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Generative adversarial network 
for glioblastoma ensures 
morphologic variations 
and improves diagnostic model 
for isocitrate dehydrogenase 
mutant type
Ji Eun Park1,4, Dain Eun2,3,4, Ho Sung Kim1*, Da Hyun Lee1, Ryoung Woo Jang2 & 
Namkug Kim1,2

Generative adversarial network (GAN) creates synthetic images to increase data quantity, but 
whether GAN ensures meaningful morphologic variations is still unknown. We investigated whether 
GAN-based synthetic images provide sufficient morphologic variations to improve molecular-based 
prediction, as a rare disease of isocitrate dehydrogenase (IDH)-mutant glioblastomas. GAN was 
initially trained on 500 normal brains and 110 IDH-mutant high-grade astocytomas, and paired 
contrast-enhanced T1-weighted and FLAIR MRI data were generated. Diagnostic models were 
developed from real IDH-wild type (n = 80) with real IDH-mutant glioblastomas (n = 38), or with 
synthetic IDH-mutant glioblastomas, or augmented by adding both real and synthetic IDH-mutant 
glioblastomas. Turing tests showed synthetic data showed reality (classification rate of 55%). Both 
the real and synthetic data showed that a more frontal or insular location (odds ratio [OR] 1.34 vs. 
1.52; P = 0.04) and distinct non-enhancing tumor margins (OR 2.68 vs. 3.88; P < 0.001), which become 
significant predictors of IDH-mutation. In an independent validation set, diagnostic accuracy was 
higher for the augmented model (90.9% [40/44] and 93.2% [41/44] for each reader, respectively) than 
for the real model (84.1% [37/44] and 86.4% [38/44] for each reader, respectively). The GAN-based 
synthetic images yield morphologically variable, realistic-seeming IDH-mutant glioblastomas. GAN 
will be useful to create a realistic training set in terms of morphologic variations and quality, thereby 
improving diagnostic performance in a clinical model.

Isocitrate dehydrogenase (IDH) mutation status of gliomas is a very important prognostic, diagnostic, and 
therapeutic  biomarker1. Although the frequency of IDH mutation in primary glioblastoma is low (~ 8%)1,2, 
noninvasive imaging-based determination of IDH mutation status can predict response to anti-IDH treatment 
or  vaccination3–6. In addition, radiologic suspicion of IDH-wild type may predict prognosis in patients with 
inoperable  tumors5. Magnetic resonance imaging (MRI) has been shown to distinguish between tumors with 
wild-type and mutant IDH, but these studies have focused primarily on grade II/III  gliomas7–10 or included a 
very limited number of IDH-mutant  glioblastomas11,12 for visual analysis or deep learning. A multicenter cohort 
study of 496 patients with glioblastoma showed IDH mutation in 31 (6.3%)11, limiting the ability of MRI to 
train a network to reliably predict IDH mutation status. In consequence, most studies seeking to improve the 
noninvasive identification of this subtype have lacked sufficient statistical power.
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Data augmentation is a key element of deep learning models, and the application of geographic modifica-
tions, including rotations, translations, shearing, zooming, and  flipping13 is designed to deal with unbalanced 
classes and improve the accuracy of  predictions14. A generative adversarial network (GAN) is different from 
conventional approaches that can generate plausible new images from unlabeled original  images15. GAN learns 
data distribution from training samples and can generate realistic imaging data that are similar in distribu-
tion, but nevertheless differ from the original data; this may constitute an attractive solution of overfitting for 
small  datasets13,14. GAN has been applied for reconstructing multi-contrast MR  images16–18, reducing  noise19, 
 detecting20,21, and tumor  grading22, but assessment of the morphologic characteristics of GAN-based synthetic 
data and their ability to classify molecular subtype in a diagnostic models have not been tested. If GAN-generated 
imaging data reflect the morphologic characteristics of glioblastomas with mutant IDH, while varying in mor-
phologic distribution, then these GAN-generated data can be used for training on future deep learning tasks. 
The presence of morphologic variations is also indicative of avoiding mode collapse or memorization from GAN 
 algorithms23, which would extract meaningful morphologic characteristics and enhance prediction of molecular 
subtype. To determine whether GAN-produced images reflect the morphologic characteristics of actual tumors, 
enabling their use as a future training set, a diagnostic model was created from the morphologic characteristics 
of actual and synthetic data. This model was used to determine whether the synthetic images affect performance 
and could be validated in an independent dataset. The purpose of this study was to investigate whether GAN-
based generated IDH-mutant glioblastomas provide morphologic variations and improve molecular prediction 
of the IDH status of glioblastomas.

Materials and methods
This study is reported in accordance with the Standards for Reporting of Diagnostic Accuracy Studies (STARD) 
2015  guidelines24. The study protocol was approved by the institutional review board of Asan Medical Center, 
a tertiary referral hospital, which waived the requirement for informed consent because of the retrospective 
nature of the study.

Study population. The study population consisted of a cohort of consecutive patients with histopatho-
logically confirmed glioblastoma who underwent brain MRI from May 2017 to May 2020 (Fig.  1). Patients 
were included if they were histopathologically diagnosed with glioblastoma and  their IDH mutation status 
was known, according to WHO 2016  criteria1. A total of 214 patients met the inclusion criteria. Patients were 
excluded if (a)  pre-operative contrast-enhanced T1-weighted imaging or fluid-attenuated inversion recovery 
imaging was not performed (n = 14), or (b) they had history of previous surgery (n = 38). The study population 
consisted of 162 patients, 65 men and 97 women, of mean ± standard deviation age (SD) 56 ± 10.7 years, with 118 
patients who underwent brain MRI from May 2017 to January 2019 assigned to the training set, and 44 patients 
who underwent brain MRI from February 2019 to May 2020 assigned to the validation set.

Figure 1.  Process for inclusion of the study population and the training dataset for the generative adversarial 
network.
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Patients with IDH-wild type were significantly older than patients with IDH-mutant type glioblastoma, both 
in the training set (median [interquartile range], 60 [53–64] vs. 47 [38–53] years; P < 0.001) and in the validation 
set (58 [49–64] vs. 42 [31–53] years; P = 0.003).

IDH mutation status. IDH mutation status was analyzed by members of the pathology division of our 
hospital who were blinded to the radiologic results. The reference standard consisted of immunohistochemical 
determination of IDH1 (R132H) protein  expression25. Mutations in the IDH1 and IDH2 genes were determined 
by DNA pyrosequencing at  diagnosis25.

All patients were tested for 1p/19q co-deletion status and found the 1p/19q co-deletion was negative, indicat-
ing astrocytomas.

Imaging data acquisition. All enrolled patients underwent MRI on a 3.0  T unit (Achieva or Ingenia, 
Philips Medical Systems) using a 16-channel or 32-channel head coil. The MRI protocols included T2-weighted 
imaging, fluid-attenuated inversion recovery (FLAIR) imaging, T1-weighted imaging, and contrast-enhanced 
T1-weighted imaging. The parameters for the T2-weighted imaging are as follows: repetition time (TR)/echo 
time (TE), 9000/135 ms; field of view (FOV), 240 mm; matrix, 256 × 256; and slice thickness, 4 mm. The con-
trast-enhanced T1-weighted (CE-T1w) images were obtained at a high-resolution three-dimensional (3D) vol-
ume, using a gradient-echo T1-weighted sequence with the following parameters: repetition time (TR)/echo 
time (TE), 9.8/4.6 ms; flip angle, 10°; field of view (FOV), 256 mm; matrix, 512 × 512; and slice thickness, 1 mm 
with no gap. The parameters for FLAIR imaging included TR/TE, 9000/135 ms; flip angle, 90°; FOV, 240 mm; 
matrix, 512 × 512; and slice thickness, 4 mm with no gap.

Image preprocessing. To prepare the training data, both CE-T1w and FLAIR images were subjected to 
skull stripping using HD-BET  algorithms26. Each FLAIR image was co-registered to the corresponding CE-
T1w image by within-subject registration using a rigid-body model, image reslicing, and SPM12  software27. The 
CE-T1w, FLAIR, and null images were combined into a three-channel image. A total of 19,595 three-channel 
images from 110 IDH-mutant patients were fed into the style-based GAN architecture (StyleGAN2) network to 
simultaneously generate synthetic IDH-mutant CE-T1w and FLAIR images.

Theory. GANs have been shown to generate realistic images from latent vectors. Although the latent vector 
sampled from a uniform distribution is traditionally provided to the GAN generator  network28,29, this approach 
leads to an unavoidable feature entanglement. Because feature disentangling is required for smooth image gen-
eration, StyleGAN first introduced the mapping network, f : Z → W , which transforms latent z ∈ Z from a 
uniform distribution to the intermediate latent vector w ∈ W . StyleGAN also successfully introduced adaptive 
instance normalization (AdaIN) to the generator network, enabling the computation of the invariant style y 
from the intermediate latent vector w.

Following the success of StyleGAN, StyleGAN2 further improved image-generation quality by redesign-
ing the generator architecture, reducing the common artifacts observed in StyleGAN-generated images. The 
performance of the StyleGAN2 synthesis network g was improved by introducing several modifications (Sup-
plementary Fig. 1). The applications of bias, noise, and normalization to the constant input at the beginning of 
the network architecture were removed. Then, bias and noise operations were added outside the styleblock. The 
AdaIN operation was divided into modulation and demodulation operations. The modulation operation scaled 
each input feature map of the convolution by its scaling value, which was determined by the incoming style. The 
demodulation operation normalized each output feature map to the L2 norm of each output channel. With these 
modifications, StyleGAN2 successfully removed common artifacts that were commonly observed in  StyleGAN30.

Contrast-enhanced T1-weighted and FLAIR cogeneration and StyleGAN2 implementation 
details. Although the generation of multi-modality images is considered favorable, most medical image syn-
thesis studies have focused only on the generation of single-modality  images20,21,23,31. By combining CE-T1w 
and FLAIR images into multichannel images, StyleGAN2 generated CE-T1w and FLAIR images simultaneously 
(Supplementary Fig. 2).

The sizes of the input latent vector z and the intermediate latent vector w were each set at 1 × 512. The output 
image size was 3 × 256 × 256; the first channel was the CE-T1w image, the second channel was the FLAIR image, 
and the last channel was the null image. The mapping network consisted of eight fully connected layers. Leaky 
ReLU activation with alpha = 0.2 was used for activation function and bilinear filtering for all up and down 
sampling layers. The learning rate was set at 2× 10−3 . An Adam optimizer was used with hyperparameters 
β1 = 0,β2 = 0.99, ε = 10−8 and minibatch size 32. Since there is no golden rule for evaluating image quality, 
we optimized the hyperparameters following two methods: First, Fréchet inception distance (FID) score was 
measured, which are designed for the image quality assessment of synthetic  images32. The FID score calculates 
discrepancy of the two distributions in the high dimensional feature space of the pretrained Inception V3 classi-
fier. The lower FID score means higher similarity between two distributions. The FID score smoothly decreased 
from 327 points to below 9.5 points as the network was iteratively trained. The FID score loss is shown in the 
Supplementary Fig. 3. Second, visual Turing tests were performed for synthetic images by two expert neurora-
diologists, aimed to less than 60% for synthetic images. At each session, 50 images of samples were chosen from 
synthetic images for image quality assessment. At the fifth evaluation session, Turing tests of the imaging data 
showed that the correct classification rates by readers 1 and 2 were 55% and 62%, respectively.

The network was trained on a NVIDIA TITAN RTX 24 GB GPU. The training of 80,000 images took approxi-
mately 25 min, and the generation of 100 synthetic images took approximately 8 s. The network was iteratively 



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9912  | https://doi.org/10.1038/s41598-021-89477-w

www.nature.com/scientificreports/

trained for 4 million images. The code was modified from the original  paper30, which is available at https:// 
github. com/ NVlabs/ style gan2. All experiments were implemented with the official tensorflow code of StyleGAN2 
provided by the NVIDIA Corporation.

Sample size and rationale for the training network. StyleGAN2 was initially developed to train data 
using 500 datasets of normal appearing brain MRI, obtained from 393 men and 107 women of mean ± SD age 
49.4 ± 12.1 years. These datasets included contrast-enhanced T1-weighted and FLAIR images that were obtained 
for evaluation of brain metastases in patients with lung cancer, with all patients diagnosed as negative for metas-
tases in brain parenchyma. The images created from StyleGAN2 were reviewed by two experts (J.E.P. and H.S.K., 
with 5 and 20 years of experience, respectively, in neuro-oncologic imaging). These evaluations confirmed that 
the generated imaging data yielded realistic images without artifacts.

The sample size was set at 100 for the training network to provide realistic data. Thus, synthetic data for IDH-
mutant glioblastomas were generated from a dataset consisting of images of 110 patients, 57 men and 53 women, 
of mean ± SD age 54 ± 12.3 years, with WHO grades III and IV IDH-mutant high-grade astrocytomas, including 
49 IDH-mutant glioblastomas. The synthetic imaging data reflected the morphologic features of IDH-mutant 
type astrocytomas, as shown in Supplementary Fig. 4.

Imaging analysis. Training was continued until the two expert radiologists found it difficult to distinguish 
between real and synthetic data.

Evaluation of reality. Turing tests of each dataset were performed independently by the two observers 2 weeks 
before morphologic assessment. The evaluation was binary, with a score of 0 indicating that the data appeared 
fake and seemed to consist of GAN-generated synthetic data, whereas a score of 1 indicated that the data 
appeared  real33. The correct classification rate and misclassification rates were calculated.

Morphologic assessment. A radiologist (H.S.K., with 22 years of experience in neuroradiology) who did not 
participate in any other image review in this study selected single 2D FLAIR-weighted and contrast-enhanced 
T1-weighted images to be reviewed, with real and synthetic imaging data randomly shuffled. Two observers 
(J.E.P. and D.L., with 5 and 1 years of experience, respectively, as board-certified neuroradiologists) indepen-
dently reviewed 200 MRI datasets, while being blinded to diagnosis and the evaluations of other observers. Fea-
ture categories were adapted from previous studies of IDH mutations in WHO grade II/III  gliomas8–10. Tumor 
location was specified by epicenter, with locations grouped according to the frequency of IDH mutation, thereby 
reducing the number of variables for statistical analysis. The locations included the frontal or insular cortex, the 
thalamus or brainstem, and others. Patterns of contrast enhancement included rim enhancement surrounding 
central necrosis, nodular enhancement, and partial patchy enhancement. The areas surrounding regions of high 
signal intensity on non-enhancing FLAIR images were recorded as tumor dominant or edema dominant, and 
the margins surrounding these regions as clear or indistinct. Representative cases generated from synthetic data 
are shown in Fig. 2.

Statistical analysis. Distribution of morphologic features. We tested the distribution of data using the 
Shapiro–Wilk test. Because the data rejected normality, we recalculated the comparison of demographic and 
imaging features using non-parametric methods with the Mann–Whitney U test for continuous variables and 
chi-square test for categorical variables. The data are expressed as the count and median with interquartile range. 
All statistical analyses were performed using R software (version 3.6.1), with P-values < 0.05 regarded as statisti-
cally significant.

Significant predictors for IDH mutation. Inter-observer agreement on morphologic categories was evaluated by 
Cohen κ testing. Values of < 0 indicated no agreement, whereas values of 0–0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80, 
and 0.81–1.0 indicated slight, fair, moderate, substantial, and almost perfect agreement, respectively. Morpho-
logic categories with κ values ≥ 0.5 were subject to univariable analysis. Discordant morphologic categories were 
subsequently resolved by consensus for variables in the model.

Univariate logistic regression analyses were performed to test whether morphologic criteria could predict IDH 
mutation status. Nagelkerke (Pseudo) R2 was used as a summary statistic to determine the degree to which the 
overall model predicted the variation in IDH mutation positivity. Parameters significant in univariable analysis, 
defined as those with P < 0.05, were subsequently entered into the multivariable analysis. Multivariable bino-
mial logistic regression was performed to predict IDH-mutant vs. IDH-wild type glioblastoma using a stepwise 
elimination process. Models were built separately for real IDH-wild type and IDH-mutant data (n = 118, model 
1), real IDH-wild type and synthetic IDH-mutant data (n = 118, model 2), and real IDH-wild type, real IDH-
mutant, and synthetic IDH-mutant data (n = 156, model 3).

Diagnostic performance for IDH mutation. Using the results from the multivariable regression analysis for each 
model, the probability of IDH mutation positive status was calculated for individual patients in the validation 
set. The diagnostic performance of the multivariable model was determined by calculating the area under the 
receiver operating characteristics (ROC) curve, with the diagnostic threshold determined using the Youden 
index. The three above models were compared.

https://github.com/NVlabs/stylegan2
https://github.com/NVlabs/stylegan2
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Additionally, univariate logistic regression analysis was performed to determine whether age could predict 
IDH mutation status. The age-based prediction was subsequently combined with the image-based prediction 
using a logistic regression classifier in the training set with real data (model 1) and in the validation set.

Results
Patient demographics. This study included 162 patients, consisting of 65 men and 97 women. Of these, 
118 patients were included in the training set and 44 patients in the validation set. Table 1 shows the demo-
graphic characteristics of these patients, as well as the imaging characteristics of the real and synthetic data-
sets. A video (Online Supplement) shows continuous synthetic tumor on contrast-enhancing T1-weighted and 
FLAIR images.

Evaluation of reality. Turing tests of the imaging data showed that the correct classification rates by read-
ers 1 and 2 were 55% and 62%, respectively, showing that it was difficult to distinguish between real and synthetic 
data. Reader 1 misclassified 22 real images as synthetic, while misclassifying 23 synthetic images as real. Reader 2 
misclassified 20 real images as synthetic, while misclassifying 18 synthetic images as real. Examples of synthetic 
data correctly classified as synthetic are shown in Fig. 3.

Distribution of morphologic features. A comparison of imaging data of real and synthetic IDH-mutant 
glioblastomas showed no differences in tumor location (x2 test, P = 0.55), degree of necrosis (P = 0.35), and tissue 
(P = 0.39) and margins (P = 0.10) surrounding regions of high signal intensity The patch enhancing pattern was 

Figure 2.  Morphologic characteristics of real IDH-mutant glioblastomas (left) and synthetic IDH-mutant 
glioblastomas generated by a generative adversarial network (right) based on contrast-enhanced T1-weighted 
(CE-T1w) and paired FLAIR images. (A) CE-T1w images showing different contrast patterns of rim 
enhancement, thick nodular enhancement, and patch enhancement. (B) FLAIR images showing types of 
surrounding high signal intensity (tumor dominant and edema dominant) and margins of non-enhancing 
lesions (clear and indistinct). Although the appearances of synthetic images are similar to those of real images, 
there were no exact matches.
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observed more frequently in the synthetic than in the real imaging data (P = 0.01). Frontal or insular location 
was significantly more frequent in both patient (P = 0.01) and synthetic (P = 0.008) data in the training set, but 
not in the validation set.

Compared with imaging of IDH-wild type glioblastoma, imaging of IDH-mutant type glioblastoma showed 
that rim enhancing pattern was less frequent in both patients (highest P = 0.01) and in the synthetic dataset 
(P = 0.002). Similarly, internal necrosis was significantly less frequent in IDH-mutant than in IDH-wild type 
in both patients (highest P = 0.001) and in the synthetic dataset (P < 0.001). By contrast, distinct margins sur-
rounding areas of high intensity were significantly more common in IDH-mutant than in IDH-wild type in the 
patients (highest P = 0.001) and in the synthetic dataset (P < 0.002).

Significant predictors of IDH mutation. The two readers showed moderate agreement regarding 
tumor location (κ = 0.67, P < 0.001), patterns of enhancement (κ = 0.67, P < 0.001), presence of necrosis (κ = 0.65, 
P < 0.001), and margins of non-enhancing lesions (κ = 0.56, P < 0.001).

Table 2 shows the results of univariable and multivariable logistic regression analyses. Multivariable analysis 
showed that, in both real and synthetic data, a more frontal or insular location (β = 1.34, P = 0.02 for real data; 
β = 1.52, P = 0.04 for synthetic data) and distinct margins of non-enhancing tumors (β = 2.68, P < 0.001 for real 
data; β = 3.88, P < 0.001 for synthetic data) were significant predictors of IDH mutation. Univariate analysis 
showed that absence of necrosis and presence of a patch enhancing pattern in both real and synthetic data were 
significant, whereas the multivariable model showed that the absence of necrosis was significant only for real 
data (β = 1.91, P = 0.02), and the presence of a patch enhancing patter was significant only for synthetic data 
(β = 3.46, P = 0.002).

Diagnostic performance for IDH mutation. The results of diagnostic performance are shown in 
Table 3. The synthetic model (AUC 0.96; 95% CI 0.90–0.99) showed higher diagnostic performance than the real 
model (AUC 0.86; 95% CI 0.80–0.92) in the training set. In the validation set, the diagnostic performance was 
similar in both the real and synthetic model, with readers 1 and 2 showing AUCs of 0.71 (95% CI 0.54–0.89) and 
0.77 (95% CI 0.56–0.98), respectively, for the real model, and AUCs of 0.75 (95% CI 0.52–0.98) and 0.77 (95% CI 
0.56–0.98), respectively, for the synthetic model.

Effect of data augmentation. Use of an augmented model, in which synthetic data were added to real 
data, showed the same predictors of IDH-mutant as the synthetic model, with a multivariable analysis showing 
that a more frontal or insular location (β = 1.32, P = 0.01), the presence of a patch enhancing pattern (β = 1.97, 

Table 1.  Clinical and Imaging characteristics of the study patients. Data are expressed as the counts and 
median. P + indicates differences between real and synthetic IDH-mutant data. P* and P** indicate differences 
between real IDH-wild type and real IDH-mutant data and between real IDH-wild type and synthetic IDH-
mutant data, respectively. IDH isocitrate dehydrogenase.

Variables

Training set Validation set

IDH-wild IDH-mutant
IDH-mutant 
(GAN) P + P* P** IDH-wild IDH-mutant P

No. of patients 80 38 38 33 11

Median age (years) 60 47 – – < 0.001 < 0.001 58 42 = 0.003

Enhancement 
category 0.01 < 0.001 0.002 0.01

Rim enhancing 47 19 9 24 3

Thick nodular 28 8 5 6 3

Patch enhancing 5 11 24 3 5

Tumor location 0.55 0.01 0.008 0.36

Frontal or insula 29 25 25 16 8

Other 42 10 12 13 2

Thalamus or 
brainstem 9 3 1 4 1

Necrosis 0.35 0.001 < 0.001 0.007

Yes 72 23 19 30 6

No 8 15 19 3 5

Surrounding high 
signal intensity 0.39 0.001 < 0.001 < 0.001

Tumor dominant 35 29 32 8 11

Edema dominant 45 9 6 25 0

Margin of non-
enhancing lesion 0.10 < 0.001 < 0.001 < 0.001

Clear 4 20 27 0 6

Indistinct 76 18 11 33 5
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P = 0.002), and distinct margins of non-enhancing tumors (β = 2.96, P < 0.001) were statistically significant. In 
the training set, the augmented model had a diagnostic performance (AUC, 0.90; 95% CI, 0.84–0.94) slightly 
higher than that of the real model (AUC, 0.86) and slightly lower than that of the synthetic model (AUC, 0.96). 
In the validation set, the augmented model showed slightly higher diagnostic performance (AUC, 0.75 for reader 
1 and 0.82 for reader 2) than the synthetic or real model. The augmented model had greater diagnostic accuracy 
(90.9% [40/44] and 93.2% [41/44] for readers 1 and 2, respectively) than the real model (84.1% [37/44] and 
86.4% [38/44] for readers 1 and 2, respectively).

Figure 3.  Representative synthetic images correctly determined to be synthetic by neuroradiologists. (A) 
Contrast-enhanced T1-weighted (CE-T1w) image similar to a real image, coupled with a FLAIR image showing 
an open rim of hypointensity, suggesting that the image was not real. (B) CE-T1w images showing nodular 
enhancement with a mesh-like artifact, suggesting that these images were not real. (C) CE-T1w images showing 
bizarre-shaped linear enhancement, suggesting that these images were not real.
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Discussion
This study found that the morphologic characteristics exhibited by synthetic and real imaging data of IDH-
mutant glioblastomas were generally similar, with the two datasets being similar in tumor location, margins, 
type of tissue surrounding areas of high signal intensity, and presence of necrosis, but not in contrast-enhancing 
patterns. Univariable analysis showed that the same morphologic characteristics, including tumor location, 
absence of necrosis, enhancement category, and margins and type of tissue surrounding non-enhanced regions, 
were predictive of IDH mutation in both the real and synthetic datasets. A multivariable diagnostic model 
derived from synthetic data showed higher predictive performance than a model derived from real data in the 
training set, with the two models having similar predictive performance in the independent validation set. Thus, 
the morphologic variations of GAN-based synthetic images of IDH-mutant glioblastomas was similar to that of 
actual images, suggesting that the former may serve as a realistic training set.

Models have shown the ability to distinguish between IDH-mutant and IDH-wild type gliomas with AUCs 
of 0.80–0.94 8–10,34. Based on the prevalence of IDH-mutant glioblastomas, the sample size required for sufficient 
training for deep learning is up to 1200 patients. This number, however, is difficult to achieve in practice and 
requires data augmentation. Previous studies using  GAN20,35 showed that augmentation with synthetic data 
improved the diagnostic performance of the model, but those studies were more limited in that performance 
was measured in the training set. The performance of the synthetic and augmented models in the present study 
was similar to or higher than the performance of the real-data only model in both the training and validation 

Table 2.  Univariable and multivariable binomial logistic regression analysis of factors predicting IDH 
mutation in the training dataset. Data in parentheses are 95% confidence intervals.

Variables

With real data (model 1) (n = 118)
With IDH-mutant synthetic data (model 2) 
(n = 118)

Augmented with real and synthetic data (model 3) 
(n = 156)

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

Beta 
coefficient P

Beta 
coefficient P

Beta 
coefficient P

Beta 
coefficient P

Beta 
coefficient P

Beta 
coefficient P

Tumor location

Other Ref. Ref. Ref. Ref. Ref. Ref.

Frontal or 
insula 1.29 0.004 1.34 (1.24, 

1.45) 0.02 1.10 0.009 1.52 (1.04, 
2.35) 0.04 1.19  < 0.001 1.32 (1.24, 1.4) 0.008

Thalamus or 
brainstem 0.95 0.18 0.25 (0.09, 

0.41) 0.77 2.05 0.06 3.33 (2.89, 
3.77) 0.77 1.35 0.03 0.78 (0.64, 

0.91) 0.36

Absence of 
necrosis 1.77  < 0.001 1.91 (1.77, 

2.05) 0.017 2.19  < 0.001 − 0.06 (− 0.24, 
0.12) 0.95 1.98  < 0.001 1.13 (− 0.52, 

0.78) 0.08

Enhancement category

Rim enhanc-
ing Ref. Ref. Ref. Ref.

Thick nodular − 0.35 0.47 − 1.50 (− 1.64, 
− 1.36) 0.05 − 0.07 0.90 0.25 

(0.086,0.414) 0.78 − 0.25 0.54 − 0.58 
(0.66,− 0.49) 0.27

Patch enhanc-
ing 1.69 0.005 0.035 (− 0.135, 

0.205) 0.97 3.22  < 0.001 3.46 (3.26, 
3.66) 0.002 2.46  < 0.001 1.97 (1.87, 

2.07) 0.002

Edema− dom-
inant sur-
rounding high 
signal intensity

− 0.91 0.04
− 0.54 
(− 0.646, 
− 0.434)

0.35 − 3.56 0.001 − 1.29 (− 1.5, 
− 1.08) 0.26 − 1.62 0.001 − 0.83 (− 0.91, 

− 0.75) 0.11

Margin of non-enhancing lesions

Indistinct Ref. Ref. Ref. Ref. Ref. Ref.

Distinct 2.94  < 0.001 2.68 (2.56, 2.8)  < 0.001 3.84  < 0.001 3.88 (3.04, 
4.72)  < 0.001 3.47  < 0.001 2.96 (2.86, 

3.06)  < 0.001

Table 3.  Diagnostic performance of the models for prediction of IDH mutation. AUC  area under the receiver 
operating characteristics curve.

Model from real data (model 1) Model from IDH-mutant synthetic data (model 2)
Combined with real and synthetic data (model 
3)

AUC 95% CI Sensitivity Specificity AUC 95% CI Sensitivity Specificity AUC 95% CI Sensitivity Specificity

Training set 0.864 0.789, 0.920 57.9% 95.0% 0.958 0.904, 0.986 84.2% 92.5% 0.899 0.841, 0.942 72.37% 91.25%

Validation set

Reader 1 0.713 0.535, 0.892 36.4% 100% 0.747 0.517, 0.978 63.6% 100% 0.747 0.517, 0.978 63.6% 100%

Reader 2 0.773 0.565, 0.981 62.7% 63.6% 0.773 0.565, 0.981 62.7% 63.6% 0.821 0.653, 0.989 63.6% 93.9%

Combined with age information

Reader 1 0.871 0.722, 1.00 63.6% 100% 0.826 0.662, 0.991 63.6% 100% 0.826 0.662, 0.991 63.6% 100%

Reader 2 0.855 0.710, 1.00 78.8% 81.8% 0.861 0.720, 1.00 69.7% 90.9% 0.861 0.720, 1.00 69.7% 90.9%
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sets. In addition, age was an important predictor of IDH mutation status, suggesting that the synthetic data 
generated by GAN may be useful for extracting image-based morphologic features and could be combined with 
age as an additional predictor.

GAN may have the ability to learn the complete distribution of data when given “sufficiently large” deep 
networks, sample size, and computation  time36. To utilize GAN to learn the characteristics of IDH-mutant glio-
blastoma, we first optimized the sample size for StyleGAN2, until GAN provided sufficiently realistic imaging 
data without artifacts. We then trained GAN with the images available for IDH-mutant high-grade astrocytomas 
to generate synthetic images and transfer them to IDH-mutant glioblastomas. This provided important evidence 
about training on a rare disease, generating certain types of images, such that style transfer could be useful for 
a pre-trained network to improve image quality (image reality). Subsequently, a specific outcome, such as a 
certain molecular subtype or diagnosis, would be appropriate in a latent space. The synthetic images created 
in the present study showed similar but not identical morphology to the training dataset, providing a smooth 
transition in the latent  space37 with the GAN network.

Two-channel GAN was able to simultaneously generate contrast-enhanced T1-weighted (CE-T1w) and FLAIR 
images. This is important for GAN-based synthetic images because both images are necessary to characterize 
IDH mutations and may be useful for data augmentation in deep learning. Two-channel GAN can fully deter-
mine the morphologic characteristics of conventional imaging data predictive of IDH mutation, including focal 
patch enhancement within areas of high signal intensity on  FLAIR8,9, and distinct margins of non-enhancing 
 lesions8,10 determined by high signal intensity on FLAIR without contrast enhancement. Univariate analysis of 
all three models, the real, synthetic, and augmented models, yielded the same predictive factors, indicating that 
the distribution of morphologic variations was similar for real and synthetic data, and suggesting that the use of 
synthetic data for diagnostic training was feasible.

This study had several limitations. First, synthetic data were generated from IDH-mutant high-grade astro-
cytomas, not solely from glioblastomas, in which patchy enhancing patterns were more frequent. High-grade 
astrocytomas were included in GAN training because the IDH-mutant glioblastomas available for GAN train-
ing was small. Second, although this study included qualitative imaging features from structural MRI with 
high reproducibility in several  studies8,9,38, physiologic imaging biomarkers can be helpful in differentiating 
IDH-mutant glioblastoma, demonstrating less aggressive imaging features with higher ADC values and less 
hyperperfusion on CBV than IDH-wild type  glioblastoma38–40. Also, characteristics imaging phenotype of T2/
FLAIR mismatch  sign41,42 will be a future topic of image generation. The application of GAN for multi-contrast 
MRI generation has been previously  proposed16,17, and generation of ADC and CBV are future goals to pursue, 
while adding quantitative analysis will improve the accuracy of molecular prediction. Third, sampling from GAN 
networks was random. The development of diagnostic models may depend on the sampling method. A more 
objective analysis requires the methodologic construction and testing of multiple diagnostic models, as well as 
their statistical improvement in the future.

In conclusion, the GAN-based synthetic images yielded morphologically variable, realistic but unseen IDH-
mutant glioblastomas, and they were useful as realistic training sets to improve diagnostic performance. Our 
results provided evidence that synthetic IDH-mutant glioblastomas improved the visual diagnosis of tumors with 
IDH mutations and demonstrated the potential to improve noninvasive identification of IDH-mutant tumors, 
thus overcoming the small sample size inherent in imaging-based genomic and molecular prediction.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 11 December 2020; Accepted: 26 April 2021

References
 1. Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta 

Neuropathol. 131, 803–820 (2016).
 2. Ceccarelli, M. et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 

164, 550–563 (2016).
 3. Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).
 4. Shankar, G. M. et al. Genotype-targeted local therapy of glioma. Proc. Natl. Acad. Sci. USA 115, E8388–E8394 (2018).
 5. Schumacher, T. et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512, 324–327 (2014).
 6. Pusch, S. et al. Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo. Acta Neu-

ropathol. 133, 629–644 (2017).
 7. Akkus, Z. et al. Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence. 

J. Digit. Imaging. 30, 469–476 (2017).
 8. Kanazawa, T. et al. Imaging scoring systems for preoperative molecular diagnoses of lower-grade gliomas. Neurosurg. Rev. 42, 

433–441 (2019).
 9. Maynard, J. et al. World Health Organization Grade II/III glioma molecular status: Prediction by MRI morphologic features and 

apparent diffusion coefficient. Radiology 296, 111–121 (2020).
 10. Zhou, H. et al. MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro Oncol. 19, 862–870 

(2017).
 11. Chang, K. et al. Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from 

MR Imaging. Clin. Cancer Res. 24, 1073–1081 (2018).
 12. Korfiatis, P. & Erickson, B. Deep learning can see the unseeable: Predicting molecular markers from MRI of brain gliomas. Clin. 

Radiol. 74, 367–373 (2019).
 13. Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019).



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9912  | https://doi.org/10.1038/s41598-021-89477-w

www.nature.com/scientificreports/

 14. Moreno-Barea, F. J., Jerez, J. M. & Franco, L. Improving classification accuracy using data augmentation on small data sets. Expert 
Syst. Appl. 161, 113696 (2020).

 15. Engstrom, L. & Madry, A. A Rotation and a Translation Suffice: Fooling CNNS with Simple Transformations (Springer, 2020).
 16. Dar, S. U. et al. Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 

38, 2375–2388 (2019).
 17. Yurt, M. et al. Mustgan: Multi-stream generative adversarial networks for MR image synthesis. Med. Image Anal. 70, 101944 (2021).
 18. Dar, S. U. H. et al. Prior-guided image reconstruction for accelerated multi-contrast MRI via generative adversarial networks. IEEE 

J. Select. Top. Signal Process. 14, 1072–1087 (2020).
 19. Chen, J., Chen, J., Chao, H. & Yang, M. Image blind denoising with generative adversarial network based noise modeling. In 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3155–3164 (2018).
 20. Han, C. et al. Infinite brain MR images: PGGAN-based data augmentation for tumor detection In Neural approaches to dynamics 

of signal exchanges. 291–303 (Springer, 2020).
 21. Han, C. et al. Learning more with less: Conditional PGGAN-based data augmentation for brain metastases detection using 

highly-rough annotation on MR images. In Proceedings of the 28th ACM International Conference on Information and Knowledge 
Management, 119–127 (2019).

 22. Liu, Y. et al. Wasserstein GAN-based small-sample augmentation for new-generation artificial intelligence: A case study of cancer-
staging data in biology. Engineering 5, 156–163 (2019).

 23. Yi, X., Walia, E. & Babyn, P. Generative adversarial network in medical imaging: A review. Med. Image Anal. 58, 101552 (2019).
 24. Cohen, J. F. et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaboration. BMJ Open 6, 

e012799 (2016).
 25. Weller, M. et al. European association for neuro-oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic 

and oligodendroglial gliomas. Lancet Oncol. 18, e315–e329 (2017).
 26. Isensee, F. et al. Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. 40, 4952–

4964 (2019).
 27. Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851 (2005).
 28. Radford, A., Metz, L. & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. 

http:// arxiv. org/ abs/ 1511. 06434 (2015).
 29. Karras, T., Aila, T., Laine, S. & Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. http:// arxiv. 

org/ abs/ 1710. 10196 (2017).
 30. Karras, T. et al. Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition, 8110–8119 (2019).
 31. Beers, A. et al. High-resolution medical image synthesis using progressively grown generative adversarial networks. http:// arxiv. 

org/ abs/ 1805. 03144 (2018).
 32. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. & Hochreiter, S. J. A. P. A. Gans trained by a two time-scale update rule 

converge to a local nash equilibrium. (2017).
 33. Geman, D., Geman, S., Hallonquist, N. & Younes, L. Visual Turing test for computer vision systems. Proc. Natl. Acad. Sci. 112, 

3618 (2015).
 34. Kim, M. et al. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation 

and tumor aggressiveness in diffuse lower grade glioma. Eur. Radiol. 30, 2142–2151 (2020).
 35. Liu, S. et al. Isocitrate dehydrogenase (IDH) status prediction in histopathology images of gliomas using deep learning. Sci. Rep. 

10, 7733 (2020).
 36. Goodfellow, I. et al. Generative adversarial nets. In Advances in neural information processing systems. 2672–2680 (2014).
 37. Wu, J., Zhang, C., Xue, T., Freeman, B. & Tenenbaum, J. Learning a probabilistic latent space of object shapes via 3d generative-

adversarial modeling. In Advances in neural information processing systems. 82–90 (2016).
 38. Suh, C. H., Kim, H. S., Jung, S. C., Choi, C. G. & Kim, S. J. Imaging prediction of isocitrate dehydrogenase (IDH) mutation in 

patients with glioma: a systemic review and meta-analysis. Eur. Radiol. 29, 745–758 (2019).
 39. Lee, S. et al. Evaluation of the microenvironmental heterogeneity in high-grade gliomas with IDH1/2 gene mutation using histo-

gram analysis of diffusion-weighted imaging and dynamic-susceptibility contrast perfusion imaging. J. Neurooncol. 121, 141–150 
(2015).

 40. Price, S. J. et al. Less invasive phenotype found in isocitrate dehydrogenase-mutated glioblastomas than in isocitrate dehydrogenase 
wild-type glioblastomas: A diffusion-tensor imaging study. Radiology 283, 215–221 (2017).

 41. Broen, M. P. G. et al. The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-
grade glioma: a validation study. Neuro Oncol. 20, 1393–1399 (2018).

 42. Patel, S. H. et al. T2-FLAIR mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas: A TCGA/TCIA 
project. Clin. Cancer Res. 23, 6078–6085 (2017).

Acknowledgements
This research was supported by National Research Foundation of Korea (NRF) grant funded by the Korean 
government (MSIP) (Grant Numbers: NRF-2020R1A2B5B01001707 and NRF-2020R1A2C4001748).

Author contributions
All authors reviewed the manuscript. J.E.P. contributed to conceptual design and writing the manuscript. D.E. 
contributed to generative adversarial network analysis, imaging processing, and writing the manuscript. H.S.K. 
contributed to editing the manuscript, conceptual design and project integrity. D.H.L. contributed to image 
analysis. R.W.J. contributed to database construction and data analysis. N.K. contributed to conceptual feedback, 
oversight, and software support.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 89477-w.

Correspondence and requests for materials should be addressed to H.S.K.

Reprints and permissions information is available at www.nature.com/reprints.

http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1805.03144
http://arxiv.org/abs/1805.03144
https://doi.org/10.1038/s41598-021-89477-w
https://doi.org/10.1038/s41598-021-89477-w
www.nature.com/reprints


11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9912  | https://doi.org/10.1038/s41598-021-89477-w

www.nature.com/scientificreports/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Generative adversarial network for glioblastoma ensures morphologic variations and improves diagnostic model for isocitrate dehydrogenase mutant type
	Materials and methods
	Study population. 
	IDH mutation status. 
	Imaging data acquisition. 
	Image preprocessing. 
	Theory. 
	Contrast-enhanced T1-weighted and FLAIR cogeneration and StyleGAN2 implementation details. 
	Sample size and rationale for the training network. 
	Imaging analysis. 
	Evaluation of reality. 
	Morphologic assessment. 

	Statistical analysis. 
	Distribution of morphologic features. 
	Significant predictors for IDH mutation. 
	Diagnostic performance for IDH mutation. 


	Results
	Patient demographics. 
	Evaluation of reality. 
	Distribution of morphologic features. 
	Significant predictors of IDH mutation. 
	Diagnostic performance for IDH mutation. 
	Effect of data augmentation. 

	Discussion
	References
	Acknowledgements


