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ABSTRACT The question of what determines whether cells are big or small has been the focus of many
studies because it is thought that such determinants underpin the coupling of cell growth with cell division.
In contrast, what determines the overall pattern of how cell size is distributed within a population of wild
type or mutant cells has received little attention. Knowing how cell size varies around a characteristic pattern
could shed light on the processes that generate such a pattern and provide a criterion to identify its genetic
basis. Here, we show that cell size values of wild type Saccharomyces cerevisiae cells fit a gamma distri-
bution, in haploid and diploid cells, and under different growth conditions. To identify genes that influence
this pattern, we analyzed the cell size distributions of all single-gene deletion strains in Saccharomyces
cerevisiae. We found that yeast strains which deviate the most from the gamma distribution are enriched for
those lacking gene products functioning in gene expression, especially those in transcription or transcrip-
tion-linked processes. We also show that cell size is increased in mutants carrying altered activity substitu-
tions in Rpo21p/Rpb1, the largest subunit of RNA polymerase II (Pol II). Lastly, the size distribution of cells
carrying extreme altered activity Pol II substitutions deviated from the expected gamma distribution. Our
results are consistent with the idea that genetic defects in widely acting transcription factors or Pol II itself
compromise both cell size homeostasis and how the size of individual cells is distributed in a population.
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Mechanisms that control cell sizehave longbeenviewedas critical for the
coupling between cell growth and cell division, which in turn governs
rates of cell proliferation (Turner et al. 2012; Pringle andHartwell 1981;
Ginzberg et al. 2015; Westfall and Levin 2017; Willis and Huang 2017).
Hence, size control has attracted attention in many systems, from
bacteria and yeasts to animals (Si et al. 2017; Tzur et al. 2009; Son
et al. 2012; Jorgensen et al. 2002; Zhang et al. 2002). Most studies have
dealt with situations where the typical size of cells in a given experi-
mental system and condition shifts to a different value, due to genetic or

environmental perturbations. Despite many rounds of cell division,
proliferating cells usually maintain their size in a given nutrient envi-
ronment. Considering cell size as a proxy for cell growth, then shifts to a
smaller or larger size provide a convenient ‘metric’ to gauge alterations
in biological processes that are thought to be central to the physiological
coupling between cell growth and division.

Cells tune their gene expression output to their size, to maintain
the proper concentrations of macromolecules as cells change in
volume (Vargas-Garcia et al. 2018). Changes in ploidy and the
well-known positive association between cell size and DNA content
(Gregory 2001) perhaps illustrate a straightforward solution to this
problem. Compared to smaller haploid and diploid cells, larger
polyploid ones have more genomic templates from which to drive
gene expression. It has also been reported that ploidy-associated
increases in cell size drive transcriptional changes (Galitski et al.
1999; Wu et al. 2010). The situation appears more complex in cells
of different size but of the same genome (Marguerat and Bahler
2012; Zhurinsky et al. 2010). In fission yeast, it has been proposed
that cells of different size regulate global transcription rates regard-
less of cellular DNA content so that their transcriptional output per
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protein remains constant (Zhurinsky et al. 2010). Based on single
molecule transcript counting in mammalian cells, a positive association
between transcription burst magnitude and cell size has been reported
(Padovan-Merhar et al. 2015). Furthermore, it appears that the dou-
bling of the available DNA templates for transcription after DNA rep-
lication is countered by a decrease in transcription burst frequency in
cells that have replicated their DNA, later in the cell cycle (Padovan-
Merhar et al. 2015). These mechanisms, involving independent control
of the frequency and the magnitude of transcription bursts, are thought
to maintain the scaling of mRNA counts with the size of mammalian
cells. In the budding yeast Saccharomyces cerevisiae, analogous single
molecule experiments monitoring transcription bursts as a function of
cell size and cell division have not been reported. Instead, a somewhat
different mechanism has been proposed to explain the positive associ-
ation of mRNA steady-state levels with cell size, due to increased sta-
bility of mRNAs in larger cells (Mena et al. 2017). Furthermore, it has
been proposed that levels of active RNA Pol II are higher in small G1
cells with un-replicated DNA (Mena et al. 2017).

The genetic control of cell size has been studied extensively in
S. cerevisiae. In this organism, systematic surveys of all single-gene
deletions have been carried out to identify mutants that are bigger or
smaller than the wild type (Zhang et al. 2002; Jorgensen et al. 2002).
Similar size-based screens have also been carried out in other organisms
(Björklund et al. 2006), with similar outputs, namely the identification
of small or large-celled mutants. In contrast, much less attention has
been placed on how the size of individual cells within a population,
mutant or wild type, is distributed. We reasoned that if we first de-
termine if yeast cells fit a particular distribution of sizes, we might then
determine what types of mutants alter such a stereotypical distribution
of cell sizes to understand its genetic basis.

Here we report that size in a population of S. cerevisiae cells is best
described with a gamma distribution. We also identify genes that are
required to maintain this distribution. These genes overwhelmingly
encode proteins involved in global gene expression, especially in tran-
scription. Lastly, we show that defects arising from alterations to the Pol
II active site alter size homeostasis and the pattern of size distributions.

MATERIALS AND METHODS

Yeast strains and cell size measurements
For cell size measurements we report in Figure 5, the homozygous
deletion strains were in the diploid S288c background of strain
BY4743 (MATa/a his3D1/his3D1 leu2D0/leu2D0 LYS2/lys2D0
met15D0/MET15 ura3D0/ura3D0). The strains were constructed
by the Systematic Deletion Project (Giaever et al. 2002; Brachmann
et al. 1998).

For cell sizemeasurementswe report in Figure 6, genomic variants of
RPO21/RPB1 were created by CRISPR/Cas9-mediated genome editing
(see Table S1 for a list of the oligonucleotides used in this study) of
strain CKY3284, a derivative of the S288c strain background (see Table S2
for a list of the strains used in this study). Briefly, the sequence
encoding a guide RNA was cloned into plasmid pML107 ((Laughery
et al. 2015); see Table S3 for a list of the plasmids used in this study).
This plasmid was introduced into CKY3284 by transformation, along
with annealed double-stranded repair oligonucleotides or annealed
overlapping oligonucleotides (Integrated DNA Technologies, Skokie,
Illinois; see Table S1) filled in with Phusion DNA polymerase (New
England Biolabs, Ipswich, Massachusetts) containing either a silently
mutated PAM site or both a silently mutated PAM site and relevant
RPO21/RPB1 mutation. Variants were confirmed by PCR amplifica-
tion of the mutated region and DNA sequencing. Oligonucleotides

were annealed as follows: synthesized, lyophilized oligonucleotides
were resuspended at 100 mM in 10 mM Tris pH 8.0. Perfectly
matched oligonucleotide pairs were annealed as follows: 37.5 ml of
each oligonucleotide was mixed with 25 ml of 1M Tris pH 8.0 and
heated for 5 min at 95�, then tubes were transferred into a 70� heat
block followed by removal of heat block from heater; they were moved
to 4� overnight when block temperature reached room temperature.
8 ml of these annealed oligonucleotides were used as repair templates
in individual transformations. Oligonucleotides that were overlap-
ping (noted in Table S3) were annealed and extended by 5 cycles of
standard PCR followed by thermal annealing as above.

All strains were cultured at 30� in standard YPD medium (1% w/v
yeast extract, 2% w/v peptone, 2% w/v dextrose). Cell size was measured
with a Z2 Beckman Coulter channelyzer as described previously (Guo
et al. 2004; Bogomolnaya et al. 2006).

DNA content analysis was done as we have described previously
(Hoose et al. 2012; Hoose et al. 2013).

Statistical analysis
Inall our statistical analysesweusedR languagepackages, as indicated in
each case. The cell size frequency distributions we analyzed from the
literature were from (Soma et al. 2014) for the BY4743 dataset, and
from (Jorgensen et al. 2002) for the haploid dataset (BY4741; MATa
his3D1 leu2D0 met15D0 ura3D0) (see File S1; sheets ‘by4743_raw’,
and ‘Jorgensen_raw’, respectively). Replicates of several strains in the
Jorgensen dataset were marked as such, following their systematic ORF
name. The cell size frequencies from (Soma et al. 2014) and (Jorgensen
et al. 2002) were used to simulate distributions from n = 1000 cells in
every case (see File S1; sheets ‘by4743’, and ‘jorgensen’, respectively).
Similarly, we also generated the size distributions shown in Figures 5
and 6 (see File S1; sheets ‘figure 5’, and ‘figure 6’, respectively). To
generate counts from frequencies for downstream statistical analysis,
we used the R code listed in File S2.

To test for normality, we implemented the Shapiro-Wilk test
(Shapiro and Wilk 1965) from the stats R language package, as de-
scribed in detail in File S2. The corresponding p-values are shown in
File S1, in the sheet columns marked as ‘SW(p)’. Since normality was
not observed for any of the BY4743-based mutant distributions, we
then fitted them to several right-side skewed distributions, including
lognormal, Gamma andWeibull. To this end, we used the goodness-of-
fit function ‘gofstat’ of the fitdistrplus R language package (Delignette-
Muller and Dutang 2015), implementing the Anderson-Darling test
(Anderson and Darling 1952) for each of the samples shown in Table 1.
Using the goodness-of-fit function ‘gofstat’ of the fitdistrplus R lan-
guage package we also obtained the corresponding statistic values for
the Kolmogorov-Smirnov and Cramér-von Mises tests (Table 1).
Fitting wild type cell size distributions to more complex, three-pa-
rameter generalized gamma models only minimally improved the fit,
but it increased complexity. As a result, the preferred model was the
standard two-parameter gamma distribution, based on a lower value
of the Bayesian Information Criterion (Schwarz 1978). To calculate
the shape (a) and rate (b) parameters of the gamma-fitted distribu-
tions (see Table 1), we used the maximum-likelihood estimates ap-
proach implemented by the ‘fitdistr’ function of theMASS R language
package. The same analysis was applied to the two BY4741 samples
from the ‘jorgensen’ dataset shown in Table 1. To obtain the Anderson-
Darling test p-values for gamma distribution fits for each strain, we used
the ‘gofTest’ function of the goft R language package (González-
Estrada and Villaseñor 2018). These p-values are shown in File
S1, in the sheet columns marked as ‘AD(p)’. For the ‘jorgensen’
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dataset we also used the ‘ad.test’ function of the goftest R language
package, as follows: ad.test(strain, null = “dgamma”, shape = 3.8277,
rate = 0.078949). The shape and rate parameters were the average of
the two wild type BY4741 samples in the ‘jorgensen’ dataset. We also
used the same functions to obtain the test’s statistic, which was used
to identify the 49 genes that when deleted yield size distributions
that deviate the most from a gamma pattern (shown in File S1/sheet
‘Gamma_deviant_Genes’).

All other R language functions and packages used to generate plots
are described in the corresponding figures.

Data Availability
Table S1 lists the oligonucleotides used in this study. Strains (Table S2)
and plasmids (Table S3) are available upon request. File S1 contains all
the datasets, including distributions of size frequencies and associated
p-values, used in this study.The codeused toanalyze thedata isprovided
in File S2. We have uploaded all the supplementary material (which
includes seven supplementary figures) to figshare.

Supplemental material available at Figshare: https://figshare.com/s/
99db4b2cb8c4deedbbcd.

RESULTS

Rationale
The approach we followed in this study is shown schematically in
Figure 1. How different values of a single parameter are distributed
can be instructive for the underlying processes leading to its distribu-
tion pattern. Accurately fitting the measured variable to a univariate
distribution is also necessary for its proper statistical analysis, when
determining how removed a given observation (e.g., a mutant) is from
the most typical one (wild type) in a population. With regards to the
size of individual organisms, the usual pattern is that deviations from
the common type are not symmetrical. Instead, small individuals tend
to be more frequent than large ones, leading to distributions which are
positively skewed, with a right-side tail (Frank 2016). The sizes of
bacterial and animal cells have been modeled on lognormal distribu-
tions (Hosoda et al. 2011). To our knowledge, although S. cerevisiae is a
prime model system in studies of size control, how size is distributed
in this organism has not been examined. Consequently, our objectives
for this study were: First, determine how cell size is distributed in
S. cerevisiae (Figure 2). Second, use the distribution model that fits the
best to empirical data as a metric to identify mutants that deviate the
most from that distribution (Figures 3, 4). Third, validate the outliers
experimentally (Figure 5), and test the role of the corresponding bi-
ological processes in determining size distributions (Figure 6).

Cell size in S. cerevisiae fits a gamma distribution
We examined size frequency distributions from diploid cells cultured in
different carbonsources,usingpublisheddata fromour laboratory (Soma
et al. 2014). First, we looked at whether these distributions fit a Gaussian
pattern. To test for normality, we employed the Shapiro-Wilk test
(Shapiro and Wilk 1965), because it has the highest power compared
to other tests (Razali and Wah 2011). In every one of the 29 wild type
distributions from diploid cells we tested, the associated p-value was
significantly lower than an alpha level of 0.01 (see Figure 2A, left box;
the individual values are shown in File S1/sheet ‘by4743_SW_AD_p’/
column ‘SW(p)’). Hence, the null hypothesis that these populations were
normally distributed was rejected.

Given that cell size distributions were positively skewed with right-
side tails, we fit the empirical data to non-Gaussian distributions that
yield such patterns, such as lognormal, Weibull and gamma (Table 1).

To test the goodness of these fits, we primarily relied on the Anderson-
Darling test (Anderson and Darling 1952), which is thought to be of
higher power than other goodness-of-fit tests for non-normal distribu-
tions. In every case, the value of the test’s statistic was the lowest for the
gamma distribution (Table 1). To test further a lognormal distribution
of these samples, we log-transformed these values and then examined if
they were normally distributed, a prediction for values that are lognor-
mally distributed. In no sample was this the case (not shown), arguing
against lognormal distributions being the best fit for S. cerevisiae cell
size values. Next, we calculated the Anderson-Darling associated
p-value for a gamma distribution for each of the 29 diploid size distri-
butions. In all but one sample, the p-value was higher than an alpha
level of 0.01 (see Figure 2A, right box; the individual values are shown
in File S1/sheet ‘by4743_SW_AD_p’/column ‘AD(p)’). Hence, the fits
of all these samples are consistent with a gamma distribution. We
looked at the empirical data of the one sample for which the p-value
was significantly lower than the 0.01 cutoff (Figure S1). It appears that
this distribution is irregular, with a shoulder on the right-side tail,
perhaps explaining the poor fit (Figure S1). Nonetheless, even for this
sample, the gamma distribution was the better fit, compared to lognor-
mal or Weibull distributions (Table 1).

The suitability of a gammadistributionpattern toaccurately describe
S. cerevisiae cell size data were also evident when different (Gamma,
lognormal, Weibull) theoretical fits were displayed on a histogram of
continuous empirical data (Figure 2B; File S1, from the second sample
in sheet ‘by4743’). From the associated goodness-of-fit diagnostic plots

Figure 1 Flowchart of our approach to identify S. cerevisiae mutants
with altered cell size distributions. See text for details.
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(Figure S2), the gamma distribution is a better fit than the related
lognormal and Weibull distributions for the values in the middle of
the distribution (Figure S2C). For the data in the left-side tail, lognor-
mal and gamma are superior toWeibull, albeitWeibull performs better
for the data in the right-side tail of the distribution (Figure S2B). Taken
together, the sizes of S. cerevisiae cells best fit a gamma distribution. In
the Discussion, we expand on this finding.

Next, we calculated the shape (a) and rate (b) parameters that
describe gamma distributions for each of the above wild type distribu-
tions (Table 1; see Materials and Methods). Note that the samples we
analyzed were from cells growing in different carbon sources (dextrose,
galactose, glycerol) and, in the case of dextrose, at different concentra-
tions (0.05–2%) of this preferred carbon source for the organism. In all
cases, the best fit of the size data were a gamma distribution (Table 1),
regardless of nutrient composition. We note that the shape parameter
(a) was reduced from 6.3-7.9 in rich, replete medium (2% dextrose) to
4.1-4.9 in carbon-restricted medium (0.05% dextrose; see Table 1), as
expected for the accompanying reduction in cell size in this medium
(Soma et al. 2014).

Identifying mutants with cell size distributions that
deviate the most from gamma
A significant outcome of our results that wild type cell size distributions
from S. cerevisiae are best described with gamma distributions is that
fitting an empirical distribution to a gamma pattern can be used as a
‘metric’ to identify mutants that deviate the most. To this end, we used
the frequency data of cell distributions from (Jorgensen et al. 2002),
which surveyed strains carrying single deletions in all non-essential
genes in S. cerevisiae (Giaever et al. 2002). These strains were haploid,
but in the same (S288c) genetic background as the strains we examined
in Figure 2. They were also cultured in the same standard, dextrose-
replete, YPDmedium (seeMaterials andMethods). From the 5,052 size
distributions in the (Jorgensen et al. 2002) dataset, not a single one fit to
a normal, Gaussian distribution, based on the p-values from the

Shapiro-Wilk test (Figure 3A, left box; the individual values are shown
in File S1/sheet ‘jorgensen_SW_AD_p’/column ‘SW(p)’). The best fits
of the two wild type (BY4741) samples in the (Jorgensen et al. 2002)
dataset were also gamma distributions, compared to lognormal or
Weibull (Table 1; the bottom two rows). We note that since the size
of both haploid and diploid cells fit a gamma distribution pattern
(Table 1), ploidy per se does not appear to change the pattern of cell
size distributions.

Next, we calculated the Anderson-Darling associated p-value for a
gammadistribution for eachof the 5,052 samples. For about half of them
(n= 2,527), the p-valuewas higher than an alpha level of 0.01 (see Figure
3A, right box; the individual values are shown in File S1/sheet ‘by4743_
SW_AD_p’/column ‘AD(p)’). Since even small experimental irregular-
ities in empirical distributions disturb their fit to theoretical densities
(e.g., see Figure S1), it is noteworthy that half of the frequencies could be
adequately fitted. Furthermore, even for the samples whose p-values
did not pass the alpha level of 0.01, it is clear for the overwhelming
majority of them that their gamma-fitted p-values were orders of mag-
nitude higher than their p-values for fits to Gaussian distributions
(compare the right to the left plot in Figure 3A).

Next, to identify genes that may be necessary for the gamma
distribution pattern of cell size in S. cerevisiae, we focused on the
samples whose distributions deviated the most from a gamma distri-
bution (i.e., the ones with the lowest p-values shown in Figure 3A, right
plot). The sample with the worst fit was from a strain lacking Rox3p, a
subunit of the RNA polymerase II Mediator complex (Gustafsson et al.
1997). Not only cells from this mutant were large, as also identified by
(Jorgensen et al. 2002), but their size distribution was negatively
skewed, with a left-side tail from the main peak (see Figure 3B; the
smaller peak to the extreme left of the distribution likely arose from
small particulate debris from dead cells in the culture).

Given the severe departure from a gamma distribution for rox3D
cells (Figure 3B), we next looked at the 50 samples with the worst fits.
Including rox3D, these were from 49 deletion strains (one strain in this

Figure 2 Cell size values of S. cerevisiae cells fit a Gamma distribution pattern. A, Box plots of the p-values associated with statistical tests of
whether cell size values from (Soma et al. 2014) of wild type BY4743 cells (see Table 1) are distributed according to a normal (Gaussian), or Gamma
distribution. The Shapiro-Wilk test was used to test for the Gaussian distribution, while the Anderson-Darling test was used to test for the Gamma
distribution (see Materials and Methods). The red horizontal line indicates a significance level of P = 0.01. The density plot of the sole outlier that
did not fit a Gamma distribution is shown in Figure S1. B, Histogram and theoretical densities for the indicated cell size distribution of S. cerevisiae
cells. The distributions were fitted to continuous, empirical data depicted in the histogram from wild type diploid (BY4743 strain) cells, cultured in
standard YPD medium (1% yeast extract, 2% peptone, 2% dextrose). On the y-axis are the density frequency values, while on the x-axis are the cell
size bins, encompassing the cell size values shown in the corresponding spreadsheet associated with this plot (see File S1). The plots were
generated with the ‘denscomp’ function of the fitdistrplus R language package. Additional goodness-of-fit plots associated with this graph are
shown in Figure S2.
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set was measured twice by (Jorgensen et al. 2002)). The systematic
names of these strains are shown in File S1/sheet ‘Gamma_deviant_
Genes’. Since experimental irregularities could be the reason for the
extremely poor fits to a theoretical distribution (e.g., see Figure S1), we
relied on gene ontology enrichment as a functional, unbiased criterion
to guide our identification of physiologically relevant mutants. Based
on the YeastMine platform (Balakrishnan et al. 2012), 30 of the 49 genes
belong to the ontology group ‘nucleic acid metabolic process’
(GO:0090304; P = 0.008391, after Holm-Bonferroni test correction).
A smaller group of 16 genes (15 of which were also in the ‘nucleic acid
metabolic process’ set) belonged to the ontology group ‘cellular re-
sponse to DNA damage stimulus’ (GO:0006974; P = 2.510022e-5 after
Holm-Bonferroni test correction). The full gene ontology output for the
30 genes of the ‘nucleic acidmetabolic process’ is shown in File S1/sheet
‘GO 0090304’.

Most of the 30 gene products of the ‘nucleic acid metabolic process’
have a network of previously reported genetic and physical interactions
(Figure 3C), consistent with their involvement in common cellular
processes. Upon closer inspection, most mutant strains in this group

lack genes encoding gene products that regulate gene expression glob-
ally, especially transcription (LDB7, HTL1, NPL6, ROX3, CYC8, PAF1,
HPR1, BUD32, CTK2, GON7, RPA12, BDF1, ARP5, THO2), but also
splicing and RNA processing (RSE1, BUD22, STO1, PRP18, PAP2), or
translation (SCP160, EAP1). There was some obvious coherence in this
set of gene deletions, in that RSC complex submodule-encoding genes
(LDB7, HTL1, NPL6) as well as two genes encoding members of the
THO complex (THO2, HPR1) were identified. To examine if non-
gamma cell size distributions were a phenotype common among dele-
tions of each of the components of these large transcription-related
complexes, we looked at their corresponding size distributions, for each
of the components of the RSC, THO, PAF, and Mediator (MED)
complexes interrogated by (Jorgensen et al. 2002). Interestingly, every
gene deletion encoding a gene product that is part of the RSC complex
had a cell size distribution that deviated significantly from gamma
(Figure S3A). In contrast, only a subset of PAF or THO deletions
had gamma-deviant size distributions (Figure S3B,C), while most of
theMEDdeletions were similar to wild type, with the notable exception
of the extreme distribution of rox3D cells (Figure S3D).

Figure 3 Deletion mutants of S. cerevisiae with severely altered cell size distributions. A, Bean plots of the p-values associated with statistical tests
of whether cell size values of strains carrying single-gene deletions of all non-essential genes from (Jorgensen et al. 2002) are distributed
according to a normal (Gaussian), or Gamma distribution. The statistical tests were performed and displayed as in Figure 2A. The red line
indicates a significance level of P = 0.01. The most extreme outlier of the Gamma-fitted distributions (rox3D) is indicated with the arrow. B,
Histogram and density for the indicated cell size distribution from rox3D cells, from (Jorgensen et al. 2002). On the y-axis are the density
frequency values, while on the x-axis are the cell size bins, encompassing the cell size values shown in the corresponding spreadsheet associated
with this plot (see File S1). C, Network of the interactions among the 30 genes that belonged in the gene ontology group ‘nucleic acid metabolic
process’ [GO:0090304; P = 0.008391). The network was drawn on the GeneMANIA platform (Warde-Farley et al. 2010), with genetic interactions
shown in green and physical ones in red.
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Next, we looked at the empirical cell size distributions of the
corresponding 30 deletion mutants. Every single one had a severely
irregular size distribution (Figure 4). Several distributions resembled
that of rox3D cells, with a pronounced negative skew (scp160D, bud32D,
def1D; Figure 4A), while others were very irregular, even multimodal

(sto1D, ctf4D, dia2D, eap1D, arp5D, cyc8D, fyv6D, hpr1D, bdf1D, npl6D,
prp18D, tho2D, htl1D, gon7D; Figure 4A). Strikingly, all outliers were
also abnormally large cell size mutants (Figure 4A,B). Most had already
been identified as such by (Jorgensen et al. 2002) and others (Zhang
et al. 2002; Manukyan et al. 2008), but some had not. These previously
unidentified large cell size mutants lacked the following genes: CHK1,
encoding a serine/threonine kinase and DNA damage checkpoint ef-
fector (Liu et al. 2000); RAD18, encoding an E3 ubiquitin ligase (Bailly
et al. 1997); RPA12, encoding RNA polymerase I subunit A12.2 (Van
Mullem et al. 2002); RSE1, encoding a splicing factor (Chen et al. 1998);
STO1, encoding a large subunit of the nuclear mRNA cap-binding
protein complex (Colot et al. 1996); FYV6, encoding a protein of un-
known function (Wilson 2002); and PAP2, encoding a non-canonical
poly(A) polymerase (Vanácová et al. 2005).

To further examine the connection between large cell size and
deviation from a gammadistribution, we focused on the deletion strains
whose median cell size values were in the top 5% (the criterion used by
(Jorgensen et al. 2002), to define their large, lge, mutants). Not only
were all 49 deletion strains whose distribution differed most signifi-
cantly from a gamma pattern in this group, but these mutants were also
some of the largest ones in the entire collection (Figure S4A,B). Devi-
ations from gamma-distributed cell size values are strongly associated
with a very large cell size (P , 2.2E-16; based on the Wilcoxon rank
sum test with continuity correction, between the two groups shown in
Figure S4A). The remaining mutants with large cell size (shown as
‘Other’ in Figure S4) were enriched for the gene ontology group “mi-
totic cell cycle” (GO:0000278; P = 1.64E-07), probably reflecting the
expected increase in cell size due to a cell cycle block. Hence, it appears

Figure 4 Cell size distributions from the gene deletions that belonged in the gene ontology group ‘nucleic acid metabolic process’ [GO:0090304].
A, Heatmap showing the clustering of cell size density frequencies from the outliers. The frequency values for each mutant are shown along the bins
encompassing the cell size values shown in the corresponding spreadsheet associated with this plot (see File S1). The heatmap was generated with
the pheatmap R language package. B, Density plots of cell distributions of the same deletion mutants shown in A. The deletion mutants are shown in
black, while their wild type counterpart is shown in red. On the y-axis are the density frequency values, while on the x-axis are the corresponding cell
size bins. The asterisk indicates a peak in the distributions that likely arose from small particle debris in the cultures.

Figure 5 Density plots of cell size distributions from homozygous
diploid strains. The cell size of the indicated deletion mutants was
measured in standard YPD medium (1% yeast extract, 2% peptone, 2%
dextrose), as described in Materials and Methods. Each strain was
measured several times (see File S1; sheet ‘figure59), from which rep-
resentative density plots are shown. On the y-axis are the density
frequency values, while on the x-axis are the cell size bins, encompass-
ing the cell size values shown in the corresponding spreadsheet asso-
ciated with this plot (see File S1).
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that while cell cycle blocks or presumed broad perturbation of gene
expression can lead to a larger cell size, it is mostly presumed pertur-
bations to global gene expression or associated processes that lead to
deviations from gamma-distributed cell size values.

Next, we looked into the association between poor fitness and
deviation from gamma-distributed cell size values. Of the 49 deletion
strains whose distribution differed most significantly from a gamma
pattern, 31 of the corresponding deletion mutants in a homozygous
diploid background had also been reported to have reduced fitness
compared to wild type cells in these culture conditions (Giaever et al.
2002). To answer if gamma-deviant mutants were also associated with
an extreme reduction in fitness, we compared their fitness scores to the
fitness scores of all other remaining 526 mutants with reduced fitness
(Figure S4C). The 31 “Gamma_deviant”mutants had an overall signif-
icantly poorer fitness than the “Other” 526 mutants ((P = 6.163E-06;
based on the Wilcoxon rank sum test with continuity correction).
However, the difference in fitness was not as pronounced as was the
difference in size (Figure S4C, vs. Figure S4A, respectively). Besides,
more than a third (18 out of 49) of the mutants with cell size values that
deviated the most from a gamma distribution pattern had a fitness level
in these culture conditions that was indistinguishable from wild type,
whereas all gamma-deviant mutants were also large size mutants.
Hence, we conclude that although deviations from a gamma distribu-
tion of cell size values can be associated with poor fitness, the strength
of that association is not nearly as great as that with large cell size.

Lastly,wealsoexamined ifmutantswithextremelysmallmeancell size
(whi; the 5% of mutants with the smallest median cell size, as defined by
(Jorgensen et al. 2002)) are more likely to deviate from a gamma pattern
of cell size distributions. Using the p-values of the Anderson-Darling test
as a reference for gamma-deviant distributions, we found that there was
no significant difference between whimutants and strains that were not
classified as size mutants by (Jorgensen et al. 2002) (P = 0.434, based on
the Kruskal-Wallis one-way analysis of variance by ranks, followed by
the post-hoc Nemenyi test). In contrast, the same analysis looking for
deviations from gamma distributions indicated that large cell size mu-
tants (lge) are different from strains that were not classified as size
mutants by (Jorgensen et al. 2002) (P = 0.048, based on the Kruskal-
Wallis one-way analysis of variance by ranks, followed by the post-hoc
Nemenyi test). While there is a clear association between extreme large
size and deviations from gamma distribution we documented (e.g., see
Figure S4), the size of mutants that are extremely small do not deviate

from a gamma distribution. We illustrate the distribution of one of the
most extreme whimutants, sfp1D cells (Fig. S5), whose distribution fits
a gamma distribution (P = 0.211, based on the Anderson-Darling test)
as an example (Fig. S5). It is also worth noting that extreme variations in
birth size (sfp1D: 11fL,WT: 22fL; cln3D: 34fL; calculated as described in
(Truong et al. 2013; Soma et al. 2014)) or critical size (sfp1D: at 73% the
size of WT (Jorgensen et al. 2004); cln3D: at .twofold the size of WT
(Soma et al. 2014)) among these mutants are not necessarily associated
with severe deviations from gamma distributions (Figure S5).

Validation of altered cell size distributions in selected
homozygous diploid deletion mutants
In the outlier set of mutants we identified, we were intrigued by the
preponderance of gene products connected to transcription. Hence, we
decided to validate experimentally the size distributions of strains
lacking PAF1, CTK2, DEF1, BDF1, THO2, PAP2, or LDB7. We used
diploid strains carrying homozygous deletions of these genes,
to minimize the effects of suppressors that may have been present in
the haploid strains used by (Jorgensen et al. 2002). The cell size distri-
butions for all these strains deviated from the gamma distribution of
experiment-matched wild type cells (Figure 5; and File S1). These re-
sults strengthen the notion that perturbations in the control of gene
expression may disrupt the distribution of cell sizes in a population.

Lastly, we also measured the DNA content of the strains lacking
PAF1,CTK2,DEF1, BDF1, THO2, PAP2, or LDB7, to ask if their altered
cell size distribution is associated with a particular cell cycle profile
or ploidy abnormalities. From a genome-wide study, we had previously
reported that loss of PAF1, PAP2 or LDB7 increased the percentage of
cells that are in the G1 phase of the cell cycle (Hoose et al. 2012). Here,
we confirmed this phenotype and found that an apparent G1 delay
is also the case for cells lacking CTK2 or DEF1, while the loss of
BDF1 orTHO2 does not lead to significant changes in the DNA content
(Figure S6A). Hence, it appears that deviations from gamma distribu-
tion of cell size values are not obligately associated with a particular cell
cycle profile, a conclusion reinforced by additional results we will de-
scribe later (see Figure S7).

Point mutations in the trigger loop of RNA polymerase
II alter cell size
It has been proposed that global transcriptional output is tunedwith cell
size through some poorly characterized mechanism, perhaps by

Figure 6 Density plots of cell size distributions from Pol
II trigger-loop point mutants. The cell size of the
indicated mutants was measured in standard YPD
medium (1% yeast extract, 2% peptone, 2% dextrose),
as described in Materials and Methods. Each strain was
measured several times (see File S1; sheet ‘figure6’),
from which representative density plots are shown.
On the y-axis are the density frequency values, while
on the x-axis are the cell size bins, encompassing the
cell size values shown in the corresponding spreadsheet
associated with this plot (see File S1).
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increased RNA Pol II abundance or processivity, or altered mRNA
stability in large cells (Zhurinsky et al. 2010;Marguerat andBahler 2012;
Mena et al. 2017; Padovan-Merhar et al. 2015). However, the cell size
phenotypes of mutants that affect core RNA polymerase functions are
not well-characterized, not least because only four (Rpb4,7,9,12) of the
12 subunits in the complex are non-essential in at least some genetic
backgrounds (Myer and Young 1998; Giaever et al. 2002). Cells lacking
any one of the non-essential RNA polymerase core subunits have been
reported to be large (Jorgensen et al. 2002; Zhang et al. 2002), and
usually display a G1 delay (Hoose et al. 2012).

To test the role of global transcriptionmechanism in cell size control,
we examined a set of well-characterized point mutants carrying single
amino acid substitutions in the largest Pol II subunit (Rpo21/Rpb1),
which are either increased activity (biochemical and genetic “gain of
function” GOF, E1103G, G1097D) or decreased activity (biochemical
and genetic “loss of function” LOF: H1085Y, N1082S, H1085Q; genetic
loss of function: H1085W)(Kaplan et al. 2012; Qiu et al. 2016; Kaplan
et al. 2008; Braberg et al. 2013). We found that in all cases cell size was
increased, correlating with the extent of catalytic rate alteration (Kaplan
et al. 2008; Kaplan et al. 2012) and/or mutant growth rate defects
(Kaplan et al. 2012; Malik et al. 2017; Qiu et al. 2016) (Figure 6). In-
terestingly, albeit the sizes of moderate mutants E1103G, N1082S, and
H1085Qweremoderately larger than wild type, the distribution pattern
did not change (Figure 6). In contrast, the three severe alteration-of-
function mutants (G1097D, H1085Y, H1085W) had a very large size,
and their distribution deviated from the expected gamma distribution
pattern (Figure 6). Pol II LOF and GOF mutants are distinguishable
biochemically and genetically, though growth rates of these strains scale
with the magnitudes of their biochemical defects and extent of their
gene expression defects and genetic interactions. Similarly, Pol II mu-
tant cell sizes, regardless of LOF or GOF status, correlate with their
growth rates. We conclude that altering global transcription, severe or
moderate, with gain- or loss-of-function Pol II mutations, increases cell
size. Furthermore, severe alteration-of-function Pol II mutations abro-
gate the gamma distribution of cell size values.

Next, we measured the DNA content of these Pol II mutants.
Similarly to the deletion mutants that we analyzed in Figure S6A,
the severe alteration-of-function rpb1 mutants (G1097D, H1085Y,
H1085W) displayed a significant increase in the G1 DNA content
(Figure S6B). Interestingly, both substitutions at position 1085 (Y or
W) also displayed a cell cycle profile consistent with S-phase delay,
because the peaks corresponding to un-replicated and replicated
DNA were not separated (Figure S6B). The two moderate loss-of-func-
tionmutants (N1082S, H1085Q) had amodest increase of cells with G1
DNA content. The gain-of-function mutant (E1103G) did not display
G1 or S-phase delay (Figure S6B). If anything, there was a slight in-
crease of the G2/M DNA content in rpb1-E1103G cells, which along
with their slightly larger cell size (Figure 6) and moderately slower
proliferation rates (Kaplan et al. 2012; Malik et al. 2017), argues for a
possible mitotic delay in this mutant. A potential mitotic delay could be
consistent with Pol II increased activity mutants showing increased
rates ofminichromosome loss in chromosome segregation experiments
(Braberg et al. 2013).

Altered cell cycle progression is not sufficient to alter
the gamma distribution of cell size values

The altered cell cycle profiles of Pol IImutants and strains lacking genes
involved in transcription (Figure S6) raised the question of whether
abnormalities in cell cycle progressionare the causeof thepoorfits of cell
sizevalues toagammadistribution inmanyof thesemutants.To test this

possibility, we examined the goodness-of-fit to a gammadistribution,
using the Anderson-Darling associated p-values, for the following
groups of deletion strains (Figure S7):Mutants displaying a ‘HighG1’
DNA content, usually associated with a G1 delay (Hoose et al. 2012);
mutants displaying a ‘Low G1’ DNA content, usually associated
with a G2/M delay (Hoose et al. 2012); and mutants lacking genes
of the DNA damage checkpoint biological process (Gene ontology
group GO:0000077). These groups were compared to each other
and all remaining strains analyzed by (Jorgensen et al. 2002). While
some outliers in these groups had altered cell size distributions (e.g.,
cells lacking the Chk1p checkpoint kinase in the GO:0000077
group), there was no statistically significant difference among these
groups of mutants (based on the non-parametric Kruskal-Wallis
test, P = 0.4841). Hence, cell cycle defects observed in several tran-
scription mutants are not sufficient for explaining the significant
deviations from the gamma distribution of cell size values in these
strains. Instead, it is likely that a constellation of defects in gene
expression or defects linked to transcriptional impact to the genome
is the cause of cell size distribution derangement.

DISCUSSION
We discuss our results that cell size values in S. cerevisiae follow a
gamma distribution and the role of global transcription in the con-
trol of cell size.

In biology, lognormal and gamma distributions have been pro-
posed to describe tissue growth models (Mosimann and Campbell
1988). In both cases, the observed distributions are thought to arise
from random fluctuations of many independent variables. Lognor-
mal patterns reflect an aggregate multiplicative process generated
from exponential patterns of growth (Koch 1966; Frank 2009). De-
spite random fluctuations, the growth of the overwhelming majority
of cellular components is influenced proportionally, leading to log-
normality (Koch 1966; Koch and Schaechter 1962). Similarly,
gamma distributions represent the aggregate of many power-law
and exponential processes (Frank 2009). With regards to cell size
control, it is important to note that not only wild type cells but also
size mutants, large or small, appear to maintain their size in a given
environment. Such stationary size distributions, with their narrow
range of coefficients of variation across populations with different
mean size (Anderson et al. 1969), are accommodated by the prop-
erties of lognormal and gamma distributions (Hosoda et al. 2011;
Dennis and Patil 1984; Kilian et al. 2005; Frank 2016).

Additionally, our data support the notion that global transcription
mechanisms are necessary to balance expression with cell size (Figures
3-6), as postulated previously (Zhurinsky et al. 2010; Marguerat and
Bahler 2012; Mena et al. 2017; Padovan-Merhar et al. 2015). The rela-
tionships between cell size and mRNA synthesis and decay rates are
complex. It has been proposed for budding yeast that alterations to
synthesis can correspondingly be buffered by changes in mRNA decay,
and vice versa, enabling cells to maintain gene dosage in the face of
global perturbations to gene expression (Sun et al. 2013; Sun et al. 2012;
Haimovich et al. 2013). Cell size and genome replication are sources of
potential perturbations to gene expression because an increase in cell
volume will dilute concentrations of cellular factors unless compen-
sated by global changes. Conversely, during replication, the dosage of
the genome per cell doubles which can be countered by a concomitant
increase in cell size. Prior work indicated that a subset of factors in-
volved in mRNA turnover could also generate large cells. Here, we
show that a number of additional mutants in genes with potential
widespread roles in gene expression, including alterations to the Pol
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II active site, lead to larger cells that can have altered distributions of
sizes compared to wild type. A question that arises from this work is
whether perturbed gene expression deregulates specific factors that
control cell size homeostasis, or an increase in cell size is a consequence
of globally defective gene expression, whereby alterations to global
expression processes elicit bufferingmechanisms that function through
changes in cell volume. While an extreme size deviation is common
among the gamma distribution-deviating strains, the actual distribu-
tions of these mutants appear to be of more than one class, suggesting
either complex or distinct underlying mechanisms.

How could perturbations in global transcription alter the ob-
served gamma distribution of cell size? In live cells, it appears that
constitutive gene expression occurs stochastically in bursts at the
single molecule level, with the burst magnitude and frequency
leading to gamma-distributed, steady-state levels of the produced
protein (Cai et al. 2006; Li and Xie 2011; Friedman et al. 2006).
Changes in the burst magnitude and frequency of transcription
events have been proposed to explain the scaling of mRNA counts
with cell size (Padovan-Merhar et al. 2015). The reproductive prop-
erty of the gamma distribution predicts that if the independent
random variables themselves are gamma-distributed, then the ag-
gregate of all these random variables will also be gamma-distributed
(Johnson et al. 1994). Cell size is routinely viewed as a proxy for cell
mass (Turner et al. 2012). Cell mass, in turn, is mostly determined
by the accumulated macromolecules, especially proteins (Lange and
Heijnen 2001). Hence, it is reasonable to speculate that global per-
turbations in the mechanics of gene expression that cause the
steady-state levels of individual gene products to deviate from their
gamma-distributed pattern could also perturb the aggregate gamma
pattern of gene expression and its manifestation in cell size. Pertur-
bation of global transcription through altered Pol II catalytic activity
leads to changes in cell size, consistent with such a model. Con-
versely, a subset of specific gene expression perturbations may in
aggregate lead to altered cell physiology that results in both extreme
cell size and deviation from a gamma distribution.

We show here that some mutants are not just extremely large, their
populations show distribution changes from wild type. Such changes
in the distribution of sizesmay occur for any number of reasons. Factors
observed here may elicit cell size alterations directly through gene
expression changes or indirectly through mRNA export defects or
transcription-dependent DNA damage or recombination (TREX/
THO complex members hpr1Δ, tho2Δ (Prado et al. 1997; Piruat and
Aguilera 1998)), reduced ability to degrade stalled Pol II (def1Δ
(Woudstra et al. 2002)), or widespread changes to transcription-de-
pendent chromatin modifications or elongation control (paf1Δ (Van
Oss et al. 2017)) or chromatin structure (RSC submodule components
ldb7Δ, htl1Δ, npl6Δ (Wilson et al. 2006; Cairns et al. 1996)). Our DNA
content data (see Figure S6) are not consistent with extreme chromo-
somal rearrangements in themutants we examined.We also found that
both haploid and diploid size distributions appear to fit better a gamma
pattern (Table 1). However, we cannot exclude the possibility that
possible aneuploidy or spontaneous diploidization in some of these
mutants (especially RSC mutants (Sing et al. 2018), and def1D cells
(Stepchenkova et al. 2018)) may contribute to deviations from gamma
distributions. For Pol II mutants, sizes of cells correlate with several
phenotypes: strain growth rates, biochemical and genetic defects, and
the extent to which a specific mRNA‘s half-life was increased (Malik
et al. 2017), raising intriguing questions about potential causative rela-
tionships between these phenotypes. Future experiments monitoring
transcription events in single cells of different size could shed light in
the relationship between global gene expression and size control.
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