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Abstract

The automatic extraction of meaningful relations from biomedical literature or clinical

records is crucial in various biomedical applications. Most of the current deep learning

approaches for medical relation extraction require large-scale training data to prevent

overfitting of the training model. We propose using a pre-trained model and a fine-tuning

technique to improve these approaches without additional time-consuming human

labeling. Firstly, we show the architecture of Bidirectional Encoder Representations from

Transformers (BERT), an approach for pre-training a model on large-scale unstructured

text. We then combine BERT with a one-dimensional convolutional neural network (1d-

CNN) to fine-tune the pre-trained model for relation extraction. Extensive experiments

on three datasets, namely the BioCreative V chemical disease relation corpus, traditional

Chinese medicine literature corpus and i2b2 2012 temporal relation challenge corpus,

show that the proposed approach achieves state-of-the-art results (giving a relative

improvement of 22.2, 7.77, and 38.5% in F1 score, respectively, compared with a tradi-

tional 1d-CNN classifier). The source code is available at https://github.com/chentao1999/

MedicalRelationExtraction.

Database URL: http://120.78.238.14:8080/cdr

Introduction

Medical relations, such as chemical disease relations
(CDRs) and chemical protein relations in modern medicine,
herb-syndrome relations and formula-disease relations
in traditional medicine, play a key role in a number
of biomedical-related applications, e.g. clinical decision-
making, drug discovery and drug side-effect detection.

Manually extracting these relations is difficult and time-
consuming. With recent rapid increases in the scale of
biomedical texts and literature, the automatic extraction of
meaningful medical relations has received increasing atten-
tion over the past decade (1). Relation extraction is usually
considered as a classification problem. Three kinds of
approaches have been applied to extract medical relations:
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rule-based approaches (2, 3), shallow machine learning
approaches (4, 5) and deep learning approaches (1, 6).

Rule-based approaches require domain experts to define
heuristic rules to target a special task (7). Shallow machine
learning approaches consider medical relation extraction as
a classification problem and generally use supervised learn-
ing and feature engineering to obtain high performance.
These approaches require manually constructed features or
rules. Deep learning approaches use neural networks to
automatically capture the syntactic and semantic features
of the text without feature engineering. Among current
deep learning approaches, convolutional neural networks
(CNNs) are one of the key drivers of improvements (8).

However, most deep learning approaches for medical
relation extraction are supervised and thus require large-
scale training data to prevent overfitting of the training
model. Typically, at least 5000 labeled data per category are
needed for acceptable performance, and more than 10 mil-
lion are required to match or exceed human performance
(9). Although many medical relation extraction corpora
have been created over recent years, most of them are too
small to train a deep neural network, especially to train the
neural networks which have achieved success in the com-
puter vision or natural language processing (NLP) domains.
Munkhdalai et al. (10) compared shallow machine learning
approaches with deep learning approaches for clinical rela-
tion identification, and found that the shallow form remains
advantageous over deep learning for clinical relation iden-
tification, although deep learning models demonstrate the
potential for significant improvement if more training data
were available. Huynh et al. (11) concluded that more com-
plex CNN variants, such as convolutional recurrent neural
networks and CNNs with attention, perform worse than
traditional CNNs. We think this is because the corpus they
used only contained several thousand labeled training data,
and complex models are more likely to cause overfitting
with such limited datasets.

Though it is expensive to collect large amounts of train-
ing data for the medical domain, a large number of unstruc-
tured clinical records or biomedical texts and literature
are created every day. Wang and Fan (12) proposed the
integration of unlabeled data to help solve the overfitting
problems that occur when there are insufficient labeled
data. Many methods have been developed to take advan-
tage of unstructured data, such as training domain-specific
word embeddings, transfer learning and fine-tuning of pre-
trained models. Model pre-training and fine-tuning take a
model that has already been trained for a given task and
applies it to a second, similar task. This takes advantage
of the features extracted on the first task without training
from scratch on the second task. Thus, it is a kind of
inductive transfer learning (13), which was initially used

on a large scale in the field of computer vision (14–16).
In text mining or NLP, typical pre-training approaches
include Embeddings from Language Models (ELMo) (17),
Universal Language Model Fine-tuning (ULMFiT) (13),
Bidirectional Encoder Representations from Transformers
(BERT) (18), OpenAI Generative Pre-training Transformer
(GPT) (19) and GPT-2 (20).

In this paper, we focus on pre-training models from
unstructured text and fine-tuning the pre-trained models
to improve the performance of existing deep learning-
based medical relation extraction approaches with limited
training data. First, we show the architecture of BERT,
which is a novel and effective approach for pre-training
models on large-scale unstructured text. Then, we use a
one-dimensional convolutional neural network (1d-CNN)
to fine-tune the pre-trained BERT model for medical
relation extraction. To evaluate our approach, extensive
experiments are conducted on three kinds of real-world
medical relation extraction datasets in different languages:
the BioCreative V CDR corpus (21–24), traditional Chinese
medicine (TCM) literature corpus (25), and i2b2 2012
temporal relations challenge corpus (26, 27). The proposed
approach achieves state-of-the-art results on all three
datasets (giving a relative improvement of 22.2, 7.77 and
38.5% in F1 score, respectively, compared with a traditional
1d-CNN classifier). To the best of our knowledge, this is
the first general-purpose approach to achieve state-of-the-
art performance in all three medical relation extraction
tasks. The results can be used in applications including
chemical-disease interactions research, poly-pharmacology
research and adjuvant clinical treatment. The source
code is available at https://github.com/chentao1999/
MedicalRelationExtraction. We have made a web service
of our system available at http://120.78.238.14:8080/cdr.

Materials and methods

Data sources

The proposed method is a general-purpose approach. In this
work, we utilize three different kinds of medical relation
extraction corpora:

1. BioCreative V CDR task corpus (in short, BC5CDR
corpus) (21–24): this consists of 1500 PubMed articles
with 4409 annotated chemicals, 5818 diseases and 3116
chemical-disease interactions. Figure 1 shows a PubTa-
tor format (tab-delimited format) file for the article
(PMID: 19803309) in the training set of the corpus.
A summary of this corpus is presented in Table 1. The
relation task data are publicly available through BioCre-
ative V at https://biocreative.bioinformatics.udel.edu/
resources/corpora/biocreative-v-cdr-corpus/.
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Figure 1. An example of the BC5CDR corpus (PubTator format, PMID:19803309).

2. TCM literature corpus (in short, TCM corpus) (25):
the abstracts of all 106,150 papers published in the
114 most popular Chinese TCM journals from 2011
to 2016 are collected, including details of 3024 herbs,
4957 formulae, 1126 syndromes and 1650 diseases.
Five types of relations are annotated. Figure 2 gives an
example of TCM literature and relations in the corpus.
The statistics of the corpus are summarized in Table 2.
The negative relations are for co-occurring entities that
do not have an explicit relation. The unlabeled relations
are for co-occurring entities that their relations are not
annotated by TCM experts. Only 10% of the candidate
relations are annotated. The entire dataset is available
online at http://arnetminer.org/TCMRelExtr.

3. The 2012 informatics for integrating biology and the
bedside (i2b2) project temporal relations challenge
corpus (in short, i2b2 temporal corpus) (26, 27): This
contains 310 de-identified discharge summaries of
over 178,000 tokens, with annotations of clinically
significant events, temporal expressions and temporal
relations in clinical narratives. On average, each
discharge summary in the corpus contains 86.6 events,
12.4 temporal expressions and 176 raw temporal
relations. In this corpus, eight kinds of temporal
relations between events and temporal expressions
are defined: BEFORE, AFTER, SIMULTANEOUS,
OVERLAP, BEGUN_BY, ENDED_BY, DURING and
BEFORE_OVERLAP. Figure 3 shows an excerpt of a
patient report and its annotation of events, temporal
expressions and temporal relations in the training set
of the corpus. We present the details of this corpus in
Table 3. The annotations are available at http://i2b2.
org/NLP/DataSets.
From the above tables, it is clear that BC5CDR and

the TCM corpus are annotated with two categories, and
there are hundreds of labeled data per category. The i2b2
temporal corpus is much larger. There are 33,635 annotated
samples across eight kinds of temporal relations, an average

Table 1. Summary of the BioCreative V CDR corpus

Dataset Articles Chemical
mention (ID)

Disease mention
(ID)

CID
relation

Training 500 5203 (1467) 4182 (1965) 1038
Dev 500 5347 (1507) 4244 (1865) 1012
Test 500 5385 (1435) 4424 (1988) 1066

of 4204.4 labeled data per category. None of these corpora
is large enough (<5000 labeled data per category) to train
a deep neural network for acceptable performance.

Overview of our approach

An overview of our approach for improving deep learning-
based medical relation extraction using a pre-trained model
and model fine-tuning is shown in Figure 4. The left sub-
figure (Figure 4a) shows the architecture of the traditional
approach using a 1d-CNN model to classify medical rela-
tions. The word embeddings and pre-processed medical
relation extraction corpus are the input of the 1d-CNN
model. The word embeddings are real number vector rep-
resentations of words or phrases from the vocabulary. It
is usually trained from large-scale unstructured biomedi-
cal text, literature or clinical records for medical relation
extraction.

The right sub-figure (Figure 4b) is the architecture of our
proposed approach. ‘Pre-trained Model’ refers to binary
checkpoint files in which the neural network architecture,
weights and variables are stored. ‘BERT’ refers to a kind of
pre-training approach. Before fine-turning begins, ‘BERT’
restores its variables and neural network parameters by
loading the ‘Pre-trained Model’ files. After BERT loads
the pre-trained model, fine-tuning begins. The training
error back-propagates to BERT to fine-tune its parameters,
which are firstly restored from the pre-trained model.
Our approach also uses a 1d-CNN model to classify

http://arnetminer.org/TCMRelExtr
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Figure 2. An example of the TCM corpus.

medical relations. The main differences between our
proposed approach and the traditional approach are:

1. We use a pre-trained model instead of word embeddings
as the input of the 1d-CNN model.

2. We combine the 1d-CNN with BERT and use the 1d-
CNN to fine-tune the parameters of the BERT model.
The operations in the dashed rectangle, such as pre-
processing and post-processing, are optional in our
experiments. Our proposed approach is an end-to-end
general-purpose. We didn’t perform pre-processing and
post-processing in all three experiments. Experimental
results show that our approach achieves state-of-the-art
performance even without pre-processing the corpus
and post-processing the results. Other researchers who
use our method can add pre-processing and post-
processing for a special corpus to further improve
performance.

3. The model fine-tuning process is realized by back-
propagating the training error of the 1d-CNN to
the BERT model. This is a dynamic model training
process. Traditional approaches that concatenate
embeddings with the input at different layers still
train the main task model from scratch and treat pre-

Table 2. Summary of the TCM corpus

Relation type Labeled relations Unlabeled
relations

Positive Negative

Herb-syndrome 538 582 10 077
Herb-disease 534 642 10 579
Formula-
syndrome

392 574 8693

Formula-disease 377 411 7094
Syndrome-
disease

431 532 8681

trained embeddings as fixed parameters, limiting their
usefulness (13).

The following sections describe the pre-trained model
and our approach in detail and explain how to use the 1d-
CNN to fine-tune the pre-trained BERT model for medical
relation extraction.

Pre-trained model

Most supervised learning approaches on task-specific
datasets are brittle and sensitive to slight changes in the data
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Figure 3. Sample text excerpt of the i2b2 temporal corpus.

distribution (28) and task specification (29). Pre-trained
models are usually trained by a pre-training approach in
an unsupervised way on large-scale unstructured general-
domain text (like Wikipedia) on GPU cluster or cloud TPUs
for several days. They are general systems that can be used
as components in many downstream tasks.

As mentioned above, typical pre-training approaches
include ELMo, ULMFiT, GPT, GPT-2 and BERT. ELMo
uses a bidirectional long short-term memory (LSTM) to
pre-train a bidirectional language model (biLM) on a large
text corpus. Once pre-trained, the biLM can compute
representations for downstream tasks (17). ULMFiT uses
a three-layer LSTM architecture to pre-train an ImageNet-
like language model and uses a discriminative fine-tuning
technique to allow different layers to capture different types
of information (13). GPT (19) uses a left-to-right architec-
ture, where every token can only attend to previous tokens

Table 3. Summary of the i2b2 temporal relation corpus

Training set Test set

Discharge summaries 190 120
Events 16,468 13,594
Temporal expressions 2,366 1,820
Temporal relations 33,635 27,736

BEFORE 13,467 10,789
AFTER 2,211 1,941
SIMULTANEOUS 4,725 4,142
OVERLAP 7,061 4,877
BEGUN_BY 996 788
ENDED_BY 797 688
DURING 1,037 875
BEFORE_OVERLAP 3,249 3,636
Unlabeled 92 0
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Figure 4. The architecture of the traditional approach and our proposed approach.

in the self-attention layers of the transformer (30). GPT-
2 largely follows the details of the GPT model, but has over
an order of magnitude more parameters than the original
GPT (20). BERT uses a deep bidirectional transformer that
is jointly conditioned on both the left and right contexts in
all layers to pre-train masked language models (18).

In this work, we use BERT as our pre-training approach
because (i) it achieves better performance than most other
pre-training approaches (ELMo, OpenAI GPT, etc.) in many
NLP tasks (18) and (ii) it is open source. Pre-training is fairly
expensive. Several pre-trained BERT models are available at
https://github.com/google-research/bert. We will never need
to pre-train our own model from scratch.

An illustration of the architecture of BERT is shown in
Figure 6. BERT uses WordPieces (31) as tokens rather than
words. Consider the following example sentence pair:

Example 1: suxamethonium[D013390] masseter spa-
sm[D014313] a dose-response study.

This is broken down into smaller chunks, as shown in the
Token Embeddings line in Figure 5. ‘##’ refers to the split
word pieces. For example, suxamethonium is split into five
tokens: su, ##xa, ##met, ##hon and ##ium. In the Token
Embeddings, [CLS] refers to a special classification embed-
ding. [SEP] refers to the end of a sentence. In the Segment

Embeddings, A (in red) refers to the first sentence of the
sentence pair and B (in blue) refers to the second sentence
of the sentence pair. The Position Embeddings refers to the
serial number of tokens in the sentence pair sequence. The
input embeddings are constructed by summing the values of
the corresponding token, segment and position embeddings
(18). The i-th value of the input embedding is computed as
follows:

v(i)
input = v(i)

token + v(i)
segment + v(i)

position (1)

where v(i) refers to the i-th value of an embedding;
vinput, vtoken and vsegment refer to the input embeddings,
token embeddings, segment embeddings and position
embeddings, respectively.

The architecture of BERT is basically a multi-layer trans-
former encoder stack. In each layer, the number of trans-
former encoder nodes is equal to the length of the input
embedding. Each node fully connects with every trans-
former encoder node in the upper layer. The basic BERT
model has 12 layers, whereas the large BERT model has 24
layers. Each transformer encoder node has two sub-layers:
(i) a self-attention layer, which helps the encoder look at
other words in the input sentence as it encodes a specific
word and (ii) a position-wise fully connected feed-forward

https://github.com/google-research/bert
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Figure 5. An illustration of the architecture of BERT (18).

network, which receives the output of the self-attention
layer (19).

To pre-train a language model, BERT uses two novel
unsupervised prediction tasks: (i) masked language model,
in which several tokens in each sequence are randomly
erased and replaced with a special token (‘masked’). A
model is trained by using the unmasked words to predict the
masked word. (ii) Next sentence prediction, where 50% of
sentence pairs are labeled with ‘IsNext’, and the other 50%
sentence pairs have the second sentence randomly replaced
and the whole sentence pair labeled with ‘NotNext’. A
model is trained with both ‘IsNext’ and ‘NotNext’ sentence
pairs.

After random dropout regularization, the output of the
transformer encoder stack is connected with a linear classi-
fier for sequence classification training. The training error is
back-propagated to the first layer of the pre-trained BERT
model to realize the model fine-tuning process.

A general approach for medical

relation extraction

We formulated the medical relation extraction task as a
classification problem that judges whether a given pair of

medical entities (e.g. chemical and disease) was asserted
with an induction relation in the article. Our approach is a
general-purpose approach. The ‘relation’ here depends on
the relation defined in the specific corpus. It can refer to the
existence of a relation (in BC5CDR corpus and TCM cor-
pus) or a specific type of relation (in i2b2 temporal corpus).
In BC5CDR and TCM corpus, the relation is undirected.
In i2b2 temporal corpus, it is directed, because time has a
direction.

As a classification problem, the specific input of our
model is the two entities in a relation (see sentence 1 in
Figure 5) and the context entities co-occurred with (see
sentence 2 in Figure 5). The output is the existence of a
relation (for BC5CDR corpus and TCM corpus) or the label
of a specific type of relation (for i2b2 temporal corpus).
Take the following data from the BC5CDR corpus as an
example:
Example 2: 1601297|a|The electrocardiograms (ECG) of 99
cocaine-abusing patients were compared with the ECGs of
50 schizophrenic controls. Eleven of the cocaine abusers
and none of the controls had ECG evidence of signifi-
cant myocardial injury defined as myocardial infarction,
ischemia and bundle branch block.
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1601297 33 50 Myocardial injury Disease D009202
1601297 83 90 Cocaine Chemical D003042
1601297 135 142 Cocaine Chemical D003042
1601297 194 207 Schizophrenic Disease D012559
1601297 232 239 Cocaine Chemical D003042
1601297 305 322 Myocardial injury Disease D009202
1601297 334 355 Myocardial infarction Disease D009203
1601297 357 365 Ischemia Disease D007511
1601297 371 390 Bundle branch block Disease D002037
1601297 CID D003042 D009203
1601297 CID D003042 D002037

This is a PubTator format (tab-delimited format) file
for the article (PMID: 1601297) in the training set of the
BC5CDR corpus. The first two lines are the title and the
abstract of the annotated article. There are one chemical
(MeSH ID: D003042), five disease (MeSH ID: D009202,
D012559, D009203, D007511, and D002037) and two
CID relations (<D003042, D009203> and < D003042,
D002037>). For CID relation <D003042, D009203>, we
concatenate the chemical ‘cocaine’ and disease ‘myocardial
infarction’ as the first sentence and concatenate the title
and abstract as the second sentence. The first and second
sentences form a sentence pair sequence, which is input into
the BERT model.

Using a sentence pair as the input of a neural network is
an effective mechanism to model the relationship between
two sentences. It is commonly used in many NLP tasks (e.g.
language model (32), machine translation (33) and natural
language inference (34)). Just like the shallow machine
learning methods, different features are concatenated into a
long vector as the input of the classifier (e.g. SVM, CRF and
Naive Bayes). For an end-to-end neural network system,
it is easy and intuitive to concatenate different kinds of
information provided by the training data into a sequence
as the input of the system.

In our approach, we concatenate the entities as the
first sentence input and concatenate the title and abstract
as the second sentence input, just because BERT needs a
sentence pair as input, and this is an effective mechanism to
model the relationship between entities and their context. A
‘sentence’ here can be an arbitrary span of contiguous text,
rather than an actual linguistic sentence.

The relations in the BC5CDR dataset are annotated at
the abstract level, and only entity pairs which have CID
relation are annotated. Following the participating systems
of the BioCreative V Chemical Disease Relation (CDR)
Task (8, 21), we label these annotated entity pairs with ‘1’
to generate positive training samples. Then, we randomly
select a ‘chemical’ entity and a ‘disease’ entity in a sample
document to make an entity pair. If the entity pair is not

annotated, we think the two entities in this entity pair
have no CID relation. We label this entity pair with ‘0’ to
generate a negative sample. Positive and negative samples
are generated according to the ratio of 1:1 in order to train
a balanced model to predict new relations.

For entity pair <D003042, D009203>, a positive sam-
ple is generated as follows:

‘Id_1 cocaine myocardial infarction\tElectrocardiogra-
phic evidence of myocardial injury in psychiatrically hos-
pitalized cocaine abusers. The electrocardiograms (ECGs)
of 99 cocaine-abusing patients were compared with the
ECGs of 50 schizophrenic controls. Eleven of the cocaine
abusers and none of the controls had ECG evidence of sig-
nificant myocardial injury defined as myocardial infarction,
ischemia and bundle branch block.’

For entity pair <D003042, D002037>, another positive
sample is generated as follows:

‘Id_2 cocaine bundle branch block\tElectrocardiogra-
phic evidence of myocardial injury in psychiatrically hos-
pitalized cocaine abusers. The electrocardiograms (ECGs)
of 99 cocaine-abusing patients were compared with the
ECGs of 50 schizophrenic controls. Eleven of the cocaine
abusers and none of the controls had ECG evidence of sig-
nificant myocardial injury defined as myocardial infarction,
ischemia and bundle branch block.’

We randomly select two diseases in (D009202, D012559
and D007511) to generate two entity pairs that have no
CID relation and use them to generate two negative sam-
ples. They may be like this:

‘Id_3 cocaine myocardial injury block\tElectrocardio-
graphic evidence of myocardial injury in psychiatrically
hospitalized cocaine abusers. The electrocardiograms
(ECGs) of 99 cocaine-abusing patients were compared
with the ECGs of 50 schizophrenic controls. Eleven of the
cocaine abusers and none of the controls had ECG evidence
of significant myocardial injury defined as myocardial
infarction, ischemia and bundle branch block.

Id_4 cocaine schizophrenic\tElectrocardiographic evi-
dence of myocardial injury in psychiatrically hospitalized
cocaine abusers. The electrocardiograms (ECG) of 99
cocaine-abusing patients were compared with the ECGs
of 50 schizophrenic controls. Eleven of the cocaine
abusers and none of the controls had ECG evidence
of significant myocardial injury defined as myocardial
infarction, ischemia and bundle branch block.’

In the TCM corpus, both positive and negative samples
are annotated. We use the original data to train a model.

If there are multiple relation categories, as it is in the i2b2
temporal corpus, each pair of entities (including an event
entity and a temporal expression entity) is labeled with one
of the eight kinds of temporal relations (BEFORE, AFTER,
SIMULTANEOUS, OVERLAP, BEGUN_BY, ENDED_BY,
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DURING and BEFORE_OVERLAP). We also use the orig-
inal samples directly to train a multi-class classifier for
prediction.

Fine-tuning the BERT model with 1d-CNN

In the original BERT model, a linear classifier is used to
fine-tune the pre-trained model for sequence classification.
In this work, to improve the performance of the 1d-CNN in
medical relation extraction tasks, we use the multi-filter 1d-
CNN classifier (in short, 1d-CNN) proposed by Kim (35)
to fine-tune the pre-trained BERT model.

The training object of the 1d-CNN is to minimize the
ranking loss below:

∑

d∈T

max
{
0, 1 − g(d) + g

(
d′)} (2)

where d is a medical relation document in training set T
with a positive label; d′ is another document in T with a
negative label; g(· ) is the scoring function that represents
the 1d-CNN architecture and g(d) and g(d′) are the scores
of positive and negative documents, respectively. The train-
ing procession of the 1d-CNN classifier is to make g(d)

approximately 1 and g(d′) approximately 0.
Positive label and negative label documents are the pos-

itive and negative samples in a corpus that is used to
train a binary classifier. When there are multiple chemicals,
diseases and relations in a document, multiple entity pairs
are generated, and each pair of entities share the same
context document. One entity pair and its context form
a positive sample. For the BC5CDR corpus, we randomly
select two entities that have no medical relation to generate
negative samples. For the TCM and i2b2 temporal corpus,
we use the original annotated data to train a model.

The main architecture of the 1d-CNN consists of (i) an
input layer, which converts variable-length medical rela-
tion documents into fixed-length vectors; (ii) a convolution
layer, in which multiple filters move across the input vec-
tors to extract semantic features through one-dimensional
convolution; (iii) a pooling layer, in which the most useful
semantic features are selected by a max-overtime pooling
operation (36) and (iv) an output layer, in which multiple
features are concatenated and classified by a fully connected
SoftMax classifier. In the training process, the training error
is back-propagated to fine-tune the parameters of the BERT,
which are firstly restored from the pre-trained model.

Pre-trained BERT models can also be used in other deep
learning methods, such as RNN and LSTM. However, they
cannot be used as features in these methods because the pre-
trained BERT models are neural networks with pre-trained

parameters, not a vector with numerical values. They are
usually used as components of other neural networks.

Experiments and results

Measures

For all three corpora, we use the precision, recall and
F1 measure as evaluation metrics for the medical relation
extraction performance. The precision, recall, and F1 mea-
sure are computed as follows:

Precision (P) = TP
TP + FP

(3)

Recall (R) = TP
TP + FN

(4)

F1 = 2 × P × R
P + R

(5)

where TP denotes true positive, FP denotes false positive
and FN denotes false negative in the confusion matrix.

Medical relation extraction in the i2b2 2012 temporal
relations challenge is a multi-class classification task. In this
work, we use the evaluation scripts (Available at http://i2b2.
org/NLP/DataSets) provided by the challenge organizer to
evaluate the performance of our approach on the i2b2
temporal corpus.

Experimental settings

For all three corpora, we use a PyTorch implementation
of Kim’s 1d-CNN (Software available at https://github.
com/wabyking/TextClassificationBenchmark). For the pre-
trained word embeddings used in 1d-CNN, we use two
English embeddings (Glove embeddings (37) and PubMed
embeddings (Available at http://bio.nlplab.org/)) and two
Chinese embeddings (general embeddings (38) and TCM
literature embeddings trained by ourselves) for the English
and Chinese corpora, respectively.

For the Glove embeddings (Available at https://nlp.
stanford.edu/projects/glove/), we use 300-dimensional
vectors trained on 6B tokens from Wikipedia 2014 and
Gigaword 5. For general Chinese embeddings (Available at
https://github.com/Embedding/Chinese-Word-Vectors), we
use the 300-dimensional vectors trained on a mixed corpus
including Baidu Encyclopedia, Chinese Wikipedia, People’s
Daily News and similar. For TCM literature embeddings,
we use the traditional Chinese medicine literature in the
TCM corpus. This contains 15M words, and the vocabulary
size is 57K. We use word2vec tools (Available at https://
code.google.com/archive/p/word2vec/)to train the vectors.
The embeddings have 300 dimensions.

To train 1d-CNN, we concatenate the two entities in
one relation and the text they co-occurred in as a long

http://i2b2.org/NLP/DataSets
http://i2b2.org/NLP/DataSets
https://github.com/wabyking/TextClassificationBenchmark
https://github.com/wabyking/TextClassificationBenchmark
http://bio.nlplab.org/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/Embedding/Chinese-Word-Vectors
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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document and use this document as the input of 1d-CNN.
We use rectified linear units for the activation function,
filter windows of lengths 3, 4 and 5 with 100 feature
maps each, an AdaDelta decay parameter of 0.95 and a
dropout rate of 0.5 on all three corpora. The maximum
sequence length is set to 400 for the BC5CDR corpus,
300 for the TCM corpus and 1000 for the i2b2 temporal
corpus.

To fine-tune 1d-CNN using the pre-trained BERT model,
we concatenate the two entities in one relation as one input
sentence and the text in which the two entities co-occurred
as the other input sentence. We use the ‘uncased_L-12_H-
768_A-12’ model for the English corpus and the ‘chinese_L-
12_H-768_A-12’ model for the Chinese corpus. Both mod-
els are pre-trained on the BERT-Base network, which has 12
layers, 768 hidden nodes, 12 heads and 110M parameters.
As reported by Devlin et al. (2), the ‘uncased_L-12_H-
768_A-12’ model is trained on BooksCorpus (800M words)
(39) and English Wikipedia (2500M words). We use a
learning rate of 5 × 10−5.

We trained our models using a single NVIDIA GeForce
GTX 1080Ti GPU with 12 GB of RAM. Fine-tuning the
pre-trained BERT model on GPUs with 12–16 GB of
RAM may cause out-of-memory issues (https://github.com/
google-research/bert#out-of-memory-issues). The factors
that affect memory usage are the maximum sequence length
and the batch size for training. We used maximum sequence
lengths of 200, 110 and 170 and training batch sizes of 20,
32 and 8 for the BC5CDR corpus, TCM corpus and i2b2
temporal corpus, respectively. For the other parameters, we
use the default settings for 1d-CNN and BERT.

BioCreative V CDR task

Table 4 presents the system results achieved on the
BC5CDR corpus. The best results are highlighted in
boldface. The BioCreative V CDR task has two subtasks:
disease named entity recognition (DNER) and chemical-
induced disease (CID) relation extraction. In Table 4, the
‘best system of BioCreative V CDR extraction challenge’
uses the chemical and disease entities automatically
recognized in the DNER subtask, whereas the other four
approaches use the gold annotated entities as the input for
the CID relation extraction task.

The 1d-CNN approach with general embeddings (Glove
embeddings) achieves an F1 score of 0.5855. Using domain-
specific embeddings (PubMed embeddings) improves the
1d-CNN F1 score to 0.6454, a relative improvement
of 10.2%. Pons et al. (40) refers to the SVM approach
with rich human-engineered features proposed by Pons
et al. Using the gold annotated entities and post-challenge
features, this approach achieves an F1 score of 0.7020.

Table 4. System results on the BC5CDR corpus

Approach Precision Recall F1

Best system of
BioCreative V CDR
extraction challenge
(34)

0.5567 0.5844 0.5703

1d-CNN with gold
entity annotation
(Glove Embeddings)

0.6085 0.5642 0.5855

1d-CNN with gold
entity annotation
(PubMed
embeddings)

0.7439 0.5699 0.6454

Pons et al. (37) 0.731 0.676 0.7020
BERT with pre-trained

model
0.7493 0.6673 0.7059

1d-CNN fine-tuning the
pre-trained BERT
model

0.7505 0.6838 0.7156

The best results for each metric are highlighted in boldface.

‘BERT with pre-trained model’ refers to the original BERT
model in which a linear classifier is used to fine-tune the
pre-trained model. The ‘1d-CNN fine-tuning BERT with
pre-trained model’ refers to our proposed approach. It
achieves state-of-the-art performance without any human-
engineered features or pre/post-processing operations,
giving a relative improvement of 1.9% compared to Pons
et al. and 10.8% compared to 1d-CNN with PubMed
embeddings. These results validate the influences of the
pre-trained model and the fine-tuning technique in terms of
medical relation extraction.

There are 14,901 words found in the vocabulary of the
BC5CDR corpus. Among these, 11,652 words were found
in the Glove embeddings and 13,928 words were found
in the PubMed embeddings. BERT split these words into
9175 sub-word units (tokens), with all word pieces included
in the vocabulary of the pre-trained BERT model. The
experimental results show that higher word coverage can
improve the recall of the approach.

Relation extraction task using TCM literature

Table 5 presents the system results achieved on the
TCM literature corpus. HS, HD, FS, FD and SD refer
to the herb-syndrome, herb-disease, formula-syndrome,
formula-disease and syndrome-disease relations in TCM,
respectively. The top three results of the compared systems,
i.e. Basic SVM, Iterative SVM and HFGM, were reported
by Wan et al. (25). HFGM is the abbreviation of the
heterogeneous factor graph model, which is a unified
graphical model proposed by Wan et al. It is used to
simultaneously infer the labels of all the candidate relations

https://github.com/google-research/bert#out-of-memory-issues
https://github.com/google-research/bert#out-of-memory-issues


Database, Vol. 2019, Article ID baz116 Page 11 of 15

Table 5. System results on the TCM corpus

Approach Metric HS HD FS FD SD Average

Basic SVM Precision 0.7889 0.7913 0.8012 0.8104 0.7772 0.7930
Recall 0.7234 0.7459 0.7232 0.7308 0.7322 0.7315
F1 0.7547 0.7679 0.7602 0.7685 0.7540 0.7609

Iterative
SVM

Precision 0.8335 0.8310 0.8433 0.8555 0.8188 0.8354
Recall 0.7766 0.7951 0.7775 0.7841 0.7834 0.7836
F1 0.8040 0.8127 0.8091 0.8182 0.8007 0.8087

HFGM Precision 0.9094 0.8948 0.9081 0.9107 0.8987 0.9039
Recall 0.8693 0.8734 0.8569 0.8825 0.8687 0.8698
F1 0.8889 0.8840 0.8818 0.8964 0.8786 0.8856

1d-CNN
general
embeddings

Precision 0.9670 0.9264 0.9572 0.9041 0.9982 0.9505
Recall 0.7460 0.9070 0.6937 0.7950 0.8150 0.7913
F1 0.8422 0.9166 0.8045 0.8461 0.8973 0.8613

1d-CNN
TCM
embeddings

Precision 0.9382 0.9365 0.8984 0.9150 0.9784 0.9333
Recall 0.7451 0.9044 0.7059 0.8249 0.8463 0.8053
F1 0.8306 0.9201 0.7906 0.8677 0.9076 0.8633

BERT with
pre-trained
model

Precision 0.9263 0.9675 0.8885 0.9570 0.9589 0.9319
Recall 0.8457 0.9440 0.8334 0.9281 0.9237 0.8901
F1 0.8842 0.9556 0.8601 0.9423 0.9410 0.9105

1d-CNN
fine-tuning

Precision 0.9365 0.9745 0.8974 0.9702 0.9806 0.9518
Recall 0.8629 0.9553 0.8350 0.9352 0.9420 0.9061
F1 0.8982 0.9648 0.8651 0.9522 0.9609 0.9282

The best results for each metric are highlighted in boldface.

by employing the concept of collective inference (25). ‘1d-
CNN general embeddings’ refers to the 1d-CNN approach
using general Chinese embeddings as input, ‘1d-CNN TCM
embeddings’ refers to the 1d-CNN approach using TCM
literature embeddings as input, ‘BERT with pre-trained
model’ refers to the original BERT model in which a linear
classifier is used to fine-tune the pre-trained model and ‘1d-
CNN fine-tuning’ refers to the 1d-CNN approach using the
basic BERT network as its component and fine-tuning the
pre-trained BERT model with 1d-CNN. Following the work
of Wan et al. (25), we perform a five-fold cross-validation
to evaluate the performance of our model. The best
results for each relation type and metric are highlighted in
boldface.

As we can see, almost all the algorithms have very high
performance on this corpus. This task is easier than the
other two tasks because it is a binary classification problem,
and the relations in this corpus are annotated at the instance
level.

The ‘1d-CNN fine-tuning’ approach achieves the best
performance on four of the five relation types, outper-
forming the others by a good margin on the herb-disease,
formula-disease and syndrome-disease relations. Compared
with HFGM, which is a probability graph model specially
designed for TCM relation extraction problems, ‘1d-CNN
fine-tuning’ improves the F1 score by 1.04, 9.14, 6.22
and 9.37% on the herb-syndrome, herb-disease, formula-
disease and syndrome-disease relations, respectively. This

indicates that our proposed approach is effective for TCM
relation extraction.

In formula-syndrome relations, the ‘1d-CNN fine-
tuning’ approach achieves an F1 score that is 1.67% lower
than that of HFGM. This may be because we only find 197
out of the 966 annotated formula-syndrome relations that
co-occurred in the literature of the TCM corpus, whereas
HFGM uses all 966 annotated formula-syndrome relations
(see Table 2). In TCM corpus, the format of annotated
relation documents is: ‘ID\tEntityID1\tEntityName1
\tEntityID2\tEntityName2\tLabel’, and the TCM liter-
ature which is used to annotate TCM relations is in a
separate document. We need to search for the context of the
relations in the literature document. As shown in Table 2,
there are 966 annotated formula-syndrome relations,
including 392 positive relations and 574 negative relations.
When we searched for the context that the entities of a
formula-syndrome relation co-occurred in, we only found
197 relations their entities co-occurred in the literature of
the TCM corpus.

For the other four kinds of relations, the numbers are
256/1120 (herb-syndrome relations), 1176/1176 (herb-
disease relations), 788/788 (formula disease relations) and
268/964 (syndrome-disease relations). Therefore, only 197
formula-syndrome relations are used in our experiment.
Our method achieves comparable or better performance
with less training data than the comparative methods. It
shows the effectiveness of our method.
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The ‘1d-CNN with general embedding’ approach
achieves the best precision for the herb-syndrome, formula-
syndrome and syndrome-disease relations, but has low
recall on most relations. The ‘1d-CNN with TCM
embedding’ approach has a larger vocabulary coverage
than ‘1d-CNN with general embedding’ and achieves
slightly better performance. By fine-tuning the pre-trained
BERT model, our proposed approach achieves F1 scores
of 0.8982, 0.9648, 0.8651, 0.9522 and 0.9609 on the
five relations. This corresponds to relative improve-
ments of 6.65, 5.26, 7.53, 12.5 and 7.09% compared
with the ‘1d-CNN with general embeddings’ approach,
respectively. These results indicate that using the pre-
trained model and fine-tuning technique can improve the
performance of the 1d-CNN classifier for TCM relation
extraction.

I2b2 2012 challenge clinical temporal relation

extraction task

Table 6 presents the system results achieved on the
i2b2 temporal relation corpus. ‘1d-CNN with gold
entity annotation’ refers to the 1d-CNN approach using
annotated gold event and time expressions as entities.
‘Glove embeddings and PubMed embeddings’ refer to the
1d-CNN approach using Glove embeddings and PubMed
embeddings as initial input, respectively. ‘The best system
of i2b2 challenge’ refers to the system that obtained the
best performance in the TLINK subtask of the i2b2 2012
temporal relations challenge. This is an SVM classifier-
based approach that also uses annotated gold events and
time expressions. ‘BERT with pre-trained model’ refers to
the original BERT model in which a linear classifier is used
to fine-tune the pre-trained model. ‘1d-CNN fine-tuning
BERT with pre-trained model’ is our proposed approach.

Note that our proposed approach achieves the best per-
formance, with an F1 score of 0.7085. This represents a rel-
ative improvement of 2.21% compared with the best system
from the i2b2 challenge. By using a pre-trained model on
large-scale unstructured text, our approach achieves a recall
of 0.7489, a relative improvement of 11.8% compared with
the best system of the i2b2 challenge. Note that our method
is a general-purpose end-to-end approach without feature
engineering for special tasks. We did not even pre-process
the corpus or post-process the classification result in this
experiment.

The 1d-CNN approach with general embeddings (Glove
embeddings in the table) achieves an F1 score of 0.5117.
Using domain-specific embeddings (PubMed embeddings
in the table) improves the F1 score of 1d-CNN to 0.5716.
This is a relative improvement of 11.7% compared with
the 1d-CNN approach with general embeddings. By fine-

Table 6. System results on the i2b2 temporal corpus

Approach Precision Recall F1

1d-CNN with gold
entity annotation
(Glove embeddings)

0.4549 0.5846 0.5117

1d-CNN with gold
entity annotation
(PubMed
embeddings)

0.5787 0.5647 0.5716

The best system of i2b2
challenge (27)

0.71 0.67 0.6932

BERT with pre-trained
model

0.6684 0.7173 0.6920

1d-CNN fine-tuning
BERT with
pre-trained model

0.6722 0.7489 0.7085

The best results for each metric are highlighted in boldface.

tuning the pre-trained BERT model, the F1 score of 1d-
CNN improves to 0.7085, a relative improvement of
38.4% compared with the 1d-CNN approach with general
embeddings and 23.9% compared with the 1d-CNN
approach with domain-specific embeddings. These results
indicate that our proposed approach can improve the per-
formance of the 1d-CNN for temporal relation extraction
tasks.

Discussion

In this work, we have presented an approach for chemical
disease relation extraction, traditional Chinese medicine
literature relation extraction and clinical temporal rela-
tion extraction. To the best of our knowledge, this is the
first general-purpose approach to achieve state-of-the-art
performance in all three medical relation extraction tasks.
After performing an in-depth analysis of some specific
instances, we found that our proposed approach improves
the performance of relation extraction for the following rea-
sons: (i) the pre-trained model is more effective than word
embeddings for acquiring useful linguistic knowledge for
downstream tasks; (ii) compared with the ‘1d-CNN general
embeddings’ approach, our method achieves higher recall
on all three corpora. This indicates that fine-tuning the
pre-trained model and back-propagating the training error
makes better use of the linguistic knowledge acquired from
the unstructured text than using pre-trained embeddings as
input and training the main task model from scratch. Treat-
ing pre-trained embeddings as fixed parameters limits their
usefulness (13). (iii) Using WordPieces as tokens rather than
words can improve the coverage of the input embeddings
for the 1d-CNN classifier.
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We further analyzed the errors made by our method.
One kind of error is that the two entities in a relation are
too far away to be identified by our method. For example,
our method failed to extract the CID relation of ‘systemic
sclerosis’ (MeSH: D012595) and ‘corticosteroid’ (MeSH:
D000305) from the following sentence: ‘Scleroderma renal
crisis (SRC) is a rare complication of systemic sclerosis
(SSc) but can be severe enough to require temporary or
permanent renal replacement therapy. Moderate to high
dose corticosteroid use is recognized as a major risk factor
for SRC.’ (PMID: 22836123), the two entities (in bold) are
separated in two sentences with 18 words between them.
This may be because the distance between the entities is too
far, and there is no trigger word between them.

Another kind of error is that the category of relations
extracted by our method is not the category of relations
annotated in the corpus. Take the BC5CDR corpus as
an example, in ‘Famotidine is a histamine H2-receptor
antagonist used in inpatient settings for prevention of stress
ulcers...’ (PMID: 8701013, words in bold are disease/chem-
ical entities given by the corpus), our method successfully
extracted the relation of ‘Famotidine’ (MeSH: D015738)
and ‘ulcers’ (MeSH: D014456) but cannot distinguish the
difference between prevention relation and CID relation.

We trained our models on an NVIDIA GeForce GTX
1080Ti GPU with cuDNN library enabled. For the
BC5CDR corpus, the average training speed is 0.126sec/-
batch, and the total time of model training is about 31
minutes. For the TCM corpus, take herb-disease relation as
an example, the average training speed is 0.081sec/batch,
and the training time for the model is about 13 minutes.
For the i2b2 temporal corpus, the average training speed
is 0.505sec/batch, and the total training time is about 50
minutes.

The results presented in the BioCreative V CDR task can
improve the research process of chemical-disease interac-
tions, which is critical in applications including clinical trial
screening, clinical decision-making and drug discovery. The
relations of herbs, formulae, syndromes and diseases found
in TCM literature relation extraction task are useful for
assisting clinical treatment, poly-pharmacology and drug-
safety research. Understanding the clinical timeline is cru-
cial in determining a patient’s diagnosis and treatment. The
results presented in I2b2 2012 challenge clinical temporal
relation extraction task can be used in disease progression
monitoring, early prediction of chronic disease and adverse
event detection.

Conclusions

This paper has presented a novel approach to improve
deep learning-based medical relation extraction via model

pre-training on large-scale unstructured text and fine-
tuning the pre-trained model. The approach employs
BERT to construct a pre-trained model on large-scale
unstructured text and uses 1d-CNN to fine-tune the
pre-trained model for clinical relation extraction. We
have conducted extensive experiments on three clinical
relation extraction corpora in comparison with the best
existing systems. Empirical results show that our approach
achieves state-of-the-art performance on all three corpora.
We have found that using the pre-trained model and
fine-tuning technique boosts the performance of clinical
relation extraction. This general approach can be applied
to many disease- and drug-related systems and clinical
applications.
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