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Numerous clinical trials of drug candidates for Alzheimer’s disease (AD) have failed, and
computational drug repositioning approaches using omics data have been proposed as
effective alternative approaches to the discovery of drug candidates. However, little multi-
omics data is available for AD, due to limited availability of brain tissues. Even if omics data
exist, systematic drug repurposing study for AD has suffered from lack of big data,
insufficient clinical information, and difficulty in data integration on account of sample
heterogeneity derived from poor diagnosis or shortage of qualified post-mortem tissue. In
this study, we developed a proteotranscriptomic-based computational drug repositioning
method named Drug Repositioning Perturbation Score/Class (DRPS/C) based on inverse
associations between disease- and drug-induced gene and protein perturbation patterns,
incorporating pharmacogenomic knowledge. We constructed a Drug-induced Gene
Perturbation Signature Database (DGPSD) comprised of 61,019 gene signatures
perturbed by 1,520 drugs from the Connectivity Map (CMap) and the L1000 CMap.
Drugs were classified into three DRPCs (High, Intermediate, and Low) according to
DRPSs that were calculated using drug- and disease-induced gene perturbation
signatures from DGPSD and The Cancer Genome Atlas (TCGA), respectively. The
DRPS/C method was evaluated using the area under the ROC curve, with a prescribed
drug list from TCGA as the gold standard. Glioblastoma had the highest AUC. To predict
anti-AD drugs, DRPS were calculated using DGPSD and AD-induced gene/protein
perturbation signatures generated from RNA-seq, microarray and proteomic datasets
in the Synapse database, and the drugs were classified into DRPCs. We predicted 31
potential anti-AD drug candidates commonly belonged to high DRPCs of transcriptomic
and proteomic signatures. Of these, four drugs classified into the nervous system group of
Anatomical Therapeutic Chemical (ATC) system are voltage-gated sodium channel
blockers (bupivacaine, topiramate) and monamine oxidase inhibitors (selegiline,
iproniazid), and their mechanism of action was inferred from a potential anti-AD drug
perspective. Our approach suggests a shortcut to discover new efficacy of drugs for AD.

Keywords: drug repositioning, Alzheimer disease, proteotranscriptomics, transcriptomics, proteomics,
computational drug repositioning, drug discovery, system based approach
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INTRODUCTION

AD is the most common type of dementia, and is characterized
by progressive declines in memory and cognition. The
prevalence of AD is increasing rapidly as population ages.
There are currently approximately 50 million people
worldwide with dementia, and the cost of treating and caring
for people with dementia is estimated to be about US$1 trillion
per year (Patterson, 2018). Although the precise cause of AD is
still unclear, the disease is characterized by the presence of
amyloid plaques comprised of beta-amyloid (Aß) and
neurofibrillary tangles (NFTs) comprised of hyperphosphorylated
tau in the brain. Most drugs under development target these two
pathological hallmarks. However, the success rate of newly-
developed AD drugs has been very low, about 0.4%, and there
have been hundreds of failures of clinical trials (Cummings and
Science, 2018). Of all the potential drugs developed for the
treatment of AD, only drugs such as cholinesterase inhibitors and
memantine have been approved by the U.S. Food and Drug
Administration (FDA) to relieve some of the symptoms of the
disease. Given the impact ofAD, it is therefore important to explore
new drug development strategies for this condition.

Numerous drug repositioning methods have been suggested
to repurpose already-approved drugs, and several compounds
have been identified as innovative approaches to different
diseases. Drugs that have been repositioned have undergone
clinical trials, and so have confirmed pharmacokinetics,
pharmacodynamics, and well-understood toxicity mechanisms,
and have been approved by the U.S. FDA. Drug repositioning
takes advantage of the reduced toxicity, side effects, and costs of
clinical trials. Many computational drug repositioning methods
based on transcriptomic data have been developed to identify
potential new indications for drugs. Each method has applied
techniques such as comparison of gene expression profiles
between a disease model and the drug-treated condition (Chen
et al., 2017), network integration (Luo et al., 2017), prediction of
drug-protein interactions (Yang and Agarwal, 2011), and
utilization of genotype-phenotype associations (Zhang et al.,
2016). Systematic computational drug repositioning methods
using large transcriptomic datasets perturbed by drugs have
been developed (Dudley et al., 2011), and many promising
drug candidates have been identified for diverse diseases
(Vé gner et al., 2013; Zerbini et al., 2014). To assist in this
endeavour, CMap (Lamb et al., 2006) and L1000 of the
Integrated Network-based Cellular Signatures (LINCS) project
(Subramanian et al., 2017) have been widely used. The CMap
database was first released in 2006 and consisted of data relating
to 564 gene expression signatures as perturbed by 164 bioactive
small molecules. In 2010, the NIH LINCS consortium launched
Abbreviation: DRPS, Drug Repositioning Perturbation Score; DRPC, Drug
Repositioning Perturbation Class; DGPSD, Drug-induced Gene Perturbation
Signature Database; CGPS, Cancer-induced Gene Perturbation Signatures;
DGPS, Drug-induced Gene Perturbation Signature; AGPS, AD-induced Gene
Perturbation Signature; APPS, AD-induced Protein Perturbation Signature.
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L1000, a database comprising approximately one million gene
expression profiles of human cell lines as perturbed by about
15,000 drugs or small molecules. TCGA is the largest public data
set related to human cancer genomes, and consists of multi-
omics data generated by RNA-seq, copy-number variation
analysis, genomic mutation, and DNA methylation, generated
from 11,000 patients across 33 tumor types, together with
relevant clinical information, including list of prescribed drugs
(Nagaraj et al., 2018). Several studies developed and validated
their methods based on anti-correlation between disease- and
drug-induced gene expression profiles from these datasets.
(Chen et al., 2017; Srivastava et al., 2018).

Most computational drug repositioning methods have been
developed for a few diseases, such as cancers, since there are
considerable amounts of gene and protein expression data
available for these diseases, with clinical and pharmacological
information, in databases such as TCGA. In the case of AD, little
multi-omics data with clinical information have been produced,
due to limitations in tissue availability from patients with clear
clinical diagnoses. There have been several studies on the
relationship between cancer and neurodegenerative diseases
including AD, Parkinson’s disease (PD), and Huntington’s
disease. Epidemiological studies have reported an inverse
association between neurodegeneration and cancer, in that
individuals with neurodegenerative diseases appear to have a
lower risk of developing cancer and vice versa (Catalá-López
et al., 2014; Seddighi et al., 2019). In addition, ageing-associated
transcriptomic alterations are similar to those observed in
neurodegeneration, but are opposite to those observed in
cancer (Irizar et al., 2018). The expression of several genes that
contribute to cell growth and proliferation is increased in cancer
and decreased in AD (Shafi, 2016). There has, however, been
some evidence of a positive association between AD and cancer.
There appears to be a positive correlation between the mortality
rates in AD and Glioma (Lehrer, 2018). This observation
suggests a role of gene expression regulators in the shared
genetic etiology between AD and cancer, and implies that
some shared variants modulate disease risk. Increasing
evidence suggest that there are common pathophysiological
features in both diseases, such as DNA damage, oxidative
stress, mitochondrial dysfunction, metabolic dysregulation, and
inflammation (Driver, 2014; Houck et al., 2018). Moreover,
single nucleotide polymorphism (SNP)-trait genome-wide
association studies (GWAS) have shown positive genetic
correlations between AD and cancer (Feng et al., 2017).
Although the relationship between AD and cancer remains
controversial, the analysis of large cancer multi-omics datasets
and associated clinical information should provide insights into
developing new drugs for AD.

In this study, we developed a new DRPS and new DRPC
based on pharmacogenomic knowledge, along with the
information that disease- and drug-induced gene and protein
expression signatures have an inverse association. We first
standardized drug names by PubChem compound identifier
(CID) (Cheng et al., 2014b). Then we constructed a DGPSD
comprised of 61,019 Drug-induced Gene Perturbation
January 2020 | Volume 10 | Article 1653
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Signatures (DGPSs) generated by 1,520 compounds in 26 cell
lines collected from CMap and L1000. DRPS was calculated
using nine Cancer-induced Gene Perturbation Signatures
(CGPSs) from 4,948 cancer and normal profiles (BRCA,
UCEC, KIRC, LUAD, LUSC, COAD, STAD, CESC, and GBM)
perturbed by 152 drugs, using data from TCGA, and each drug
was classified into one of three DRPC (high, intermediate, low)
by DRPS. The DRPS/C method was validated by calculating the
AUC of each DRPC using DRPS as an input, and the prescribed
drug list with CID as the gold standard. Glioblastoma (GBM)
was found to have the highest AUC (0.708). Since GBM shared
gene expression patterns and related pathways with AD, we
applied the DRPS/C method to the prediction of anti-AD drugs
using multi-omics datasets from AD patients. Two AD-induced
Gene Perturbation Signature (AGPS) and one AD-induced
Protein Perturbation Signature (APPS) were calculated from
159 RNA-seq, 108 microarray, and 17 proteomic datasets,
respectively. We predicted 31 potential anti-AD drug
candidates belonging to the intersection of high DRPCs that
were calculated from AGPS and APPS. Of these, the mechanism
of action of the drugs belonging to the nervous system class of
ATC system was inferred from a potential anti-AD drug
perspective. Our DRPS/C method may provide a shortcut to
discover new efficacy of drugs for AD.
MATERIALS AND METHODS

Standardization of Compound Names
Based on PubChem Identifiers
When we investigated the collected compound lists that
contained various nomenclature problems including uncertain
naming, spelling errors, and the use of diverse synonymous. To
solve these problems, we conducted cleaning and standardization
of 1,858 compound names using CID of PubChem as follows.
First, we selected 312 compounds that had the compound (“trt-
cp”) or controls-vehicle (“ctl_vehicle”) perturbation type from
LINCS level 3 data (GSE92742) (Supplementary Table 3). 159
and 1,387 compounds were extracted from the prescribed drug
list of TCGA and CMap compounds list, respectively. Next, we
converted compound names to CID using the PUG REST service
provided by PubChem. For the un-mapped terms, we performed
standardization of compound names into CIDs with human
curation. Finally, we collected 1,608 compound names with CIDs
(Supplementary Figure 1).
Drug-Induced Gene Perturbation
Signature Database (DGPSD)
Build02 (2009) of the CMap data was downloaded (https://
portals.broadinstitute.org/cmap/index.jsp) and processed. We
normalized the data with the MAS and quantile method using
the affy R package (version 1.58.0). LINCS level 3 data were
downloaded from the Gene Expression Omnibus (GSE92742).
We selected 61,019 gene expression profiles from CMap (5,819)
and L1000 (55,200), that have treated compounds with
associated CID identifiers from our drug-CID mapping table
Frontiers in Pharmacology | www.frontiersin.org 3
(Supplementary Figures 2A and 3A). In the case of the same
experimental conditions (compound, treatment time, dosing,
and cell line), we adopted the average of each gene expression
value as a representative value of an experiment. To obtain
DGPSs, the perturbed gene expression profiles induced by
drugs, we calculated the log2 fold change in gene expression
for each control versus compound-dosing-time experimental
condition within the same cell line. To standardize the gene
identifiers, all gene identifiers were converted to Ensembl gene
IDs, using the BioMart R package (version 3.7).

Analysis of Omics Expression Signatures
We downloaded prescribed drugs (40 types), patient
information, prescribed drug list and normalized RNA-seq
gene expression profiles from the TCGA (https://portal.gdc.
cancer.gov, May, 2018). From these, we selected 4,948 gene
expression data of nine cancer types (BRCA, GBM, CESC,
COAD, KIRC, LUAD, UCEC, LUSC, STAD), which satisfied
three conditions: (1) A cancer type dataset contained more than
three normal samples with sample code 10 (solid tissue normal)
or 13 (EBV immortalized normal); (2) the dataset included more
than ten prescribed drugs; (3) It had one or more shared drugs
from the drug lists from TCGA and CMap or L1000. In case of
AD, 159 RNA-seq, 108 microarray, and 17 LC-MS/MS datasets
were collected from Synapse (syn8690904), ArrayExpress (E-
TABM-185), and PRIDE Archive (PXD006122, 4/6/2018),
respectively (Supplementary Data 4).

The RNA-seq data were analyzed using Generalized linear
models (GLM) in cancer versus unpaired normal samples
(adjusted p-value < 0.05) using the R package EdgeR (release
3.7). All gene identifiers were transformed into Ensembl gene IDs
using the BioMart R package (version 3.7) (Supplementary
Figures 2B, 4A, B, and Supplementary Data 1). Microarray
data were normalized using the Robust Multi-array Average
(RMA) algorithm and 817 differentially expressed genes were
identified using t-test with a false discovery rate (FDR) correction
(q-value < 0.05). The probe sets were summarized to Ensemble
gene symbol using the HT HG-U133 database (version 3.7) and
BioMart R package (version 3.7). The raw mass spectrometry
data of AD human brain proteomics datasets were processed
using Proteome Discoverer (Thermo Scientific, version 2.2) with
a Uniprot human database (2017_08). Searches were performed
using a 10 ppm precursor tolerance, and 0.05 Da fragment
tolerance. Two missed cleavages were accepted. TMT tags on
lysine residues and peptide N-termini (+ 229.162932 Da) and
carbamidomethylation of cysteine (+ 57.02146 Da) were set as
static modifications, while oxidation of methionine (+ 15.99492
Da) was set as a variable modification. Results were filtered to a
1% FDR at the peptide and protein levels. We normalized the
quantitative proteome data using the VSN package (version
3.50.0) and performed t-test (p-value ≤ 0.05). Finally, we
generated APPS based on 175 DEPs (Supplementary Figures
4C, D, and Supplementary Data 2). To comparison of biological
characterization between AD and cancer, we performed pathway
enrichment and PPI network analysis using GSEA v3.0 (MSigDB
version 6.2, permutation method: 1,000 gene set) and STRING
database (v10.5; confidence score of ≥ 0.8).
January 2020 | Volume 10 | Article 1653
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Drug Repositioning Perturbation
Score/Class
To calculate DRPS, we undertook the following analysis, First,
for every gene k in each drug or disease gene expression profile
perturbed by drug j, or disease d, we calculated log2 fold change
(Fdrgk; Fdgk) between drug-treated (Ekj) and control (Ekc); disease
(Ekd) and normal(Ekn) gene expression profile, shown as Eq. 1
(Detail descriptions of the symbols in Supplementary Table 1).

Fdrgk = log2
Ekj
Ekc

� �
, Fdgk = log2

Ekd
Ekn

� �
(1)

Second, we identified differentially expressed genes in the
intersection of DGPS and C/AGPSs Third, if gene k had an
inverse signature expression pattern (Fdrgk > 0 & Fdgk < 0, Fdrgk < 0
& Fdgk > 0) between DGPS j and CGPS or AGPS d, we compute a
Perturbation Score (PS) of gene k as follow Eq2.

PSgk = jFdgk j − jFdrgk j (2)

To assign a weighted value to an influential pharmacogene
using pharmacogenomic knowledge, we downloaded data from
11,922 pharmacogenes, including target, enzyme, transporter,
and carrier from Drugbank (version 5.1.1; (Wishart et al., 2018)
and defined these genes as our “PharmacoGene List” (PGL). We
extracted pharmacogene (pg)s from DGPS j, or CGPS or AGPS d
based on PGL (Eq.3) and computed log2 fold change (Fdrgk/Fdgk)
for every pg i as follow Eq.4. Eij and Eic is the gene expression
value of pg i in drug-treated (j) and control(c) gene expression
profiles. Eid and Ein are the gene expression value of pg i in
disease(d) and normal(n) gene expression profiles.

PG = gk ∈ PGLjpg1 … pgif g (3)

Fdrpgi = log2
Eij
Eic

� �
, Fdpgi = log2

Eid
Ein

� �
(4)

The PS of pg i was calculated in the same manner (Fdrpgi > 0 &
Fdpgi < 0, Fdrpgi < 0 & Fdpgi > 0) as that of gene k (Eq.5).

PSpgi = jFdpgi j − jFdrpgi j (5)

We calculated theDRPS of drug j (DRPSdrugj) as follows (Eq. 6).
If drug j had multiple experimental conditions (dosing, time), we
selected the maximum score among the DRPSs calculated from
several experiment conditions (e). n andm are the total number of
genes and pharmacogenes in the gene expression profile ofDGPS j
and CGPS or AGPS d.

DRPSdrugj = max
h

e=1

1
no

n

k=1

PSgk �
1
mo

m

i=1
PSpgi

" #
(6)

After sorted drugs by DRPS in ascending order, we classified
into three DRPC (“high”, “intermediate”, “low”) based on DRPS.
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RESULTS

Compound Label Standardization and
DGPSD Construction
We collected 74,171 gene expression profiles perturbed by 2,021
compounds from CMap and L1000 to construct DGPSD. The
DGPSDcontained15,137and14,123genes fromCMapandL1000,
respectively.We standardized 1,858 compound labels fromCMap
(1,387), L1000 (312) and TCGA (159) based on the CID of
PubChem, using the PUG REST service and human curation
(Supplementary Figure 1). We selected gene expression profiles
according to predefined criteria including drug name and CID. All
gene expression profiles were converted into DGPS by calculating
the log2-ratios of expression values between control and
compound treated samples. The final DGPSD was made up
61,019 DGPS perturbed by 1,520 compounds in 26 cell lines
(Figure 1; Supplementary Figures 2A, 3).

DRPS/C Method Development
and Validation
In order to generate CGPS, we selected gene expression profiles,
meeting the criteria: the associated clinical data must include at
least 20 kinds of prescribed drugs, and gene expression profiles
should have one or more normal data sets. We computed nine
CGPS through statistical analysis (Generalized linear models;
adjusted P-value < 0.05; release 3.7) using 4,948 cancer and
normal gene expression profiles perturbed by 152 drugs in nine
cancer types (BRCA, UCEC, KIRC, LUAD, LUSC, COAD,
STAD, CESC, and GBM) (Supplementary Figure 2B). Each
CGPS included between 1221 and 4502 differential expressed
genes (Supplementary Data 1, Supplementary Table 2, and
Supplementary Figure 4B). We computed DRPS using DGPSD
and nine CGPS. (Supplementary Data 3). The DRPS is a score
that weights the pharmacogenomic knowledge supporting the
value that measures an inverse association between each DGPS
and CGPS.A higher DRPS means that the drug has not merely a
higher inverse signature expression pattern between DGPS and
CGPS, but also many influential pharmacogenes were perturbed.
To select optimal drugs based on gene/protein expression data,
we classified drugs based on DRPS and DRPC. To evaluate the
performance of our method, we calculated the area under the
ROC curve (AUC) of each DRPC for each cancer type using
predicted repositioning candidate drugs ordered descending by
DRPS score and prescribed drugs with CID from TCGA as a gold
standard (Figure 2). The results show that the all AUCs in the
nine cancer types were ordered as high, intermediate, and low
class consistently. Based on these results, we assessed that the
DRPS methods robustly predicts drugs based on inverse
signature expression pattern. The highest AUC (0.708) was
observed for GBM in the high class. We concluded that our
DRPS is more valuable in drug repositioning analysis using brain
gene expression data than when using data from other organs.
January 2020 | Volume 10 | Article 1653
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Interrelation Between Cancer and AD
To estimate the possibility of applying our method to AD drug
repositioning, the relationship between cancer and AD was
investigated at the transcription level. We downloaded 159
gene expression profiles generated by RNA-seq of AD brain
tissues (AD: 88, Normal: 77) from the synapse portal, and
computed AGPS comprised of 9,603 differentially expressed
genes (DEGs). We measured the rate of shared DEGs between
AGPS and CGPS per fold change (Figure 3A). GBM had the
lowest reduction degree of shared DEG rates according to
increasing fold change. These results indicate that AD and
GBM share highly perturbed DEGs. We also calculated the
rate of genes with same expression direction (overexpressed or
underexpressed) in AGPS and CGPS. GBM (0.49) had highest
similarity with AD. CESC (0.47) and STAD (0.46) followed
(Figure 3B, Supplementary Figure 5). To assess whether AD
and the nine cancer types share similar biological processes, we
compared the significantly enriched pathways between AGPS
and CGPS using the KEGG pathway gene sets in MSigDB (ver.
6.2) and GSEA v3.0. KIRC and GBM had the largest number of
shared pathways with AD. JAK-STAT signaling pathway
(map04630) and cytokine-cytokine receptor interaction
(map04060) that were involved in long-term memory (Copf
et al., 2011) were shared only in GBM and KIRC with AD
(Figure 3C). In comparison of shared genes between CGPS with
Frontiers in Pharmacology | www.frontiersin.org 5
AD-related genes from Ingenuity Pathway Analysis (IPA)
(Krämer et al., 2013), the GBM had the highest number of
shared genes with AD (Figure 3D). PPI network analysis was also
performed using the shared genes as an input for STRING, and the
shared genes were linked with neurotransmitter receptors such as
the glutamate, cholinergic receptor, and gamma-aminobutyric acid
receptors (Supplementary Figure 6). Taken together, GBM showed
a consistent strong correlation with AD.

Drug Repositioning Analysis for AD
Drug Discovery
To identify novel anti-AD drug candidates using DRPS/C, we
further downloaded 108 and 17 gene expression profiles of brain
tissues from AD patients generated by microarray, and LC-MS/
MS from ArrayExpress database and PRIDE archive. The
microarray data consisted of 22 AD and 86 normal samples,
respectively. We computed microarray and RNA-seq AGPSs
composed of 817 and 9,603 DEGs. Proteomic data included
samples of 9 AD and 8 normal, and we generated AD-induced
Protein APPS using 175 differentially expressed proteins (DEPs)
(Supplementary Data 2). We then calculated the DRPS for each
drug using 3 kind version of gene/protein expression signature
AGPS (Supplementary Data 4). We found that 1,047 drugs were
at least once ranked as high class (Supplementary Data 3).
Among these drugs, 492 drugs had ATC code (ver. 2018). The
FIGURE 1 | Schematic of the calculation of DRPS based on the inverse association between disease- and drug-induced transcript/protein perturbation signatures
Higher DRPS means that the drug has not only a higher contrary correlation between drug-induced and cancer multi-omics signatures but also many influential
pharmacogenes with high perturbation.
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most frequent drug class was C (Cardiovascular system, 98
drugs) and N (Nervous system, 64 drugs) (Figure 4A). We
then selected 31 anti-AD drug candidates that were satisfied with
the following criteria (Supplementary Table 4): 1) The drugs
belonging to the intersection of high DRPCs from transcriptomic
and proteomic data. 2) the drugs without low DRPC.

Of these, four drugs belonging to the ATC N class are
bupivacaine, topiramate, selegiline and iproniazid (Figure 4B).
We investigated the binding partners of bupivacaine target using
AD-related genes from IPA and PPI relations from the STRING
database. SCN10A (Sodium channel protein type 10 subunit
alpha), a target of bupivacaine, was linked with MAPT (tau) and
PSEN1 (presenilin1), which were associated with the pathological
hallmarks of AD, via SCN1A (sodium channel protein type 1
subunit alpha), a target of topiramate (Figure 4C). Bupivacaine
and topiramate may inhibit neuronal hyper-excitability in AD by
blocking sodium channel (Sheets et al., 2010) (Figure 5A). In
Frontiers in Pharmacology | www.frontiersin.org 6
another way, bupivacaine may act on AMP-activated protein
kinase (AMPK), and subsequently activate the downstream of
AMPK (Huang et al., 2014). Selegiline and iproniazid are
inhibitors of monamine oxidase inhibitors (MAO) that are
known to be implicated in the AD pathology (Thomas, 2000;
Huang et al., 2012; Quartey et al., 2018) (Figure 5B). In this
context, this approach can repurpose potential anti-AD drug
candidates that may be further investigated.
DISCUSSION

Despite rapid increases in the prevalence of AD, therapeutic
agents against AD have not yielded successful results in most
clinical trials. Thus, treatment of AD urgently requires the
development of novel, rationally designed therapeutic agents.
Drug repositioning has attracted great interest, as it may lead to
FIGURE 2 | AUC for DRPS of each drug per DRPC using prescribed drugs as gold standard from TCGA The navy, medium blue, and light blue lines represent
high, intermediate, and low classes in DRPC, respectively.
January 2020 | Volume 10 | Article 1653

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Lee et al. Proteotranscriptomic-Based Drug Repositioning for AD
the discovery of novel drugs for diseases as well as reducing the
risk of new drug development at the clinical stage. The
commonly used computational drug repositioning methods
started by searching for drugs that had an inverse association
of gene expression pattern between disease and drugs. However,
most approaches use transcriptomic data (Chen et al., 2017), and
there have been few reports of a systematic drug repositioning
method based on multi-omics data. Based on the inverse
association, we developed a new method, DRPS/C, using
public multi-omics data (transcriptomes and proteomes)
incorporating pharmacogenomics knowledge. The DRPS/C
method was successfully validated using a prescribed drug list
in clinical data of cancer patients.

Since GBM outperforms the other cancer types by
comparison of AUC values using the DRPS/C method, we
further investigated gene expression pattern similarity, shared
DEGs, and the related pathways between AD and GBM. GBM
showed a consistent strong correlation with AD among nine
cancer types. GBM is characterized by a high degree of cellular
and molecular heterogeneity both among patients and within the
same patient (Skaga et al., 2019). AD is also a heterogeneous
disease that is classified into three clinical stages including the
preclinical, mild cognitive impairment, and dementia (Jack et al.,
Frontiers in Pharmacology | www.frontiersin.org 7
2018), and its neuropathology is highly variable (Whitwell et al.,
2012). For this reason, there might be far more complexities at
the molecular level of these diseases. Advances in the diagnosis
and single cell analysis as well as large scale multi-omics data for
enough clinical samples may help investigation of the
pathophysiological relationship between GBM and AD.

The most widely accepted theory to explain the pathogenic
mechanism of AD is the amylod hypothesis, which states that the
accumulation of Aß) leads to formation of amylod plaque and
NFTs, ultimately, neuronal death (Selkoe and Hardy, 2016).
Accumulating studies have shown various features in AD brain
such as neuronal hyperexcitability, epileptic seizures, diminished
glucose uptake, glutamate excitotoxicity, oxidative stress induced
neurotoxicity, cholinergic hypofunction, metal dyshomeostasis,
mitochondrial dysfunction, and neuroinflammation.
Furthermore, these pathways are found to influence one
another in the pathogenesis of AD (De Strooper and Karran,
2016).Although most current therapeutic approaches are focused
on Ab and hyperphosphophorylated tau, such complex features
in AD have challenged the conventional paradigm in drug
development. Among the anti-AD drug candidates predicted
by using our methods, four drugs with the ATC nervous system
code are voltage-gated sodium channel blockers (bupivacaine
FIGURE 3 | Correlation of gene expression between AD and cancer types (A) The ratio of shared DEGs between AD and nine cancer per each fold-change.
(B) Gene-expression pattern similarity of AD and nine cancers. The pink and blue colors represent over-expressed and under-expressed DEGs, respectively.
Coderivative of AD-related pathways (C) and genes (D) between AD and nine cancers. A navy square denotes an AD-related pathway in each cancer type, and light
beige and light green indicates the opposite. The bar chart indicates rate of shared pathways between AD and each cancer type. KEGG pathway number
description as follows: map05322, Systemic lupus erythematosus; map04620, Toll-like receptor signaling pathway; map04210, Apoptosis; map04120, Ubiquitin
mediated proteolysis; map04660, T cell receptor signaling pathway; map04666, Fc gamma R-mediated phagocytosis; map04062, Chemokine signaling pathway;
map04110, Cell cycle; map05200, Pathways in cancer; map03040, Spliceosome; map03018, RNA degradation; map04080, Neuroactive ligand-receptor interaction;
map04060, Cytokine-cytokine receptor interaction; map04670, Leukocyte transendothelial migration; map04914, Progesterone-mediated oocyte maturation;
map05140, Leishmaniasis; map04650, Natural killer cell mediated cytotoxicity; map04630, JAK-STAT signaling pathway; map05223, Non-small cell lung cancer;
map04514, Cell adhesion molecules (CAMs); map04610, Complement and coagulation cascades; map04510, Focal adhesion.
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and topiramate) and MAO inhibitors (selegiline and iproniazid).
According to the literature review, we inferred the mechanism of
action of the drugs from a potential anti-AD drug perspective.

Bupivacaine, a FDA-approved local anesthetic, is known to
block voltage-gated sodium channels by binding to SCN10A,
inhibit ionotropic glutamate receptors, and activate AMPK (Lu
et al., 2011). Topiramate, another sodium channel blocker to
bind SCN1A, is approved to treat seizure disorders (Mantegazza
et al., 2010). Topiramate has been known to modulate gamma-
Frontiers in Pharmacology | www.frontiersin.org 8
aminobutyric acid receptor subunit alpha-1(GABRA1) and
glutamate receptors, and stimulate insulin-mediated glucose
uptake by activation of AMPK (Caricilli et al., 2012). One of
the characteristics of AD is neuronal hyper-excitability due to
stimulated action potentials, which causes the loss of electrical
signal transmission and ultimately neuronal death (Palop and
Mucke, 2010). When increasing neuronal excitability,
bupivacaine or topiramate may act on sodium channels to
suppress neuronal action potentials (Sheets et al., 2010).
FIGURE 4 | Potential anti-AD drugs with mode of action (A) The number of drugs per ATC code categories. (B) The DRPC per multi-omics data type with ATC
class. Navy and sky-blue represent “high” and “intermediate” DRPCs, respectively. (C) The PPI network of SCN10A (olive node), the target protein of bupivacaine.
Burgundy nodes denote AD-related proteins. The edges highlighted in purple denote the connectivity from SCN10A to PSEN1 or MAPT proteins, which are
associated with AD pathological hallmarks.
FIGURE 5 | Schematic models for mechanism of action of anti-AD drug candidates in relation to AD pathology. (A) mechanism of action of the sodium channel
blockers, bupivacaine and topiramate (B) mechanism of action of the MAO inhibitors, selegiline and iproniazid.
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Moreover, SCN1A connecting with SCN10A in the PPI network
in Figure 4C is regulated by BACE1, the beta-site amyloid
precursor protein cleaving enzyme for generation of Ab
peptides in AD. PSEN1, a component of g-secretase producing
Ab, also mediates proteolytic cleavage of the voltage-gated
sodium channel b-subunits (Kim et al., 2011). Glutamate
receptor proteins, which are also related to neuronal
excitability and affect synaptic plasticity via JAK-STAT
signaling (Figure 3C), were indirectly linked with SCN10A and
SCN1A (Figure 4C) (Nicolas et al., 2012). We thus inferred that
bupivacaine or topiramate may prevent the neuronal cell damage
in AD by regulating neuronal excitability.

In regards to AMPK activation, bupivacaine and topiramate
might be associated with insulin-mediated glucose uptake
(Caricilli et al., 2012) or tau phosphorylation through AMPK/
TSC2/mTOR1/p70s6k pathway. Bupivacaine is known to activate
AMPK along with T172 phosphorylation, and activated AMPK
mediates the phosphorylation of S1387 in TSC2 that initiates
strong activation of theAMPK/TSC2 pathway (Dibble et al., 2012;
Huang et al., 2014).mTOR1, a central regulator of cell growth and
metabolism, is inhibited by activated AMPK/TSC2. The mTOR-
dependent p70s6k activity is also inhibited (Kickstein et al., 2010)
and mediates tau phosphorylation, which is crucial in AD
pathogenesis (Pei et al., 2006; Taga et al., 2011). Moreover, the
activated AMPK inhibits activation of GSK3b, a major kinase of
tau (Ryder et al., 2004; Horike et al., 2008). Combining all of
these, we proposed the mechanism of action of bupivacaine and
topiramate for the treatment of AD as shown in Figure 5A.

On the other hand, selegiline and iproniazid are inhibitors of
MAO, a family of enzymes catalyzing the oxidation of
monoamines. There are two types of MAO: MAO-A and MAO-
B, and inhibition of MAO-A and MAO-B proteins increased
dopamine in brain. Selegiline is used in the treatment of
depression and early-stage Parkinson disease by modulation of
dopaminergic transmission though blocking MAO-B (Finberg
and Rabey, 2016). It is a selective irreversible MAO-B inhibitor
in clinical doses, whereas it also inhibits MAO-A in larger doses
(Fowler et al., 2015). Iproniazid, anotherMAO inhibitor, is used as
an antidepressant drug (Yáñez et al., 2012). Several mechanisms
have been proposed to account for involvement of MAO in AD
pathology such as cognitive dysfunction viadestroying cholinergic
neurons and the formation of Aß aggregation or NFTs (Thomas,
2000; Huang et al., 2012; Mousseau and Baker, 2012; Cai, 2014;
Quartey et al., 2018). This is in line with the recent study reporting
that selegiline suppressed GABA production from reactive
astrocytes, and restores the synaptic plasticity, and learning and
memory function in theADmodelmice (Park et al., 2019). Indeed,
several studies showed beneficial effect of the MAO inhibitor,
selegiline in AD (Tariot et al., 1987; Knoll et al., 1989; Sano et al.,
1997), and dextroamphetamine, an inhibitor of MAO-A and
MAO-B, is in Phase 4 clinical trial as a combination drug
together with methylphenidate for AD treatment (Herrmann
et al., 2008). Clinical trials have inherent limitations such that
results canvarydependingonpatient population, dosage, duration
of administration, and endpoint selection. Accordingly, there are
still opportunities of applying these drugs for AD treatment.
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However, for repositioning approved drugs in clinical trials,
drug toxicity and unfavorable pharmacokinetics should be
considered significant. Bupivacaine is primarily metabolized by
the liver and should be used cautiously in patients with hepatic
disease. There are also serious concerns about the systemic toxicity
and cardiotoxicity of bupivacaine (El-Boghdadly et al., 2018).
Topiramate is excreted predominantly in the urine as an
unmetabolized drug and symptoms of overdose may cause vision
problems, dehydration, metabolic acidosis, depression,
encephalopathy, and kidney stones (Topiramate from
Drugs.com, 2019). Selegiline is primarily metabolized by
cytochrome P450 into L-desmethylselegiline, L-amphetamine,
and L-methamphetamine in the liver and the intestines; they are
excreted together with its metabolites in the urine and feces.
However, amphetamine metabolites are also known to be
associated with orthostatic hypotension and hallucinations
(Romberg et al., 1995; Am et al., 2004). The side effects of
selegiline include dizziness, insomnia, nausea, abdominal pain,
skin rash, and weight loss (Selegiline from Drugs.com, 2019].
Iproniazid is a prominent mood stimulant for the treatment of
debilitated individuals but was withdrawn from most markets
because of its hepatotoxicity. The adverse effects of iproniazid
also include dizziness, drowsiness, headaches, ataxia, numbness of
the feet and hands, and muscular twitching (Lichtenstein and
Mizenberg, 1954). Collectively, considering the pharmacokinetics
and side effects of the repositioned drug candidates, further
investigation of dose-dependent selectivity and interactions or
development of specific drug moieties and targeted drug delivery
systems must be undertaken.

We suggest expanding utilization of DRPS/C in diverse
perspectives as follows. First, DRPS/C was designed for the easy
addition of data from other biological signature including personal
genomic variants by NGS, metabolomes, post-transcriptional
translation, protein kinases, etc. If the other biological signatures
are added, the anti-neuronal drugs predicted using our methods
will be more reliable. Second, DRPS/C based on diverse biological
signatures would be used in the strategic development of novel
drug targets or biomarkers. Third, DRPS/C could be utilized in
precision medicine. If we use a personal multi-omics expression
profile instead of each disease multi-omics expression profile, our
method will be able to suggest appropriate drugs for an individual.

In conclusion, DRPS/C method was developed to predict
novel potential anti-neuronal drug candidates based on
biological multi-omics signatures which reflected the inverse
association and pharmacogenomics knowledge. Using the
DRPS/C methods, we predicted potential anti-AD drug
candidates including bupivacaine, topiramate selegiline, and
iproniazid, and inferred their mechanism of action. Our
approach suggests a shortcut to discover new drugs for AD. It
may be also applicable to not only discovery of drug targets or
biomarkers but also precision medicine.
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