for many types of cells to divide or whether 
some of the patterns observed are effects rather than causes 
of cleavage furrow contractility. Nevertheless, Wollrab et al.  
described that myosin motors organize into clusters in both  
mammalian cells and fission yeast, but each have very  
distinct dynamics. The mammalian myosin II clusters remain 
relatively still while the yeast myosin II clusters rotate. These 
differences in the cluster dynamics between the species may 
indicate specific roles for myosin clusters during cytokinesis21.  
Alternatively, this may reflect the unique mechanical sce-
narios in which these clusters exist. Apart from the organiza-
tion of each myosin type, different isoforms of myosin provide  
specific functions during cytokinesis, exemplified in fission yeast. 
First, the fission yeast myosin II paralogs assemble into struc-
tures that appear to be unique when compared to conventional 
bipolar filaments observed in most other systems22,23. Second,  
Myo2 is responsible for the assembly and constriction of 
actin, but Myp2 and Myo51 provide distinct roles24. Myo2 and 
Myp2 can complete cytokinesis independently, although Myp2  
localizes to a different domain of the contractile ring from 
Myo2. Furthermore, the myosin V paralog Myo51 arrives at the  
contractile ring after Myo2 and promotes node interactions24.

Besides the structural and molecular distinctions of myosin, the 
dynamics of myosin II and its partners (in Dictyostelium, IQGAPs 
and cortexillin; in mammalian cells, Anillin) at the cleavage  
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furrow also affect the progression of cytokinesis. These networks 
of proteins are highly responsive to mechanical stress, and their 
recruitment to the cleavage furrow cortex is heavily tuned by  
these stresses25–27. This mechanoresponsiveness of the cytoki-
nesis machinery endows the cell with the ability to undergo cell  
division in diverse mechanical contexts, providing yet another 

essential mechanism for ensuring genomic fidelity throughout the  
process.

In addition to conventional contractility (filament sliding by 
myosin II), myosin II and its actin crosslinking partners provide 
load-resisting tension and strain stiffening as well as promote 

Figure 1. Cytokinesis from spindle maturation to abscission. (A) In Caenorhabditis elegans, centralspindlin non-motor subunit CYK-4 
binds to the motor subunit MKLP1, activating MKLP1’s antiparallel microtubule bundling activity. Centralspindlin and C. elegans orthologues 
of human PRC1 interact to resist cortical dynein pulling forces and prevent midzone rupture. (B) During actomyosin contraction, DIAPH3 in 
HeLa cells facilitates de novo synthesis of β-actin to ensure furrow ingression. Formin Cdc12 inhibition by mechanoregulation in fission yeast 
facilitates contractile ring assembly. On the other hand, MICAL1 oxidation of actin in human and Drosophila cells leads to depolymerization 
of F-actin filaments at the intercellular bridge. Actin capping protein in HeLa cells antagonizes actin polymerization to facilitate progression to 
abscission. (C) In HeLa cells, ATPase Vps4 facilitates endosomal sorting complex required for transport III (ESCRTIII)’s turnover, contributing 
to ESCRTIII filament assembly at the midbody. ESCRTIII also helps in reforming the nuclear envelope during telophase and cytokinesis.
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cortical tension. The cortical tension component initially resists  
cell deformation but later in cytokinesis, as the axial ratio (length/
diameter) of the furrow increases, leads to Laplace (fluid) pres-
sures that can drive furrow ingression28,29. These properties 
in combination ensure robust furrow ingression3,25,30,31. For  
example, these features readily account for how cells devoid of 
myosin II function can divide28,29,32. The lower-level eukaryote 
Giardia lamblia performs cytokinesis using actin filaments but 
no myosin II31. Here, the flagella provide force generation to 
generate the appropriate shapes of dividing cells. It has been 
proposed that these larger-scale mechanics (cortical tension) 
combined with the elongated cell geometry lead to Laplace  
pressure-mediated furrow ingression in a manner like that seen  
in myosin II null cells in higher eukaryotes.

Rho GTPase regulators
In higher eukaryotic systems, one critical regulatory activ-
ity is that of the Rho GTPase family of molecular switches. Rho 
GTPases, including RhoA, Rac1, and Cdc42, regulate spin-
dle assembly and positioning as well as actomyosin contractile 
ring formation and activation. The key cytokinesis Rho GTPase  
is RhoA, which acts on downstream substrates, such as formin 
and ROCK, to regulate actomyosin contractile machinery. RhoA 
is itself regulated by several GAPs and GEFs. Notably, Ect2, 
which is activated by Cdk1, is a RhoA GEF that activates RhoA  
in coordination with the centralspindlin subunit MgcRacGAP33.

Although regulators of RhoA have been extensively studied, it 
has been somewhat controversial how MgcRacGAP can pro-
mote RhoA activation, since it is counterintuitive that a GAP 
protein could activate a Rho GTPase. Moreover, previously it 
was shown that the C. elegans MgcRacGap homologue (CYK-4)  
inactivates Rac to promote cytokinesis and does not work 
directly on RhoA34,35. However, MgcRacGAP promotes Ect2  
accumulation to centralspindlin, which is required for Ect2 to 
interact with RhoA36. The GAP activity of MgcRacGAP is also 
important for restricting active RhoA at the cleavage furrow 
in epithelial cells37. Surprisingly, another RhoA regulator that  
has recently been identified is the transcription factor YAP. In 
cultured mammalian cells, YAP localizes to the central spindle 
and midbody ring during cytokinesis and also affects RhoA, 
Ect2, and MgcRacGAP localization38. Besides individual RhoA  
regulatory mechanisms, interestingly, excitable waves of Rho 
have been observed leading F-actin waves within the cleav-
age furrow of starfish zygotes and frog blastomeres. These Rho 
waves are also regulated by Cdk1 and Ect2 and antagonized by 
F-actin, and the Rho–actin waves enable robust coordination 
of the cortex with spindle positioning39. Thus, many levels of 
RhoA regulation appear to be at work and generally feed through  
Ect2, MgcRacGAP, and F-actin.

Cytokinesis completion depends on ESCRTIII-
mediated lipid dynamics
Membrane trafficking and remodeling play significant roles at 
the abscission stage during cytokinesis. ESCRT is responsible for 
membrane constriction and fission. ESCRT has five subfamilies, 
including ESCRTIII and AAA ATPase Vps4. It has been pro-
posed that ESCRTIII forms spiral structures on the membrane 

and provides the constriction force to complete abscission  
(Figure 1C). Vps4 is responsible for recycling ESCRTIII compo-
nents back into the cytoplasm, and the interaction of apoptosis- 
linked gene 2-interacting protein (ALIX) with ESCRTIII 
is also essential for cytokinesis completion. The underly-
ing mechanisms of ESCRTIII function during abscission are 
still being actively studied. On one hand, ESCRTIII long  
filaments appear to help facilitate constriction. On the other 
hand, ESCRTIII generates vesicles at the midbody, and recycling  
endosome accumulation at the midbody appears to be required for  
abscission4,40,41.

ESCRTIII filaments are highly dynamic, and midbody ESCRTIII 
subunits continuously exchange with subunits from the cyto-
plasm. In HeLa cells, ATPase Vps4 is responsible for ESCRTIII’s 
dynamic turnover and contributes to ESCRTIII filament growth 
(Figure 1C). This dynamic turnover behavior might help  
ESCRTIII adapt to different membrane curvatures42. Working 
upstream of ESCRTIII assembly at the abscission site, ALIX 
binds to the membrane remodeling machinery and the ESCRTIII 
subunit charged multi-vesicular body protein 4 (CHMP4), thus 
facilitating the assembly of ESCRTIII filaments. The timing of 
ALIX recruitment and activity is regulated by phosphorylation. 
Specifically, in Xenopus laevis oocytes, ALIX is phosphorylated 
at M phase, which leads to the opening up of the ALIX  
conformation and the subsequent recruitment of CHMP4 to the  
midbody43. In addition, ESCRTIII helps in reforming the nuclear 
envelope during telophase and cytokinesis. Both Stenmark’s 
lab and Carlton’s lab showed that in HeLa cells ESCRTIII 
localizes to the sites where nuclear envelope repair is occur-
ring, helping to reseal the nuclear envelope (Figure 1C)44,45.  
Vps4 localizes around the chromatin disk and assists ESCRTIII 
nuclear envelope sealing44. Thus, ESCRTIII plays multiple criti-
cal roles in sealing the membrane, both at the nuclear envelope  
and at the intercellular bridge, leading to final cell separation.

Cytokinesis abscission checkpoint and cellular 
shape adaptation prevent chromatin bridge breakage
During mitosis, chromosomes go through dynamic topological 
changes as well as spatial redistribution. Chromosomes are  
condensed during prophase, connected to spindle microtubules  
during prometaphase, and aligned at the spindle equator dur-
ing metaphase. The sister chromatids are then separated during  
anaphase. During telophase, the nuclear envelope reforms, 
and the chromosomes are decondensed. The subsequent cyto-
kinesis ensures separation of cytoplasm and the two daughter  
nuclei46. However, unresolved DNA structures formed during 
replication or recombination, defects in condensation, aberrant 
chromosome attachment to the spindle microtubules, or sister 
chromatid separation error lead to lagging chromosomes that 
remain at the cell equator during cytokinesis. The presence of 
lagging chromosomes can then lead to unwanted DNA damage,  
resulting in aneuploidy or polyploidy caused by regression of 
cytokinesis47. Structurally, the presence of lagging chromosomes 
leads to the formation of anaphase bridges as the cleavage  
furrow approaches completion. The Aurora B-dependent NoCut 
checkpoint pathway (NoCut) is charged with helping to resolve 
these anaphase bridges5. This pathway is aided by the actomyosin 
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network, which maintains the intercellular bridge opening, 
helping the chromosomes to segregate before abscission and  
preventing errors from forming in the first place48,49.

Until recently, it was unclear which specific types of chro-
mosomal structural challenges or attachment errors NoCut 
resolves. It was elucidated recently that NoCut appears to delay 
abscission after DNA damage caused by replication stress50.  
Specifically, Aurora B inhibits abscission only when chromatin 
bridges are caused by decondensed or catenated chromatin 
but not when chromatin bridges are caused by dicentric  
chromatin (Figure 2). On the other hand, dicentric chromosomes  
positioned at the midbody during cytokinesis can also create 
chromatin bridges, but the physical mechanism behind the 
breakage of dicentric chromatin has been unknown51. Lopez  
et al. argued that instead of being sheared or resolved by a nucle-
ase during anaphase, dicentric chromatins are cleaved during 
cytokinesis, at least in budding yeast Saccharomyces cerevisiae  
(Figure 2A)52. They discovered that dicentrics without telomere 
fusion were prone to breakage at pericentromeric regions, and 
this breakage required actomyosin network activity during  
cytokinesis.

Although the NoCut checkpoint prevents unresolved chroma-
tin breakage, how NoCut operates at the chromatin level to 

resolve chromatin bridges, allowing abscission, has not been 
well elucidated. LEM-3, a mitotic nuclease, localizes to the 
midbody in an AIR-2/Aurora B kinase-dependent manner and  
assists in resolving chromatin bridges in C. elegans (Figure 2B)53.

To turn on the NoCut checkpoint, Aurora kinase B, a subunit of 
chromosomal passenger complex (CPC), is activated by phos-
phorylation, which in turn activates downstream substrates, 
such as CHMP4C54,55. CHMP4C assembles into long filaments 
to assist membrane constriction. Petsalaki et al. discovered that 
Cdc-like kinases Clk1, Clk2, and Clk4 in human colon carci-
noma BE cells and HeLa cells phosphorylate Aurora kinase B 
at S33, and subsequently Aurora B phosphorylates CHMP4C.  
These events prevent late-cytokinesis chromatin breakage  
(Figure 2B)56. Moreover, Aurora B phosphorylation of CHMP4C 
in HeLa cells interferes with its membrane remodeling  
activity, and Borealin, another subunit of CPC, interacts with 
CHMP4 and interferes with its association with the membrane  
(Figure 2B)57,58. In combination, the evidence above indicates 
that CPC and Clks are critical to the regulation of the NoCut  
checkpoint57.

To prevent lagging chromosomes from being broken or excluded 
from the nuclei, the shape of the dividing cell is adapted for the 
clearance of chromatids, and nuclear envelope formation is 

Figure 2. Resolution of chromatin bridges. (A) A trailing dicentric chromatid in Saccharomyces cerevisiae is cleaved during cytokinesis. 
(B) A chromatin bridge caused by decondensed or catenated chromatin is resolved by the Aurora B kinase-dependent NoCut pathway. In 
Caenorhabditis elegans, Aurora B facilitates nuclease LEM-3 recruitment to the midbody to help resolve chromatin bridges. In human cells, 
Clks phosphorylate Aurora B kinase to activate the NoCut checkpoint. Specifically, in HeLa cells, Aurora B phosphorylation of charged 
multi-vesicular body protein 4C (CHMP4C) interferes with its membrane remodeling activity. Borealin also inhibits CHMP4C association 
with the membrane. (C) In human cells, Chk1 activates Src to form actin patches at the base of chromatin bridges, and Chk1 and Src work 
cooperatively with Aurora kinase B to delay abscission. In Drosophila neuronal stem cells, myosin II efflux from the ring to the poles facilitates 
extra cell elongation to allow for the clearance of trailing chromatids. Moreover, in Drosophila larval neuroblasts, Aurora B kinase helps 
inclusion of the trailing chromatid into the reforming nuclei.
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also coordinated with the inclusion of trailing chromatids48,49,59.  
At the base of chromatin bridges, actin patches form to support 
the structure of the bridge until chromosomes are resolved60.  
Actin patch formation is stimulated when the nonreceptor  
tyrosine kinase Src is activated by Chk1 kinase, and Chk1 and 
Src work cooperatively with Aurora kinase B to delay abscission 
in BE and HeLa cells (Figure 2C)48. Interestingly, in Drosophila 
neuronal stem cells, the cell undergoes a special transient  
extra elongation just to allow for clearance of the extra-long chro-
matids from the midbody61. The Rho-GEF (pebble) promotes 
myosin II transient efflux from the ring to the poles, and this 
efflux facilitates extra cell elongation (Figure 2C)49. In addition,  
Karg et al. described that in Drosophila larval neuroblasts  
nuclear envelope formation and the inclusion of trailing  
acentric chromosomes into the forming nuclei during telophase 
and cytokinesis require Aurora kinase B activity, adding yet  
another layer of function to Aurora kinase B (Figure 2C)59. In  
summary, the abscission checkpoint and adaptation of cellular 
shape and organelle structures during cytokinesis cooperate 
to prevent the lagging chromosomes from being broken, thereby 
helping to prevent aneuploidy formation. Given the critical 
importance of genomic fidelity to cell health and organismal 
viability, it is not surprising that nature has evolved multiple  
layers of control to ensure cytokinesis completes successfully.

Cytokinesis at the tissue level reveals coordination 
of dividing cells with neighboring cells
At the tissue level, the mechanotransduction and regulation of 
cell polarity between dividing cells and neighboring cells are 
critical to the integrity and dynamics of epithelial structure6. 
In two model systems, the Drosophila notum epithelium and  
Xenopus embryos, cell–cell junctions are important transducers 
of mechanosensation and mediators of cell shape regulation. 
In the Drosophila notum epithelium, E-cadherin dilution caused 
by elongation of ingressing adherens junctions leads to local  
cortex detachment of neighboring cells. This E-cadherin dilution 
causes the accumulation of myosin II at adherens junctions 
of neighboring cells via actomyosin flow (Figure 3A)62. Thus,  
this mechanoresponsive pathway linking shape and mechanical 
properties of dividing cells with those of its neighboring cells 
helps coordinate epithelial cell dynamics. In contrast, in X. laevis 
embryos, adherens junctions are stabilized at the ingressing 
furrow between dividing cells and neighboring cells. This  
stabilization of adherens junctions is proposed to be achieved 
by the higher tension created by pulling forces at the furrow and  
leads to the recruitment of vinculin to adherens junctions63.  
However, the actomyosin-generated tension on cadherin at  
adherens junctions may not be significantly different between 
neighboring non-dividing cells and neighboring dividing cells in 
Xenopus embryos64.

Another important question is how connections between neigh-
boring cells regulate the polarity of epithelial cell division, 
which in turn helps specify patterning in the epithelia. In the  
Drosophila pupal notum epithelium, tricellular junctions serve as 
landmarks to orient the mitotic spindle via the dynein-associated  
protein Mud65. Computational analysis showed that tricellular  
junction bipolarity forms as the dividing cell elongates, and this 
geometric orientation facilitates cell mechanical strain-induced 

polarization during cytokinesis (Figure 3B). In general, inter-
cellular junctions are important for mechanotransduction  
between dividing cells and neighboring cells and help estab-
lish the orientation of the dividing cells. The coordination of 
these dynamics of dividing cells with the neighboring cells helps  
ensure the integrity and fluidity of the forming tissues.

Summary
Cytokinesis across phyla is a fascinating, highly orchestrated proc-
ess that requires the interactions of apparently diverse molecular 
and mechanical machinery and properties. From intracellular 
coordination with mitosis and complex mechanical networks 
acting across length- and time-scales to the coordination with 
neighboring cells, cytokinesis remains a powerful instructive  
model process for cell and tissue morphogenesis. Furthermore, 
cytokinesis exemplifies the beauty of robustness by utilizing 
highly adaptive and mechanoresponsive machinery to ensure  
high-fidelity cell division, helping to preserve genomic integrity.

Many fundamental questions remain to be fully addressed while 
new exciting ones continue to arise. For example, how are  
constriction forces generated and robustness of the contractile 

Figure 3. Intercellular junctions guide contractile machinery 
assembly and division plane specification in multicellular 
scenarios. (A) In the Drosophila notum epithelium, E-cadherin 
dilution caused by elongation of ingressing adherens junctions 
induces the accumulation of myosin II at adherens junctions between 
neighboring cells. (B) In the Drosophila pupal notum epithelium, 
tricellular junctions orient the mitotic spindle via Mud, and the 
resulting tricellular junction bipolarity facilitates cell mechanical 
strain-induced polarization, guiding the axis of division.
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machinery achieved across different species? What are the  
relative contributions of ESCRTIII organized into filaments versus 
those promoting vesicle generation? How does nuclease resolve 
chromatin bridges? How does the intercellular force transmission  
between dividing and neighboring cells contribute to tissue 
shape and fidelity? Answering these questions will improve 
our understanding of cytokinesis and will open up many new 
exciting areas of inquiry about cell and tissue morphogenesis  
more broadly.
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