
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Informatics in Medicine Unlocked 28 (2022) 100835

Available online 28 December 2021
2352-9148/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Indirect supervision applied to COVID-19 and pneumonia classification 

Viacheslav V. Danilov a,b,*, Alex Proutski c, Alex Karpovsky d, Alexander Kirpich e, 
Diana Litmanovich f, Dato Nefaridze c, Oleg Talalov c, Semyon Semyonov c, 
Vladimir Koniukhovskii g, Vladimir Shvartc g, Yuriy Gankin c,** 

a Tomsk Polytechnic University, Tomsk, Russia 
b Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia 
c Quantori, Cambridge, MA, United States 
d Kanda Software, Newton, MA, United States 
e Georgia State University, Atlanta, GA, United States 
f Beth Israel Deaconess Medical Center, Boston, MA, United States 
g EPAM Systems, Saint Petersburg, Russia   

A R T I C L E  I N F O   

Keywords: 
COVID-19 
Pneumonia 
Classification 
Indirect supervision 
Deep learning 
Transfer learning 

A B S T R A C T   

The novel coronavirus 19 (COVID-19) continues to have a devastating effect around the globe, leading many 
scientists and clinicians to actively seek to develop new techniques to assist with the tackling of this disease. 
Modern machine learning methods have shown promise in their adoption to assist the healthcare industry 
through their data and analytics-driven decision making, inspiring researchers to develop new angles to fight the 
virus. In this paper, we aim to develop a CNN-based method for the detection of COVID-19 by utilizing patients’ 
chest X-ray images. Developing upon the inclusion of convolutional units, the proposed method makes use of 
indirect supervision based on Grad-CAM. This technique is used in the training process where Grad-CAM’s 
attention heatmaps support the network’s predictions. Despite recent progress, scarcity of data has thus far 
limited the development of a robust solution. We extend upon existing work by combining publicly available 
data across 5 different sources and carefully annotate the comprising images across three categories: normal, 
pneumonia, and COVID-19. To achieve a high classification accuracy, we propose a training pipeline based on 
indirect supervision of traditional classification networks, where the guidance is directed by an external algo
rithm. With this method, we observed that the widely used, standard networks can achieve an accuracy com
parable to tailor-made models, specifically for COVID-19, with one network in particular, VGG-16, 
outperforming the best of the tailor-made models.   

1. Introduction 

Since its introduction into the human population in late 2019, 
COVID-19 continues to have a devastating effect on the global populace 
with the number of infected individuals steadily rising [1]. With widely 
available treatments still outstanding and the continued strain placed on 
many healthcare systems across the world, efficient screening of sus
pected COVID-19 patients and their subsequent isolation is of para
mount importance to mitigate further spread of the virus. Presently, the 
accepted gold standard for patient screening is reverse 
transcriptase-polymerase chain reaction (RT-PCR) where the presence of 
COVID-19 is inferred from the analysis of respiratory samples [2]. 

Despite its success, RT-PCR is a highly involved manual process with 
slow turnaround times, with results becoming available up to several 
days after the test is performed. Furthermore, its variable sensitivity, 
lack of standardized reporting, and a widely ranging total positive rate 
[3–5] calls for alternative screening methods. 

Chest radiography imaging (such as X-ray or computed tomography 
(CT) imaging) has gained traction as a powerful alternative, where the 
diagnosis is administered by expert radiologists who analyze the 
resulting images and infer the presence of COVID-19 through subtle 
visual cues [6–10]. Of the two imaging methods studied, X-ray imaging 
has distinct advantages with regards to accessibility, availability, and 
rate of testing [11]. Furthermore, the existence of portable X-ray 
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imaging systems does not require patient transportation or physical 
contact between healthcare professionals and suspected infected in
dividuals, thus allowing for efficient virus isolation and a safer testing 
methodology. Despite its obvious promise, the main challenge facing 
radiography examination is the scarcity of trained experts that could 
conduct the analysis at a time when the number of possible patients 
continues to rise. As such, a computer system that could accurately 
analyze and interpret chest X-ray images could significantly alleviate the 
burden placed on expert radiologists and further streamline patient care. 
Image identification techniques are readily adopted in Artificial Intel
ligence (AI) and could prove to be a powerful solution to the problem at 
hand. 

Deep learning models, such as convolutional neural networks 
(CNNs), have gained traction in the field of medical imaging [12,13] and 
here we train 10 promising CNNs for the purpose of COVID-19 classi
fication in chest X-ray images. To assist the models, we utilize a 
purpose-built extraction of a soft mask as part of a three-stage proced
ure. To better quantify the performance of our proposed framework we 
benchmark our results against recently developed COVID-Net models 
[14]. To ensure consistency, we utilize our dataset to output predictions 
across an array of different COVID-Net models. 

The structure of the rest of this paper is as follows: section “Related 
Work” briefly discusses some of the existing work used to diagnose 
COVID-19 in radiographic imaging; section “Data” summarizes the data 
collected from the 5 most studied datasets; section “Methods” describes 
the proposed three-stage workflow using an indirect attention mecha
nism; section “Results” displays the results obtained during all 3 stages, 
outlines further improvements of the proposed workflow, its advantages 
over other models and showcases possible implementations; section 
“Conclusion” represents a synthesis of key points of the developed model 
based on the indirect attention mechanism. 

2. Related Work 

The necessity for faster turnaround times to interpret radiographic 
images has led to a substantial effort to adopt CNN-based techniques, 
with a concentrated effort on distinguishing COVID-19 infected patients 
with the aid of both CT [15–21] and X-ray [14,22–34] imaging. Several 
overviews into the application of CNN techniques to aid in COVID-19 
diagnosis have been conducted and we refer the reader to Refs. 
[35–37] for more details. 

The authors in Ref. [34] propose DeepCOVID-XR, an ensemble of 
CNNs, to detect the presence of COVID-19 on frontal chest radiographs 
with an accuracy of 82% reported on a test set of 300 images (194 of 
which were from COVID-19 infected patients). Studying 5,090 images 
(1,979 of which were COVID-19 positive), the authors in Ref. [33] were 
able to achieve a binary classification accuracy of 99.5% by making use 
of HOG + CNN architecture for feature extraction and VGG for classi
fication. In Ref. [32], pre-trained CNN models VGG-16, VGG-19, 
MobileNet, and Inception ResNet V2, are used to achieve a classification 
accuracy of at least 90.8% across 545 images (181 of which are 
COVID-19 positive). 

Patients diagnosed with COVID-19 present symptoms consistent 
with pneumonia in their X-ray images, necessitating the ability to 
distinguish between COVID-19 and non-COVID-19 based pneumonia 
findings. Mahmud et al. [29] introduced CovXNet, a CNN-based model 
that makes use of depthwise convolution with varying dilation rates. The 
model is trained in two stages, first, on images corresponding to normal 
and viral/bacterial pneumonia. The model is then trained to distinguish 
COVID-19 from other forms of pneumonia, with a multi-class accuracy 
of 90.2% when trained (second stage) on 305 images in each class. 
Abbas et al. [31] developed a deep CNN called DeTrac to achieve an 
accuracy of 93.1% when detecting COVID-19 in 196 images across three 
categories: normal, severe acute respiratory syndrome (SARS), and 
COVID-19. Toraman et al. [38] developed Convolutional CapsNet 
(capsule neural network) to distinguish COVID-19 from normal and 

pneumonia X-ray images. The authors reported an accuracy of 97.2% 
and 84.2% for binary and multi-class classification, respectively, when 
making use of 2,331 images (231 of which were COVID-19 positive). 
Mansour et al. [39] introduced an unsupervised deep-learning-based 
variational autoencoder model for COVID-19 prediction, with resul
tant accuracies of 98.7% and 99.2% for binary and multi-class classifi
cation respectively. The authors tested their model against the X-ray 
dataset found in Ref. [40], split across normal, COVID-19, SARS, and 
ARDS classes. Khan et al. [41] developed CoroNet, a CNN model based 
on the Xception architecture. When tasked with classifying X-ray images 
as either normal, COVID-19, bacterial pneumonia, or viral pneumonia, 
the model achieved an accuracy of 89.6%, based on a dataset consisting 
of 1,251 images (284 of which belonged to COVID-19 positive cases). 
Chandra et al. [42] introduced an automatic COVID-19 screening system 
that uses a two-phase classification approach (normal vs abnormal and 
then COVID-19 vs pneumonia). The implemented classifier ensemble 
makes use of majority voting across five benchmark classification al
gorithms. By making use of 2,346 X-ray images (782 were COVID-19 
positive), the authors report accuracies of 98.1% and 91.3% for each 
phase respectively. Ozturk et al. [30] developed DarkCovidNet, a model 
that obtained an accuracy of 87.0% when distinguishing between 
COVID-19, normal, and pneumonia in 1,127 images (127 of which are 
from COVID-19 positive patients). Wang et al. [14], developed a 
state-of-the-art model, called COVID-Net, that attains an accuracy of 
93.3% when classifying a patient’s image across three categories: 
normal, pneumonia, and COVID-19. 

Despite recent progress in the development of CNN-based algo
rithms, several fundamental challenges remain: the scarcity of publicly 
available data, overfitting of models, and model sizes that make their 
adoption within a healthcare setting cumbersome. We extend upon 
existing works by combining various publicly available data sources and 
carefully annotate the images across three classes: normal, pneumonia, 
and COVID-19. The data is then divided into training, validation, and 
testing subsets with an 8:1:1 split respectively, with a strict class balance 
maintained across all sets. Furthermore, we make use of widely adopted 
CNNs whose size is a fraction of some purpose-built models. 

3. Data 

We collected data from different publicly available sources to train a 
high-precision classifier and to estimate its generalization properties. At 
the time of publication, we identified the following five datasets; COVID 
Chest X-Ray Dataset (CCXD) [40,43], Actualmed COVID-19 Chest X-Ray 
Dataset (ACCD) [44], Figure 1 COVID-19 Chest X-Ray Dataset (FCCD) 
[45], COVID-19 Radiography Database (CRD) [46,47], and RSNA 
Pneumonia Detection Dataset (RSNA) [48]. Since the datasets include 
different labels for their findings, we reassigned the labels to maintain 
consistency across the global dataset. We assigned viral and bacterial 
cases of pneumonia to the “Pneumonia” label; SARS, MERS-CoV, 
COVID-19, and COVID-19 (ARDS) to the “COVID-19” label; “no find
ings” and “normal” diagnosis to the “Normal” label. Table 1 summarizes 
the statistical information of the study dataset. 

It should be noted that the RSNA dataset includes only normal and 
pneumonia cases. Originally, this dataset consisted of 20,672 normal 

Table 1 
Statistical information of the dataset used in the study.  

Dataset Diagnosis Total 

Normal Pneumonia COVID-19 

CCXD 18 165 504 687 (26%) 
ACCD 127 – 58 185 (7%) 
FCCD 3 2 35 40 (2%) 
CRD – – 219 219 (8%) 
RSNA 800 700 – 1500 (57%) 

Total 948 (36%) 867 (33%) 816 (31%) 2631 (100%)  
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cases and 9,555 cases of pneumonia. In order to keep class balance in our 
dataset, we incorporated a total of 800 normal and 700 pneumonia 
cases. It is worth noting that normal and pneumonia cases from the CRD 
dataset were excluded because they duplicated images from the CCXD 
dataset. 

The final dataset includes images acquired from the anterior- 
posterior (AP) and posteroanterior (PA) directions only. Lateral CXR 
has no clinical applicability to distinguish COVID-19 patients [49]. 
During network training, validation, and testing, the dataset was split in 
an 8:1:1 ratio i.e. the training subset includes 2,122 images (80%), the 
validation subset – 242 images (10%), and the testing subset – 267 
images (10%). The split of data within training, validation, and testing 
phases was performed according to the distribution shown in Table 2. 

4. Methods 

The proposed workflow in this study is divided into three stages. 
First, we utilized the transfer learning approach based on 10 industry- 
standard networks including MobileNet V2, DenseNet-121, Effi
cientNet B0, EfficientNet B1, EfficientNet B3, EfficientNet B5, VGG-16, 
ResNet-50 V2, Inception V3, and Inception ResNet V2. The weights of 
feature extractors (networks bodies) were frozen and only the classifier 
heads were trained. During the second stage, we chose the 4 most ac
curate networks to advance to full training. Here, the weights of the 
whole network were unfrozen, such that both the feature extractor and 
the classifier were trained. Finally, the networks were trained with an 
indirect attention mechanism. Such an indirect supervision mechanism 
is based on the adoption of the Grad-CAM approach [50], where the 
output is used to focus the classifier on the lung area of an image. In
direct supervision is used in the training process since Grad-CAM’s 
attention heatmaps reflect the areas of an input image supporting the 
network’s prediction. In this regard, the prediction is based on the areas 
on which we expect the network to focus, while indirect supervision 
forces networks to focus on the desired object in the image rather than 
its surroundings. The training workflow of the model is shown in Fig. 1 
below. All three stages are described in the paragraph Description of the 
workflow stages in more detail. It should also be noted that different 
COVID-Net models [14] are considered in this study. To date, 
COVID-Net models are state-of-the-art models used for distinguishing 
COVID-19 and pneumonia cases. All COVID-Net models are abbreviated 
to CXR in the remainder of the paper. 

4.1. Description of the workflow stages 

As mentioned previously, 10 deep learning networks were selected to 

determine which network architectures are most effective in recognizing 
COVID-19 and pneumonia. All networks vary in the number of weights, 
architecture topology, data processing, etc. Additionally, CXR models 
are used for comparison purposes. In order to compare the investigated 
networks, we provide an overview of the networks used during the first 
stage in Table 3. 

To train the aforementioned networks, we used bodies of these net
works with frozen ImageNet weights. The most optimal version of each 
model was obtained through a series of training jobs performed on the 
collected dataset through the utilization of Amazon SageMaker. Having 
performed hyperparameter tuning based on a Bayesian optimization 
strategy, a set of hyperparameter values for the best performing model, 
given by the validation accuracy, was found. We chose the following 
pool of hyperparameters for the investigation:  

• The number of blocks, where each block is constructed of densely 
connected, activation, and dropout layers, was chosen to vary from 1 
to 5.  

• The number of neurons for each densely-connected layer was varied 
from 64 to 512 with an increment of 8.  

• Optimizers were chosen from a set of Adam, SGD, RMSprop, FTRL, 
and Rectified Adam.  

• The learning rate was continuously varied on a log scale from 10− 1 to 
10− 5.  

• Activation functions were chosen from a set of ReLU, ELU, Leaky 
ReLU, and SELU.  

• The dropout rate was varied from 0.00 to 0.50 with a step of 0.05. 

It is worth noticing that the architecture including 3 densely con
nected and 2 dropout layers was an optimal solution for all networks. 
However, the number of neurons varied slightly from network to 
network. The optimal number of neurons for the first and second 
densely-connected layers varied from 112 to 136 and from 56 to 72 
respectively. A similar situation was observed for the dropout rate which 
varied from 0.05 to 0.15 for the first dropout layer, and from 0.05 to 
0.10 for the second dropout layer. In this regard, we chose the optimal 
architecture of all network classifiers consisting of the following layers:  

• Densely-connected layer with 128 neurons and ELU activation;  
• Dropout layer with dropout rate equal to 0.10;  
• Densely-connected layer with 64 neurons and ELU activation;  
• Dropout layer with dropout rate equal to 0.05;  
• Densely-connected layer with 3 neurons;  
• Softmax activation layer. 

It is important to note that for the first stage, only the classification 
heads were trained with the body weights frozen. According to the re
sults of the hyperparameter tuning procedure, the gradient descent 
optimizer SGD with a learning rate equal to 10− 4 proved to be optimal. 
Having trained several state-of-the-art networks, we found that most of 
them diverged. As a result, L2-regularization with λ of 0.001 was applied 
to all training networks. All networks were trained with a batch size 
equal to 32. To avoid overfitting during network training, we applied 
Early Stopping regularization, monitoring validation loss with a 
patience equal to 10 epochs. For training networks in both first and 
second stages, we used cross-entropy, calculated as follows: 

Lcls = −
∑c

i=1
yi*log(pi + ε) (1)  

where c is the number of classes (3 in our study), yi is the ground-truth 
label (ternary indicator), pi is the softmax probability for the c-th class, ε 
is a small positive constant used for avoiding an undefined case of log(0). 

During the second stage, we took the four best performing networks 
with their trained heads from the first stage, namely MobileNet V2, 
EfficientNet B1, EfficientNet B3, VGG16, unfroze their body weights 

Table 2 
Description of the data distribution across training, validation, and testing 
subsets.  

Dataset Diagnosis Training Validation Testing Total 

CCXD Normal 14 2 2 18 
Pneumonia 133 15 17 165 
COVID-19 407 46 51 504 

ACCD Normal 102 12 13 127 
Pneumonia 0 0 0 0 
COVID-19 46 6 6 58 

FCCD Normal 1 1 1 3 
Pneumonia 0 1 1 2 
COVID-19 27 4 4 35 

CRD Normal 0 0 0 0 
Pneumonia 0 0 0 0 
COVID-19 177 20 22 219 

RSNA Normal 648 72 80 800 
Pneumonia 567 63 70 700 
COVID-19 0 0 0 0 

Total  2122 
(80%) 

242 (10%) 267 
(10%) 

2631 
(100%)  
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(weights of feature extractors) and retrained them using the SGD opti
mizer whose learning rate was 10− 5. As seen, we decreased the learning 
rate by a factor of 10 compared to that used in the first stage. It is 
important to lower the learning rate at this stage since a larger model 
with more unfrozen weights is trained, and this requires the readapt
ation of the pre-trained weights. Otherwise, unfreezing all weights 
without changes in the training policy may lead to quick model 
overfitting. 

Once the performance and accuracy metrics of all networks were 
estimated, four networks that showed the best results during the first 
stage were chosen for fine-tuning. Besides training both bodies and 
heads of the networks, we introduced an indirect supervision mecha
nism for the considered networks. We were inspired by Ref. [59], where 
the authors proposed a framework that provides guidance on the 
attention maps generated by a weakly supervised deep learning neural 
network. The attention block in our pipeline is based on the usage of 
Grad-CAM preceded by a classification block. Usually, attention maps 
only cover small discriminative regions of the object of interest when the 
network is purely supervised by the classification loss. In order to 
overcome this issue and use attention maps as more reliable priors, both 
classification and attention blocks share weights between each other. 
The latter acts as a regularizer, imposing constraints on the attention 
maps. While the classification block is targeted to search for regions used 
in the recognition of classes, the attention block ensures that all regions 
that can contribute to the classification decision will be included in the 
network’s attention. Such an iterative process aids both classification 
and attention blocks in finding reliable priors and making a correct 
decision. 

With the usage of the indirect supervision mechanism, the network 
learns to extend the focus area of an input image contributing to the 
recognition of the target class as much as possible, such that the atten
tion maps are tailored towards the task of interest. In this regard, during 
network training in Stage III, the loss differs from that of Stage I and 
Stage II and is calculated as follows: 

Ltotal = αLcls + βLattn (2)  

where Lcls is the classification loss i.e. cross-entropy loss defined in Eq. 
(1), Lattn is the attention loss, α and β are the coefficients used to scale the 
total loss and both components. In order to obtain the attention map and 
compute the attention loss Lattn for a given image I, we compute the 

neuron importance weights wc
l,k = GAP

(

∂sc

∂fl,k

)

using an application of the 

global average pooling operation (GAP) to the gradient of the score sc 

with respect to activation maps fl,k. Once wc
l,k are computed on the 

backward pass, the networks are not updated. Since wc
l,k represents the 

importance of the activation map fl,k (activation of unit k on the l-th 
layer) assisting in prediction of class c, the indirect mechanism uses the 
weights matrix wc and applies a two-dimensional convolution over 
activation maps fl, integrating all of them. Then the ReLU operation 

allows us to obtain the attention map Ac computed as follows: 

Ac =ReLU(conv(fl, wc)) (3)  

where l is the representation from the last convolutional layer whose 
features have the best compromise between high-level semantics and 
detailed spatial information. The attention map Ac has the same size as 
the convolutional feature maps (see the column with the size of the 
output feature matrix in Table 3). 

Using the trainable attention map Ac we generate a soft mask that is 
applied to an input image. This procedure allows us to obtain regions I*c 

which are beyond the network’s current attention for class c and are 
calculated as follows: 

I*c = I − (T(Ac)⊙ I) (4)  

T(Ac)=
1

1 + e− ω(Ac − Mσ )
(5)  

where I is an input image, T(Ac) is a masking function that is based on 
the thresholding operation, and ⊙ denotes element-wise multiplication. 
Since standard thresholding is not derivable, T(Ac) is approximated 
using a sigmoid function, where Mσ is the thresholding matrix filled with 
σ values, ω is a scale parameter, ensuring T(Ac)i,j is equal to 1, when Ac

i,j 

is larger than σ or equal to 0 otherwise. 
Having obtained a soft mask I*c, the attention block of the pipeline 

uses it to compute the prediction scores sc for all classes. Since the in
direct supervision mechanism is used to guide the network to focus its 
attention on all parts of a given class, I*c has to contain as little features 
belonging to the target class as possible because regions beyond the 
high-responding area on the attention map area should not include 
single-pixel areas that can trigger the network to recognize the object of 
class c. From the perspective of the attention loss function, it is designed 
to minimize the prediction score sc of I*c and is calculated as follows: 

Lattn =
1
n

∑

c
sc(I*c) (6)  

where n is the number of ground-truth class labels for an input image I. 

4.2. Visual model validation 

While modern neural networks enable superior performance, their 
lack of decomposability into intuitive and understandable components 
makes them hard to interpret. In this regard, an achievement of the 
model transparency is useful to explain their predictions. Class Activa
tion Map (CAM) is a modern-day technique used for model interpreta
tion [60]. Though CAM is a good technique to demystify the working of 
CNNs, it suffers from several drawbacks. For example, CAM requires 
feature maps to directly precede the softmax layers, so it applies to a 
particular kind of network architecture that performs global average 
pooling over convolutional maps immediately before prediction. Such 

Fig. 1. The workflow for classification with the indirect supervision mechanism.  
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architectures may achieve inferior accuracies compared to general 
networks on some tasks or simply be inapplicable to new tasks. De facto 
deeper representations of a CNN capture the best high-level features. 
Furthermore, CNNs naturally retrain spatial information which is lost in 
fully connected layers, so we expect the last convolutional layer to have 
the best tradeoff between high-level semantics and detailed spatial in
formation. In this regard, a popular technique, known as Grad-CAM and 
published in Ref. [50], aims to improve the shortcomings of CAM and 
claims to be compatible with any kind of architecture. The technique 
does not require any modifications to the existing model architecture, 
and this allows its application to any CNN-based architecture. Unlike 
CAM, Grad-CAM uses the gradient information flowing into the last 
convolutional layer of a CNN to understand each neuron for a decision of 

interest. Grad-CAM improves on its predecessor, provides better locali
zation and clear class discriminative saliency maps. As such, we created 
heatmap images using the following equations: 

αc
k =

1
Z
∑

i

∑

j

∂yc

∂Ak
ij

(7)  

Lc
Grad− CAM =ReLU

(
∑

k
αc

kAk

)

(8)  

where the algorithm takes gradient of the output yc with respect to a 
feature map Ak , then it averages the result to get a weight of each 
feature map αc

k. Finally, Grad-CAM takes a linear combination of weights 
αc

k and feature maps Ak, which gives us heatmaps. 

5. Results 

5.1. Stage I 

Having trained 10 neural networks, we found that two networks tend 
to overfit more than others. This is likely connected with their normal
ization layers. Networks such as MobileNet V2 and VGG-16 do not have 
Batch/Instance/Layer/Group Normalization layers in their architecture. 
In this regard, these networks start overfitting (MobileNet V2) or hit a 
validation loss/accuracy plateau (VGG-16) after approximately 100 
epochs, while the training accuracy keeps increasing. Popular regulari
zation techniques such as Lasso Regression (L1 Regularization), Ridge 
Regression (L2 regularization), ElasticNet (L1-L2 regularization), 
Dropout, and Early Stopping may help to avoid this problem. In this 
regard, we applied Ridge Regression, Dropout layers, and Early Stopping 
in our training pipeline. As for the remaining networks, they did not 
suffer from overfitting; however, they could not reach better validation 
loss/accuracy values. When a given model reached its best validation 
loss, we saved the associated model weights using a saving callback. 
Fig. 2 demonstrates how the accuracy dynamics of the networks evolved 
during the first training stage. Blue asterisks reflect the best value of the 
accuracy on the validation subsets. 

Since loss is poorly interpreted, we compared commonly used 
network metrics such as accuracy and F1-score. Table 4 and Table 5 
summarize these metrics estimated during the first stage. As seen, 
MobileNet V2, EfficientNet B1, EfficientNet B3, and VGG-16 achieved 
better results than other networks. Additionally, we provide all obtained 
metrics (Accuracy, F1-score, Precision, and Recall), computed over 
different subsets, classes, and stages inAppendix A. 

5.2. Stage II 

Based on the results of the first stage, MobileNet V2, EfficientNet B1, 
EfficientNet B3, and VGG-16 demonstrated their ability to distinct 
COVID-19 and pneumonia on X-ray images much better than other 
networks. During the second stage, we chose these four most accurate 
networks to advance to full training. The weights of each network were 
unfrozen, such that both the feature extractor and the classifier were 
trained. Having obtained the accuracy dynamics, we compare, in Fig. 3, 
how fully-trained networks differ from the networks fine-tuned in the 
first stage. The blue asterisks in this figure reflect the best value of the 
accuracy reached on the validation subset. 

Having compared the accuracy and F1-score values obtained in the 
first (Tables 4 and 5) and second stages (Table 6 and Table 7), we can 
state that MobileNet V2 and VGG-16 have a larger boost in accuracy 
over EfficientNet models. Once full training was performed, MobileNet 
V2 and VGG-16 got a +6% and +9% accuracy change on the validation 
subset and a +1% and +4% accuracy change on the testing subset. On 
the other hand, EfficientNet B1 and EfficientNet B3 displayed a +2% and 
+3% accuracy change on the validation subset and a − 1% and +6% 

Table 3 
Description of the models used during the first stage.  

Model Size of 
an 
input 
image 

Size of an 
output 
feature 
matrix 

Parameters, 
millions 

Depth Size, 
Mb 

Source 

MobileNet 
V2 

224 ×
224 ×
3 

7 × 7 ×
1280 

3.5 88 14 [51] 

DenseNet- 
121 

224 ×
224 ×
3 

7 × 7 ×
1024 

8.0 121 33 [52] 

EfficientNet 
B0 

224 ×
224 ×
3 

7 × 7 ×
1280 

5.3 – 29 [53] 

EfficientNet 
B1 

240 ×
240 ×
3 

8 × 8 ×
1280 

7.9 – 31 [53] 

EfficientNet 
B3 

300 ×
300 ×
3 

10 × 10 
× 1536 

12.3 – 48 [53] 

EfficientNet 
B5 

456 ×
456 ×
3 

15 × 15 
× 2048 

30.6 – 75 [53] 

VGG-16 224 ×
224 ×
3 

7 × 7 ×
512 

138.4 23 528 [54] 

ResNet-50 
V2 

224 ×
224 ×
3 

7 × 7 ×
2048 

25.6 50 98 [55] 

InceptionV3 299 ×
299 ×
3 

8 × 8 ×
2048 

23.9 159 92 [56] 

Inception 
ResNet V2 

299 ×
299 ×
3 

5 × 5 ×
1536 

55.9 572 215 [57] 

CXR Small 224 ×
224 ×
3 

7 × 7 ×
2048 

117.4 – 1448 [58] 

CXR Large 224 ×
224 ×
3 

7 × 7 ×
2048 

127.4 – 1486 [58] 

CXR-3A 480 ×
480 ×
3 

13 × 13 
× 1536 

40.2 – 617 [58] 

CXR-3B 480 ×
480 ×
3 

15 × 15 
× 2048 

11.7 – 293 [58] 

CXR-3C 480 ×
480 ×
3 

15 × 15 
× 2048 

9.2 – 210 [58] 

CXR-4A 480 ×
480 ×
3 

13 × 13 
× 1536 

40.2 – 617 [58] 

CXR-4B 480 ×
480 ×
3 

15 × 15 
× 2048 

11.7 – 293 [58] 

CXR-4C 480 ×
480 ×
3 

15 × 15 
× 2048 

9.2 – 210 [58]  
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Fig. 2. Accuracy dynamics over the training during the first stage.  
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accuracy change on the testing subset. It should also be noted, that the 
largest boost in the classification of COVID-19 was achieved by VGG-16. 
This network had an +11% boost, while MobileNet V2, EfficientNet B1, 
and EfficientNet B3 could reach the level of +2%, 0%, and +6%, 
respectively. 

5.3. Stage III 

Once the networks are fine-tuned and fully trained, we then train 
those best four networks using the proposed pipeline based on indirect 
supervision. Having trained the chosen networks according to our 
pipeline described in Description of the workflow stages, we compared 
them on the validation and testing subsets, reflected in Fig. 4 and Ap
pendix B. Based on the obtained results, we established that the pro
posed pipeline allows for boosting of the model accuracy. VGG-16 and 
MobileNet V2 showed the best accuracy on the validation and testing 
subsets. It is worth noticing that the VGG-16 network outperformed the 
best CXR model (CXR-4A) on these subsets. The performance of other 
CXR models is additionally shown inAppendix A. It is observed that the 
VGG-16 (S3) network trained based on the proposed pipeline has a +9% 
and +1% of accuracy boost on the validation subset compared to VGG- 
16 (S1) and VGG-16 (S2) respectively. Similar positive dynamics of 
using our pipeline are observed for other models as well. It should be 
noted that the CXR-4A and lightweight MobileNet V2 have almost the 
same accuracy, while the complexity of the latter is 11-time lower. The 
MobileNet V2 network includes 3.5 mln. weights, while CXR-4A in
cludes 40.2 mln. weights. 

In general, the network that produces the best results is VGG16, 
having consistently high values in every metric. We assume that VGG-16 
could achieve such a high accuracy because of the high complexity and a 
large number of parameters (138.4 mln.) as compared to other studied 
networks. Additionally, we found that the plain network architecture is 
more suitable for the classification of indistinctive lung areas such as 
COVID-19 and pneumonia-affected regions. Both VGG-16 and Mobile
Net V2 are based on straight-line architecture, including, at most, a few 
skip-connections. Whilst the EfficientNet, ResNet, Inception, and 

Inception ResNet network families are based on complex architectures, 
including a wide variety of skip-connections such as identity/projection 
shortcuts (ResNet and Inception ResNet) and inception modules 
(Inception and Inception ResNet). It is worth noting that networks such 
as Inception V3 and Inception ResNet V2 integrate multiple kernels of 
different sizes (1 × 1, 3 × 3, and 5 × 5) which should assist in detecting 
area-specific features. However, 3 × 3 convolutional kernels, integrated 
to VGG-16 and MobileNet V2, turned out to provide a better solution, 
allowing for the network’s better generalization ability and its ability to 
distinguish healthy patients from those diagnosed with COVID-19 or 
pneumonia. 

5.4. Model validation using Grad-CAM 

As we mentioned in Section “Visual model validation”, despite deep 
learning models having facilitated unprecedented accuracy in image 
classification, one of their biggest drawbacks is model interpretability, 
representing a core component in understanding and debugging a 
model. We used the Grad-CAM technique to validate the models and 
their ability for making predictions and to verify which series of neurons 
activated in the forward-pass during the prediction. For the sake of 
visualization, we choose several patients with different findings: pneu
monia, and COVID-19. Source images of these findings with their ground 
truth heatmaps and the heatmap dynamics over three stages are shown 
in Fig. 5 and Fig. 6. 

Using Grad-CAM, we validated where our four best networks 
(MobileNet V2, EfficientNet B1, EfficientNet B3, VGG-16) are focusing, 
verifying that they are properly looking at the correct patterns in the 
image and activating around those patterns. The Grad-CAM technique 
uses the gradients flowing into the final convolutional layer to produce a 
coarse localization heatmap, highlighting the important regions in the 
image for predicting the target concept i.e. COVID-19 or pneumonia 
areas. However, the localization heatmaps may differ from the tradi
tional localization techniques such as segmentation masks or bounding 
boxes. In this regard, these heatmaps are used for the sake of approxi
mate localization. 

Table 4 
Performance metrics within different subsets obtained after the first stage.  

Model Accuracy F1-score 

Training Validation Testing Training Validation Testing 

MobileNet V2 0.95 0.79 0.77 0.95 0.80 0.78 
DenseNet-121 0.76 0.72 0.74 0.76 0.72 0.75 
EfficientNet B0 0.95 0.79 0.70 0.95 0.80 0.70 
EfficientNet B1 0.79 0.76 0.74 0.79 0.76 0.75 
EfficientNet B3 0.77 0.75 0.71 0.78 0.75 0.72 
EfficientNet B5 0.77 0.74 0.70 0.77 0.74 0.70 
VGG-16 0.90 0.79 0.78 0.90 0.80 0.79 
ResNet-50 V2 0.80 0.71 0.69 0.80 0.71 0.70 
Inception V3 0.77 0.71 0.73 0.77 0.71 0.74 
Inception ResNet V2 0.71 0.68 0.70 0.71 0.67 0.70  

Table 5 
Performance metrics within different classes obtained after the first stage.  

Model Accuracy F1-score 

Normal Pneumonia COVID-19 Normal Pneumonia COVID-19 

MobileNet V2 0.70 0.78 0.83 0.74 0.75 0.83 
DenseNet-121 0.75 0.82 0.63 0.76 0.73 0.73 
EfficientNet B0 0.74 0.69 0.66 0.71 0.66 0.72 
EfficientNet B1 0.73 0.73 0.75 0.74 0.69 0.79 
EfficientNet B3 0.70 0.72 0.72 0.70 0.69 0.75 
EfficientNet B5 0.66 0.75 0.67 0.68 0.68 0.73 
VGG-16 0.80 0.76 0.78 0.77 0.75 0.82 
ResNet-50 V2 0.68 0.70 0.68 0.69 0.65 0.74 
Inception V3 0.74 0.77 0.68 0.75 0.71 0.75 
Inception ResNet V2 0.70 0.76 0.61 0.70 0.68 0.70  
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In order to interpret the models, Figs. 5 and 6 reflect the visualization 
of gradient class activation maps. Additional cases of the networks’ 
heatmaps are shown in Appendix C and Appendix D. Due to the nature of 
the task at hand, we utilize Grad-CAM for training and visualization 
purposes only. As we do not segment the COVID-19 affected regions, we 

have insufficient image information to compute associated metrics such 
as the Dice coefficient or the Jaccard distance. However, based on the 
obtained results, we may state that the training of the models using soft 
masks obtained by the indirect supervision mechanism (Stage III) has a 
positive effect on the search for correct patterns by the models. 

Fig. 3. Accuracy dynamics over the training during the second stage.  

V.V. Danilov et al.                                                                                                                                                                                                                              



Informatics in Medicine Unlocked 28 (2022) 100835

9

Table 6 
Performance metrics within different subsets obtained after the second stage.  

Model Accuracy F1-score 

Training Validation Testing Training Validation Testing 

MobileNet V2 1.00 0.85 0.78 1.00 0.85 0.79 
EfficientNet B1 0.83 0.78 0.73 0.83 0.78 0.74 
EfficientNet B3 0.83 0.78 0.77 0.83 0.78 0.77 
VGG-16 1.00 0.87 0.82 1.00 0.87 0.83  

Table 7 
Performance metrics within different classes obtained after the second stage.  

Model Accuracy F1-score 

Normal Pneumonia COVID-19 Normal Pneumonia COVID-19 

MobileNet V2 0.74 0.75 0.85 0.75 0.74 0.85 
EfficientNet B1 0.70 0.74 0.75 0.72 0.71 0.78 
EfficientNet B3 0.77 0.75 0.78 0.76 0.74 0.81 
VGG-16 0.81 0.78 0.89 0.80 0.79 0.89  

Fig. 4. Comparison of the networks’ accuracy over different subsets and stages.  
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Networks such as MobileNet V2 (Figs. 5c and 6) and VGG-16 (Fig. 5f and 
6f) identify affected areas correctly, despite the inaccuracies in the 
location of the heatmaps. On the other hand, interpretation of the Effi
cientNet networks showed that they are not activating around the 
proper patterns of the image. This allows us to assume that EfficientNet 
B1 and EfficientNet B3 have not properly learned the underlying pat
terns in our dataset and/or we may need to collect additional data for 
more complex training. 

6. Conclusion 

In this study, we demonstrated a training pipeline based on indirect 
supervision for neural networks. This supervision forces the neural 
networks to pay attention to the areas obtained by the external algo
rithm. Having trained a set of deep learning models, we found that the 

proposed pipeline allows for an increased classification accuracy. This 
pipeline was used for the detection of COVID-19 and distinguishing its 
presence from that of pneumonia. Of the obtained results, MobileNet V2 
performed comparably to the tailor-made CXR model CXR-4A, despite 
being 11 times less complex. According to the performed experiments, 
the networks trained based on the proposed pipeline perform compa
rably to practicing radiologists when it comes to the classification of 
multiple thoracic pathologies in chest X-ray radiographs. Our pipeline 
may have the potential to improve healthcare delivery and increase 
access to chest radiograph expertise for the detection of a variety of 
acute diseases. 
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Appendix A. Model metrics  

Table 1 
Model metrics computed over different subsets  

STAGE I 

Model Accuracy F1-score Precision Recall 

Train Val Test Train Val Test Train Val Test Train Val Test 

MobileNet V2 0.95 0.79 0.77 0.95 0.80 0.78 0.95 0.80 0.78 0.95 0.79 0.78 
DenseNet-121 0.76 0.72 0.74 0.76 0.72 0.75 0.76 0.74 0.77 0.76 0.72 0.74 
EfficientNet B0 0.95 0.79 0.70 0.95 0.80 0.70 0.95 0.80 0.71 0.95 0.79 0.70 
EfficientNet B1 0.79 0.76 0.74 0.79 0.76 0.75 0.79 0.76 0.75 0.79 0.76 0.74 
EfficientNet B3 0.77 0.75 0.71 0.78 0.75 0.72 0.78 0.75 0.73 0.78 0.75 0.72 
EfficientNet B5 0.77 0.74 0.70 0.77 0.74 0.70 0.77 0.74 0.71 0.77 0.74 0.70 
VGG-16 0.90 0.79 0.78 0.90 0.80 0.79 0.90 0.80 0.79 0.90 0.79 0.78 
ResNet-50 V2 0.80 0.71 0.69 0.80 0.71 0.70 0.80 0.73 0.71 0.80 0.71 0.69 
Inception V3 0.77 0.71 0.73 0.77 0.71 0.74 0.77 0.72 0.75 0.77 0.70 0.74 
Inception ResNet V2 0.71 0.68 0.70 0.71 0.67 0.70 0.71 0.71 0.72 0.71 0.67 0.70 

STAGE II 
Model Accuracy F1-score Precision Recall 

Train Val Test Train Val Test Train Val Test Train Val Test 
MobileNet V2 1.00 0.85 0.78 1.00 0.85 0.79 1.00 0.85 0.79 1.00 0.85 0.78 
EfficientNet B1 0.83 0.78 0.73 0.83 0.78 0.74 0.83 0.78 0.75 0.83 0.78 0.74 
EfficientNet B3 0.83 0.78 0.77 0.83 0.78 0.77 0.83 0.78 0.78 0.83 0.78 0.77 
VGG16 1.00 0.87 0.82 1.00 0.87 0.83 1.00 0.87 0.83 1.00 0.87 0.83 

STAGE III 
Model Accuracy F1-score Precision Recall 

Train Val Test Train Val Test Train Val Test Train Val Test 
MobileNet V2 1.00 0.86 0.79 1.00 0.86 0.78 1.00 0.86 0.78 1.00 0.86 0.78 
EfficientNet B1 0.84 0.78 0.76 0.85 0.78 0.76 0.85 0.79 0.76 0.85 0.78 0.76 
EfficientNet B3 0.89 0.80 0.75 0.89 0.80 0.76 0.89 0.80 0.76 0.89 0.80 0.75 
VGG16 1.00 0.88 0.84 1.00 0.87 0.83 1.00 0.87 0.82 1.00 0.87 0.83 

Covid-Net 
Model Accuracy F1-score Precision Recall 

Train Val Test Train Val Test Train Val Test Train Val Test 
CXR Small 0.77 0.80 0.79 0.77 0.80 0.79 0.77 0.80 0.79 0.78 0.81 0.79 
CXR Large 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.80 0.78 0.80 
CXR-3A 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.79 
CXR-3B 0.79 0.78 0.78 0.79 0.78 0.78 0.79 0.78 0.78 0.79 0.78 0.79 
CXR-3C 0.78 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.79 0.79 0.80 
CXR-4A 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.82 0.82 
CXR-4B 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.79 
CXR-4C 0.79 0.80 0.80 0.79 0.80 0.80 0.79 0.80 0.80 0.79 0.80 0.81 

Abbreviations: Train – training subset, Val – validation subset, Test – testing subset.  
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Table 2 
Model metrics computed over different classes  

STAGE I 

Model Accuracy F1-score Precision Recall 

Norm PNA COV Norm PNA COV Norm PNA COV Norm PNA COV 

MobileNet V2 0.70 0.78 0.83 0.74 0.75 0.83 0.78 0.71 0.84 0.70 0.78 0.83 
DenseNet-121 0.75 0.82 0.63 0.76 0.73 0.73 0.78 0.66 0.85 0.75 0.82 0.63 
EfficientNet B0 0.74 0.69 0.66 0.71 0.66 0.72 0.69 0.64 0.79 0.74 0.69 0.66 
EfficientNet B1 0.73 0.73 0.75 0.74 0.69 0.79 0.75 0.66 0.84 0.73 0.73 0.75 
EfficientNet B3 0.70 0.72 0.72 0.70 0.69 0.75 0.70 0.66 0.80 0.70 0.72 0.72 
EfficientNet B5 0.66 0.75 0.67 0.68 0.68 0.73 0.71 0.63 0.80 0.66 0.75 0.67 
VGG-16 0.80 0.76 0.78 0.77 0.75 0.82 0.75 0.74 0.87 0.80 0.76 0.78 
ResNet-50 V2 0.68 0.70 0.68 0.69 0.65 0.74 0.69 0.61 0.81 0.68 0.70 0.68 
Inception V3 0.74 0.77 0.68 0.75 0.71 0.75 0.76 0.66 0.82 0.74 0.77 0.68 
Inception ResNet V2 0.70 0.76 0.61 0.70 0.68 0.70 0.70 0.62 0.83 0.70 0.76 0.61 

STAGE II 
Model Accuracy F1-score Precision Recall 

Norm PNA COV Norm PNA COV Norm PNA COV Norm PNA COV 
MobileNet V2 0.74 0.75 0.85 0.75 0.74 0.85 0.77 0.74 0.84 0.74 0.75 0.85 
EfficientNet B1 0.70 0.74 0.75 0.72 0.71 0.78 0.73 0.68 0.81 0.70 0.74 0.75 
EfficientNet B3 0.77 0.75 0.78 0.76 0.74 0.81 0.75 0.73 0.84 0.77 0.75 0.78 
VGG16 0.81 0.78 0.89 0.80 0.79 0.89 0.78 0.81 0.89 0.81 0.78 0.89 

STAGE III 
Model Accuracy F1-score Precision Recall 

Norm PNA COV Norm PNA COV Norm PNA COV Norm PNA COV 
MobileNet V2 0.74 0.76 0.84 0.75 0.76 0.83 0.76 0.76 0.82 0.74 0.76 0.84 
EfficientNet B1 0.73 0.76 0.78 0.75 0.73 0.80 0.76 0.70 0.82 0.73 0.76 0.78 
EfficientNet B3 0.72 0.78 0.76 0.74 0.73 0.80 0.77 0.68 0.84 0.72 0.78 0.76 
VGG16 0.86 0.78 0.88 0.83 0.80 0.86 0.81 0.81 0.88 0.86 0.78 0.88 

Covid-Net 
Model Accuracy F1-score Precision Recall 

Norm PNA COV Norm PNA COV Norm PNA COV Norm PNA COV 
CXR Small 0.86 0.83 0.88 0.81 0.75 0.80 0.71 0.83 0.85 0.93 0.68 0.76 
CXR Large 0.87 0.82 0.90 0.82 0.74 0.83 0.73 0.80 0.89 0.94 0.68 0.77 
CXR-3A 0.85 0.85 0.87 0.77 0.78 0.80 0.74 0.84 0.77 0.80 0.73 0.82 
CXR-3B 0.85 0.83 0.88 0.79 0.74 0.81 0.73 0.83 0.81 0.87 0.67 0.82 
CXR-3C 0.86 0.84 0.89 0.80 0.75 0.83 0.73 0.86 0.81 0.88 0.67 0.84 
CXR-4A 0.85 0.88 0.90 0.79 0.81 0.84 0.73 0.92 0.81 0.86 0.72 0.87 
CXR-4B 0.85 0.82 0.90 0.79 0.73 0.84 0.71 0.85 0.82 0.88 0.63 0.86 
CXR-4C 0.86 0.85 0.90 0.80 0.76 0.84 0.73 0.89 0.81 0.88 0.66 0.88 

Abbreviations: Norm – normal (no findings), PNA – pneumonia, COV – COVID-19. 
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Appendix B. Overall network comparison at different stages

Fig. 1. Comparison of networks’ accuracy based on the validation subset. The top chart is the comparison of absolute values, while the bottom chart is the com
parison of relative values. 

Fig. 2. Comparison of networks’ accuracy based on the testing subset. The top chart is the comparison of absolute values, while the bottom chart is the comparison of 
relative values. 
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Appendix C. An additional case of COVID-19 visualization with Grad-CAM heatmaps
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Appendix D. An additional case of pneumonia visualization with Grad-CAM heatmaps
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