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Abstract: Pain assessment is essential for preclinical and clinical studies on pain. The mouse grimace
scale (MGS), consisting of five grimace action units, is a reliable measurement of spontaneous pain in
mice. However, MGS scoring is labor-intensive and time-consuming. Deep learning can be applied for
the automatic assessment of spontaneous pain. We developed a deep learning model, the DeepMGS,
that automatically crops mouse face images, predicts action unit scores and total scores on the MGS,
and finally infers whether pain exists. We then compared the performance of DeepMGS with that
of experienced and apprentice human scorers. The DeepMGS achieved an accuracy of 70–90% in
identifying the five action units of the MGS, and its performance (correlation coefficient = 0.83)
highly correlated with that of an experienced human scorer in total MGS scores. In classifying
pain and no pain conditions, the DeepMGS is comparable to the experienced human scorer and
superior to the apprentice human scorers. Heatmaps generated by gradient-weighted class activation
mapping indicate that the DeepMGS accurately focuses on MGS-relevant areas in mouse face images.
These findings support that the DeepMGS can be applied for quantifying spontaneous pain in mice,
implying its potential application for predicting other painful conditions from facial images.

Keywords: mouse grimace scale; deep machine learning; spontaneous pain; migraine animal model;
facial expression

1. Introduction

Pain is an unpleasant emotional and sensory experience associated with actual or
potential tissue damage, according to the definition by the International Association for
the Study of Pain [1]. The effects and costs of pain are substantial as it could further cause
depression [2,3], sleep disturbance [2,3], anxiety [4], negatively affect the quality of life [5],
and impose a considerable economic burden on patients, health services, and societies [6].
Headache is a highly common pain disorder, especially migraine.

Migraine is a neurological disorder with symptoms including not only severe headache
attacks but also generally associated with nausea and/or light, sound, tactile, and/or
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hypersensitivity [7]. It is one of the most painful and disabling neurological disorders
and has an overall prevalence of approximately 16% in the United States [8,9]. The socio-
economic burden inflicted by migraine is insurmountable, as it negatively affects the well-
being and productivity of active labor forces [10]. Animal models of migraine, including the
repeated nitroglycerin (NTG) model, display both cephalic nociceptive responses and paw
allodynia [11]. NTG, a nitric oxide donor, activates nociceptors in the trigeminovascular
system (TGVS) and thus triggers migraine attacks [12]. Our understanding of migraine
pathophysiology is chiefly based on mouse models, and thus spontaneous pain assessment
in mice is receiving increasing emphasis [13].

The mouse grimace scale (MGS), a standardized behavioral coding system, was re-
ported to be able to quantify spontaneous pain in mice with a high accuracy of 81% and
has a high inter-rater reliability with an intraclass correlation coefficient of 0.90 [14]. It
contains five action units, namely orbital tightening, nose bulge, cheek bulge, ear position,
and whisker change, with each being scored as 0, 1, or 2. The total MGS score is the sum of
the scores of these five action units. MGS scoring by human raters is time-consuming as the
scorers must visually analyze numerous animal images. Furthermore, human-annotated
scoring has several limitations, such as the subjectivity and inconsistent application of
scoring criteria among scorers, leading to the difficulty in ensuring high-quality scoring.

Some of these shortcomings of human-annotated scoring may be resolved using
machine learning, which can learn the algorithm from big data and automatically detect
and classify further data. Machine learning’s application in pain scoring has been growing
rapidly. For instance, machine learning has been used to estimate the intensity of neonate
pain, and its estimation is highly correlated with the scores evaluated by human examiners,
showing its potential for automated pain monitoring [15,16]. Besides, convo=lutional
neural network models have been applied to assess pain by facial expression in critically ill
patients [17]. In animal research, studies have used software that can automatically select
the images suitable for MGS analysis [18,19]. For automated MGS scoring, Tuttle et al. [20]
developed a machine learning model to automatically yield total MGS scores in mice to
access laparotomy-evoked pain and the effect of pain relief, and the scores are highly
correlated with those yielded by human scorers. However, they detected pain in a binary
manner, i.e., pain or no pain status. To our best knowledge, there has been no study that
applied deep learning techniques for automatically predicting total or five action unit
MGS scores.

In the present study, our purpose was to develop a deep learning model, the DeepMGS,
that automatically estimates the MGS score and reduces the labor and time costs. We used
a mouse migraine model induced by repeated and intermittent injections of NTG and a
control group injected with saline [21]. The migraine-like painful facial expressions in mice
were video-recorded and scored using the MGS [22]. Mouse facial images were classified
as the NTG condition, saline condition, and preinjection condition. The performance of
the DeepMGS and human-annotated scores in inferring mouse pain were compared. The
DeepMGS performed well in scoring the five MGS action units and the total MGS score.
The ability of the DeepMGS to classify NTG and saline conditions was comparable to that
of an experienced human scorer and superior to that of apprentice scorers, suggesting a
promising utility of the DeepMGS in preclinical pain research and potential application to
migraine assessment in neonates and critically ill patients.

2. Materials and Methods
2.1. Animals

All the study data were obtained from our previous study [22], where all animal
experiments were approved by the Institutional Animal Care and Use Committee of
National Taiwan University, College of Medicine, Taipei, Taiwan and were consistent with
the national guidelines. Male mice (ICR strain, 8–10 weeks old, 30–35 g) were used in the
experiments. The animals were purchased from BioLASCO (Taipei, Taiwan) and held in
27.5 × 15.5 × 18.5 cm3 cages (5 mice/cage) with food and water ad libitum. The cages were
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placed in a temperature-controlled (23 ◦C) holding room with a 12 h light/dark cycle (light
on at 08:00).

2.2. Behavioral Observation

On the day of the experiment, mice in their home cages were moved to the behavioral
room and acclimated there for 1 h before testing. After acclimatization, one mouse was
placed in each of the four cubicle chambers, which were custom-built in a four-cubicle
array (each measuring 7 × 8 × 14 cm3). The walls on the back and lateral sides were
made of stainless steel and that on the front side was made of transparent Plexiglas. This
arrangement encouraged the mouse to look toward the transparent front wall, where a
high-resolution (1920 × 1080) digital video camera was placed 0.25 m away and was more
likely to capture facial expressions.

In total, the images taken from 12 mice were analyzed in this study. The mice were
evenly randomized into migraine and control groups. The migraine group was intraperi-
toneally injected with NTG solution (10 mg/kg) (Millisrol injection, Nippon Kayaku, Tokyo,
Japan), whereas the control group received a saline injection of the same volume. NTG and
saline were injected once every other day for five sessions, that is, on Days 1, 3, 5, 7, and 9.

On the injection days, mice were videotaped 10 min before (preinjection period) and 30–
60 min after NTG and saline injections. The images for analysis were collected by snapshots
and saved in the portable network graphic format in a lossless manner. The images were
captured once every 2 min. In total, 1504 images were collected; 223 images sampled before
injection with either saline or NTG were grouped as the preinjection condition, and 652 and
619 images were sampled after injection of saline and NTG, respectively.

2.3. Human Scoring of MGS and Image Processing

The MGS was used to score painful facial expressions of mice into five action units
(Figure 1), each scored as 0, 1, or 2 by human scorers [14]. A score of “0” indicates the scorer
had high confidence that the action unit was absent, “1” indicates high confidence of a
moderate appearance of the action unit or equivocation over its presence or absence, and
“2” indicates high confidence of the marked appearance of the action unit. The total MGS
score is the sum of the five action unit scores.
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Figure 1. Five MGS action units and the scoring system. Each of the five action units, namely orbital 
tightening (a), nose bulge (b), cheek bulge (c), ear position (d), and whisker change (e), were scored 
Figure 1. Five MGS action units and the scoring system. Each of the five action units, namely orbital
tightening (a), nose bulge (b), cheek bulge (c), ear position (d), and whisker change (e), were scored
using a three-level scale (i.e., 0, 1, or 2). A higher score suggests the scorer had stronger confidence in
observing the painful facial expression of mice.

The sequence of images of the three conditions was randomized so that the human
scorers were blinded to the image ID. Each image was scored by four human scorers.
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Among the four scorers, the MGS scores provided by a scorer with 3 years of experience
were used as the ground truth and those provided by the other three apprentice scorers
were used for comparing DeepMGS performance. For data augmentation, before each
training iteration, images were randomly rotated at an angle between −20◦ and 20◦ and
horizontally flipped with a 50% probability. Image input size was resized to 224 × 224 pixels
(bilinear interpolation) with three color channels (8 bits/channel). The aforementioned
image preprocessing was performed using the Python Imaging Library.

2.4. DeepMGS Development

Among the full dataset of 1504 images, 1127 (75%) were assigned for training, 76 (5%)
for validation, and 301 (20%) for testing. The composition ratio of the images of preinjection,
saline, and NTG conditions was maintained among the training, validation, and testing
datasets (Table 1).

Table 1. The numbers of images taken of preinjection, saline, and NTG conditions, respectively, used
as the training, validation, and testing sets.

Number of Images Preinjection Saline NTG Total (%)

Training set 174 489 464 1127 (75%)
Validation set 12 33 31 76 (5%)

Testing set 47 130 124 301 (20%)
Images of the preinjection condition were taken before injection in both saline and NTG groups of mice. Images in
the training set were used to train the DeepMGS model. Five-fold cross-validation was performed and the process
of model training was repeated five times with each of the five subsets. Images in the validation and testing sets
were used to validate the performance of this model during training and after training, respectively. Abbreviation:
NTG, nitroglycerin.

Each image was manually annotated with its scores defined in the five action units
(Figure 2a). Because the number of images for each score was not balanced, we adopted an
oversampling technique to avoid overweighting a specific score. The DeepMGS consists of
five models, namely orbital tightening, nose bulge, cheek bulge, ear position, and whisker
change classification models; each model was used for the corresponding MGS action unit.
Each model was independently trained, validated, and tested using the aforementioned
image sets (Table 1 and Figure 2a). Five-fold cross-validation was performed to train the
model. The original dataset was split into five subsets with the same number of images.
Each image was randomly assigned once to one of the five subsets. The process of model
training was repeated five times with each of the five subsets used once as the testing data.
The validation sets were used for monitoring the training losses and early stopping during
the training. The results were combined over the five testing subsets to give estimates of
the model’s predictive performance. The five models would yield five predicted action
unit scores for each image (Figure 2b). The predicted total MGS score was the sum of these
predicted action unit scores (Figure 2c). The five-fold validation loss and training accuracy
are presented (Figure 2d).

We employed the ResNet18, a convolutional neural network architecture, to predict
the scores of five action units. Cross-entropy loss was used as the loss function when
optimizing the classification model. The deep learning algorithms in this study were
developed using the Ubuntu 18.04 system with NVIDIA 1080Ti GPU 11 GB VRAM. Each
training session had 25 epochs, a batch size of 25, and a learning rate of 1 × 10−4 with a
20% dropping factor. The models were trained using the Stochastic Gradient Descent with
a Momentum (SGDM) optimizer. The SGDM can update the network parameters (weights
and biases) to minimize the loss function. The momentum term in the SGDM can reduce
oscillations of the path towards the optimum. The models stop training if the training
loss did not decrease for four consecutive epochs. The training scripts utilized PyTorch
v1.8.0 library and were written in Python v3.8.
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Figure 2. Preparation of the dataset and the architecture of the DeepMGS. (a) All images collected
from NTG, saline, and preinjection conditions (values in brackets indicate numbers of images) were
annotated by the experienced human scorer and subdivided into five MGS action units. Each image
was scored using the MGS by the experienced scorer, and the results were used as the ground truth
(values in brackets indicate numbers of images annotated with scores of 0, 1, and 2). (b) Among the
full dataset, 1127 images (75%) were assigned as the training set, 76 images (5%) as the validation set,
and 301 images (20%) as the testing set. The five-fold cross-validation process of model training was
repeated five times, yielding the estimates of the model’s predictive performance. The DeepMGS
contains five classification models to predict the five action unit scores. (c) The predicted action unit
scores were summed to yield the predicted total MGS score. (d) The five-fold validation loss (left
panel) and training accuracy (right panel). The x-axes represent the iteration number, and the y-axes
in the two panels represent the cross-entropy loss and training accuracy, respectively. The five action
units are presented with different colors in the diagram.
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2.5. Statistics

The correlation between the DeepMGS and ground truth was determined using
Pearson’s correlation, and the linear fit was examined through univariate linear regression.
The accuracy, sensitivity, specificity, precision, and F1 score analyses were performed using
the following equations:

Accuracy =
true positive + true negative

all images

Sensitivity =
true positive

true positive + f alse negative

Specificity =
true negative

true negative + f alse positive

Precision =
true positive

true positive + f alse positive

F1 score =
2 ∗ true positive

2 ∗ true positive + f alse positive + f alse negative

where true positive and true negative are the numbers of images correctly predicted and
correctly rejected, respectively. Conversely, f alse positive and f alse negative represent the
numbers of images incorrectly predicted and rejected in the task, respectively. To obtain
the confidence intervals (CIs) of accuracy, sensitivity, specificity, precision, and F1 score, the
Clopper–Pearson method was used. To test whether the area under the receiver operating
characteristic curves (AUROCs) and the area under the precision-recall curves (AUPRCs)
of the DeepMGS when performing classification were significantly higher than the chance
level (null hypothesis), bootstrapped resampling was performed 1000 times. The confidence
levels of the AUROCs and AUPRCs were determined from the 5th and 95th quantile values
of the 1000 bootstrap estimates.

3. Results
3.1. DeepMGS Achieves High Accuracy in Scoring Individual Action Units

Table 2 lists the performance of each of the five action unit models in terms of accuracy,
sensitivity, specificity, precision, and F1 score for the images with scores of 0, 1, or 2.
Accuracy was the highest in orbital tightening (86% in score 0, 81% in score 1, and 88% in
score 2) and the lowest in ear position (74% in score 0, 70% in score 1, and 90% in score 2).
Sensitivity was the highest in orbital tightening (89% in score 0 and 85% in score 2) and the
lowest in nose bulge (19% in score 1). Specificity was the highest in orbital tightening (84%
in score 0, 92% in score 1, and 89% in score 2) and the lowest in ear position (77% in score 0,
71% in score 1, and 97% in score 2). The precision and F1 score were also listed in Table 2.
The results for score 2 in whisker changes were unavailable because only one image was
scored 2. In sum, these results indicate that the predictions of the DeepMGS can approach
the ground truth, the scores provided by the experienced human scorer.

Table 2. DeepMGS performance in the three levels (0, 1, and 2) of each MGS action unit.

Score Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Precision
(95% CI)

F1 Score
(95% CI)

Orbital tightening
0 0.86 (0.85, 0.88) 0.89 (0.86, 0.91) 0.83 (0.81, 0.86) 0.85 (0.82, 0.87) 0.87 (0.85, 0.88)
1 0.81 (0.79, 0.83) 0.36 (0.30, 0.42) 0.92 (0.90, 0.93) 0.51 (0.44, 0.58) 0.42 (0.38, 0.46)
2 0.88 (0.86, 0.89) 0.85 (0.81, 0.88) 0.89 (0.87, 0.91) 0.77 (0.73, 0.81) 0.81 (0.78, 0.83)
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Table 2. Cont.

Score Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Precision
(95% CI)

F1 Score
(95% CI)

Nose bulge
0 0.88 (0.86, 0.90) 0.19 (0.13, 0.25) 0.97 (0.95, 0.97) 0.39 (0.28, 0.51) 0.25 (0.20, 0.31)
1 0.74 (0.71, 0.76) 0.74 (0.70, 0.78) 0.73 (0.70, 0.76) 0.64 (0.60, 0.67) 0.68 (0.66, 0.71)
2 0.81 (0.79, 0.83) 0.81 (0.78, 0.83) 0.82 (0.79, 0.84) 0.82 (0.79, 0.85) 0.81 (0.79, 0.83)

Cheek bulge
0 0.85 (0.83, 0.86) 0.49 (0.44, 0.55) 0.95 (0.94, 0.96) 0.74 (0.68, 0.79) 0.59 (0.55, 0.63)
1 0.73 (0.70, 0.75) 0.81 (0.77, 0.84) 0.67 (0.63, 0.70) 0.65 (0.62, 0.69) 0.72 (0.70, 0.75)
2 0.87 (0.85, 0.88) 0.76 (0.72, 0.79) 0.92 (0.90, 0.94) 0.83 (0.79, 0.86) 0.79 (0.76, 0.82)

Ear position
0 0.74 (0.71, 0.76) 0.70 (0.67, 0.73) 0.77 (0.74, 0.80) 0.74 (0.71, 0.77) 0.72 (0.70, 0.74)
1 0.70 (0.67, 0.72) 0.68 (0.64, 0.72) 0.71 (0.68, 0.74) 0.55 (0.51, 0.59) 0.61 (0.58, 0.64)
2 0.90 (0.88, 0.91) 0.54 (0.47, 0.60) 0.97 (0.96, 0.98) 0.79 (0.72, 0.85) 0.64 (0.59, 0.68)

Whisker change
0 0.82 (0.80, 0.84) 0.80 (0.77, 0.83) 0.85 (0.82, 0.88) 0.85 (0.83, 0.88) 0.83 (0.81, 0.84)
1 0.82 (0.80, 0.84) 0.80 (0.77, 0.83) 0.85 (0.82, 0.88) 0.85 (0.83, 0.88) 0.83 (0.81, 0.84)

2 * - - - - -
* Data are unavailable as only one image was scored 2 in the “whisker change” action unit. We used the F1 score,
the weighted average of precision and recall, to measure the performance of the DeepMGS. Abbreviation: CI,
confidence interval.

3.2. Comparison of the Total MGS Score between the DeepMGS and Ground Truth

Linear regression and a Bland–Altman plot (Figure 3) were used for comparing the
performance of the DeepMGS in predicting the total MGS score of the ground truth. Linear
regression revealed a positive correlation (correlation coefficient (R) = 0.83, p < 0.001)
between the DeepMGS and ground truth, suggesting that the DeepMGS is comparable to
the ground truth. The Bland–Altman plot demonstrated that the 95% limits of agreement
(LoA) were −2.96 to 3.412, and most images (92% of the 1504 images) were within the LoA.
Specifically, only 35 images (2% of total images) were higher and 88 images (6% of total
images) were lower than the LoA. Furthermore, from the Bland–Altman plot, we did not
observe systemic bias between the two measurements (Pearson’s correlation, R = −0.095,
p = 0.1), again supporting the favorable performance of the DeepMGS.
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Figure 3. Comparison of the performance of the DeepMGS with the ground truth in the total MGS
score prediction. (a) The linear regression analysis shows a high correlation coefficient (R = 0.83,
p < 0.001) in the performance between DeepMGS and ground truth. The x-axis of linear regression
represents the total MGS score predicted by the DeepMGS, and the y-axis represents the ground truth.
The black bars represent the number of images with a total MGS score from 0 to 10. The size of dots
represents the number of images in each data point. The three asterisks represent p < 0.001. (b) The
Bland–Altman analysis indicates that 93% of the images are within the limits of agreement, which
range from −2.96 to 3.412. This result supports a favorable performance of DeepMGS.
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3.3. DeepMGS Accurately Classifies Pain and No Pain Conditions

To examine the degree to which the DeepMGS can detect pain in NTG-treated mice,
we analyzed its performance in distinguishing images between NTG and saline conditions,
which correspond to pain and no pain conditions, respectively (Table 3). In distinguishing
these conditions, the DeepMGS had an accuracy of 63% (95% CI: 0.57–0.69, p < 0.001), a
sensitivity of 62% (95% CI: 0.53–0.71, p < 0.001), a specificity of 64% (95% CI: 0.55–0.72,
p < 0.001), a precision of 58% (95% CI: 0.54–0.62, p < 0.001), and an F1 score of 60% (95%
CI: 0.57–0.63, p < 0.001). For the same classification task, the ground truth had an accuracy
of 63% (95% CI: 0.57–0.69, p < 0.001), a sensitivity of 64% (95% CI: 0.55–0.74, p < 0.001),
a specificity of 63% (95% CI: 0.54–0.70, p < 0.001), a precision of 63% (95% CI: 0.59–0.67,
p < 0.001), and an F1 score of 58% (95% CI: 0.55–0.61, p < 0.001). The AUROCs of the
DeepMGS and ground truth were 0.64 (95% CI: 0.56–0.69, p < 0.001) and 0.64 (95% CI: 55–69,
p < 0.001), respectively (Figure 4a). This suggests that the performance of the DeepMGS was
comparable to that of the ground truth provided by the experienced human scorer. The area
under the precision-recall curve of DeepMGS and ground truth were 0.63 (95% CI: 0.49–0.66,
p < 0.001) and 0.63 (95% CI: 0.48–0.67, p < 0.001), respectively (Figure 4b). Both areas under
the precision-recall curves are higher than the baseline (0.49), a finding indicating that
the performance of DeepMGS is still quite good even for the imbalanced datasets (the
saline and NTG conditions). We also analyzed the performance in distinguishing NTG and
saline conditions by the three apprentice scorers (human scorers 1, 2, and 3; Table 4). Their
AUROCs were 0.53 (95% CI: 0.45–0.59), 0.58 (95% CI: 0.50–0.63), and 0.55 (95% CI: 0.47–0.61),
respectively, and their correlation coefficients with the ground truth were 0.65, 0.73, and
0.61, respectively. Both the aforementioned values were significantly lower than those of
the DeepMGS (Williams’s one-tailed test, all p < 0.001), suggesting that the performance of
the DeepMGS was higher than that of apprentice scorers.

Table 3. Comparison of the performance between the DeepMGS and ground truth in distinguishing
pain and no pain conditions.

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Precision
(95% CI)

F1 Score
(95% CI)

Ground truth 0.63
(0.57, 0.69)

0.64
(0.55, 0.74)

0.63
(0.54, 0.70)

0.63
(0.59, 0.67)

0.58
(0.55, 0.61)

DeepMGS 0.63
(0.57, 0.69)

0.62
(0.53, 0.71)

0.64
(0.55, 0.72)

0.58
(0.54, 0.62)

0.60
(0.57, 0.63)

The images collected in the NTG and saline conditions were considered as pain and no pain conditions, respectively.
Abbreviation: CI, confidence interval.

Table 4. Comparison of the performance of DeepMGS and three apprentice human scorers in
distinguishing NTG and saline conditions with ground truth by linear regression analyses.

AUROC (95% CI) Correlation Coefficient with Ground Truth

Ground truth 0.64 (0.55, 0.69) -
DeepMGS 0.64 (0.56, 0.69) 0.83

Human scorer 1 0.53 (0.45, 0.59) 0.65
Human scorer 2 0.58 (0.50, 0.63) 0.73
Human scorer 3 0.55 (0.47, 0.61) 0.61

Correlation coefficients were estimated by linear regression and revealed positive correlations with ground truth.
Human scorer 1, 2, and 3 represent three independent apprentice human scorers. Abbreviations: AUROC, area
under the receiver operating characteristic curve; CI, confidence interval.
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Figure 4. Comparison of the performance of DeepMGS and the ground truth in distinguishing NTG
and saline conditions by the receiver operating characteristic (ROC) and precision-recall (PRC) curve
analyses. (a) The ROC curves of the DeepMGS (green line) and ground truth (red line). The area
under the ROCs of the DeepMGS and ground truth were 0.64 and 0.64, respectively, indicating
that the performance of the DeepMGS in distinguishing NTG and saline conditions is comparable
to that of an experienced scorer. (b) The PRC curves of DeepMGS (green line) and ground truth
(red line). The area under the PRCs of the DeepMGS and ground truth were 0.63 and 0.63, both
higher than the baseline (0.49), suggesting the performance of the DeepMGS is favorable even for the
imbalanced datasets.

3.4. Heatmap Visualization

To determine the parts of the image that were attended by the DeepMGS when
inferring each MGS action unit score, we utilized the gradient-weighted class activation
mapping (Grad-CAM) method to compute the heatmap, a visual explanation of the key
areas of an image used by a deep learning model [23]. The red areas represent salient areas
that affect score prediction, whereas the blue areas are less focused [24] (sample heat map
in Figure 5). According to the results, the DeepMGS focused on the appropriate facial
area when predicting each of the five action unit scores, a property that further supports
its validity.
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Figure 5. Heatmaps generated using the Grad-CAM method in the mouse facial images. Each image
was obtained randomly from the dataset. The red areas represent salient areas that DeepMGS rely on
to infer each MGS action unit score. The heatmaps reveal that DeepMGS focuses on the appropriate
facial areas when scoring corresponding action units.

4. Discussion

In this study, we developed the DeepMGS, which applies deep machine learning
methods to automatically yield MGS scores with high accuracy. These scores were com-
parable to those of the experienced human scorer. First, the DeepMGS had high accuracy,
70–95%, in scoring the five MGS action units in migraine-like facial expressions of pain in
mice receiving repeated NTG treatment. Second, the total MGS score obtained from the
DeepMGS was highly correlated with that obtained from an experienced human scorer,
suggesting that the DeepMGS is highly accurate. Third, when distinguishing animals
with NTG injection-induced migraine-like pain using the total MGS score, the DeepMGS
exhibited performance comparable to that of the experienced human scorer, a finding
supporting the high specificity of the DeepMGS. Fourth, the validity of the DeepMGS in
each of the five action units can be confirmed by the salience map generated by Grad-CAM.
Although the ground truth of MGS action unit scores can be provided by human scorers,
the DeepMGS may outperform human scorers in detecting spontaneous pain, most likely
because the deep learning method could focus on minute differences that might not be
caught by human visual inspection.

Evoked nociceptive responses induced by thermal (such as the hot-plate test) or
mechanical (such as the von Frey test) stimulation are commonly applied to investigate
pain-induced behaviors in animal models [25,26]. However, spontaneous pain responses,
such as the degree and the number of headache attacks in migraine, are difficult to quanti-
tively assess in animals. The MGS was thus developed for the assessment of painful facial
expressions as spontaneous painful responses in mice [14]. In a previous work, we utilized
the MGS in a mouse migraine model induced by repeated intermittent NTG injections [22].
In this model, both paw allodynia [27] and orbital allodynia [28–30] were found due to
TGVS activation. This model can be employed as a platform for developing abortive and
preventive treatments for migraine since mechanical allodynic responses induced by acute
and chronic NTG treatments are sensitive to sumatriptan and topiramate, the abortive
and preventive medicines of migraine, respectively [31]. The symptoms of repeated NTG
administrations in rodent models align with recurrent episodes of migraine in humans,
by a presentation of high MGS scores, paw allodynia, decreased activity, and photopho-
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bia [11,22,32]. However, unlike paw allodynia, facial painful expressions cannot be easily
quantitated. Besides, multiple NTG-induced migraine episodes substantially increase the
number of mouse facial images and thus raise the labor and time costs of evaluating MGS
scores. Therefore, the application of deep learning techniques that automatically analyze
the animals’ facial expressions could facilitate the research of migraine.

In 2018, Tuttle et al. [20] first developed an automatic deep learning-based scoring
method for detecting facial painful expressions of pain in mice. Their method detects
pain in a binary manner and mainly focuses on the total MGS score. In contrast, our
approach automatically scores each MGS action unit according to the definition of the scale.
Additionally, their study focused on high-confidence images and eliminated ambiguous
images. Our DeepMGS model analyzes all the images and can predict if the pain exists or
not by analyzing the scores of five action units. Thus, our approach involves the scoring of
five action units and can thus offer more facial information about the animal. The heatmap
results showing that the salient areas of the facial images of mice are comparable to the
scores in each action unit further support that the performance of our model is truly based
on the corresponding facial areas, except for the whisker change action unit. In the latter
action unit, the dataset employed contained only one image with a score of 2 in this action
unit, restricting further statistical calculation. Thus, to achieve a high-quality analysis of
the whisker change, high-resolution images with proper lightness and contrast are required
so that the whisker change can be easily identified.

Following its development, the MGS has been applied to evaluate postoperative pain
responses in mice [33,34] and later was also successfully applied to evaluate spontaneous
pain responses in rodents [20,33]. The MGS score can also reflect the degree of inflam-
matory pain [19]. However, whether a decrease in facial grimaces directly indicates a
relief of spontaneous pain is being debated [19]. According to a previous study, mice
may instinctively control their facial expressions, masking pain to avoid predation [33].
Humans sometimes also suppress facial grimaces when experiencing chronic pain but are
unable to completely suppress it as it is not entirely voluntary [35,36]. Therefore, a mouse
without a facial grimace may not absolutely indicate that it is free from spontaneous pain.
Further supportive measurements, such as unusual body posture, abnormal behaviors,
and restless movement, may need to be developed for a comprehensive assessment of
spontaneous pain.

Besides the evaluation of facial expressions, the objective analysis of pain behaviors in
rodents has been developed in previous studies. For example, by analyzing a video of rats,
the animal’s posture and frequency of the activities relating to pain can be measured [37,38].
A study identified pain behaviors by tracking the change in the electromagnetic field
generated by the magnets implanted in the rat’s limbs and observed asymmetric limb
movements caused by pain [39]. It remains to be elucidated that deep learning models that
analyze these videos can also have the potential to quantify these pain behaviors.

The present study has several limitations. First, the current sample size was relatively
small; data can be collected from different laboratories to enlarge the sample and ensure
generalization. Second, a previous study utilized the Rodent Face Finder to automatically
capture and crop images by detecting the eyes and ears of rodents. From these cropped
local images, the authors then manually removed low-quality images, such as blurred
images, to reduce the manual scoring load and to improve result quality [19]. Because
the DeepMGS was trained with random-ordered images, whether the dynamic change
in pain over the time course can be captured by this model remains unclear. Third, some
problems inherent to the MGS remain in the DeepMGS. For example, the viewing angle of
the mouse face affects MGS scoring in some action units, such as the ear rearing up position.
Mice tend to pull their ears backward under pain conditions [14], which may be easier to
observe in the side view than in the front view. This problem cannot be overcome using
the DeepMGS.

In addition to migraine-like facial expressions of pain, whether the DeepMGS can be
used to assess spontaneous pain responses in other trigeminal-related pain models, such as
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dental pulp injury-induced orofacial pain, or chronic pain models, such as fibromyalgia,
should be validated. Moreover, whether the DeepMGS can be employed for medical and
economic applications, instead of only in laboratories, requires exploration. As the facial
expression scale of pain has been validated in humans and rodents [14,19,35], the DeepMGS
can provide real-time pain monitoring. This is crucial because the accuracy of the MGS in
real-time pain assessment has been challenged considering that it might be lower than that
of the retrospective analysis of recorded images by human scorers [40].

This study demonstrated that the DeepMGS exhibited a favorable performance in scor-
ing the five action unit scores and the total MGS score as compared with the experienced
human scorer. In addition, the ability of the DeepMGS to classify NTG and saline conditions
was comparable to that of an experienced human scorer. Furthermore, compared with
the three apprentice scorers, the DeepMGS exhibited a higher AUROC in distinguishing
NTG from saline conditions and a higher coefficient of correlation with the experienced
scorer, suggesting that the performance of the DeepMGS is superior to that of inexperienced
human scorers. Given that the DeepMGS is not prone to human bias and does not involve
human labor, its promising performance in distinguishing pain and no pain conditions
suggests its future applications to provide real-time and long-term pain monitoring. For ex-
ample, spontaneous pain, such as migraine, could then be monitored using DeepMGS-like
algorithms. Furthermore, monitoring laboratory or economic animals could dramatically
improve animal welfare and economic production.
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