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Abstract

Background: Delirium in hospitalized patients is a syndrome of acute brain dysfunction. Diagnostic (International Classification
of Diseases [ICD]) codes are often used in studies using electronic health records (EHRs), but they are inaccurate.

Objective: We sought to develop a more accurate method using natural language processing (NLP) to detect delirium episodes
on the basis of unstructured clinical notes.

Methods: We collected 1.5 million notes from >10,000 patients from among 9 hospitals. Seven experts iteratively labeled
200,471 sentences. Using these, we trained three NLP classifiers: Support Vector Machine, Recurrent Neural Networks, and
Transformer. Testing was performed using an external data set. We also evaluated associations with delirium billing (ICD) codes,
medications, orders for restraints and sitters, direct assessments (Confusion Assessment Method [CAM] scores), and in-hospital
mortality. F1 scores, confusion matrices, and areas under the receiver operating characteristic curve (AUCs) were used to compare
NLP models. We used the φ coefficient to measure associations with other delirium indicators.

Results: The transformer NLP performed best on the following parameters: micro F1=0.978, macro F1=0.918, positive
AUC=0.984, and negative AUC=0.992. NLP detections exhibited higher correlations (φ) than ICD codes with deliriogenic
medications (0.194 vs 0.073 for ICD codes), restraints and sitter orders (0.358 vs 0.177), mortality (0.216 vs 0.000), and CAM
scores (0.256 vs –0.028).

Conclusions: Clinical notes are an attractive alternative to ICD codes for EHR delirium studies but require automated methods.
Our NLP model detects delirium with high accuracy, similar to manual chart review. Our NLP approach can provide more accurate
determination of delirium for large-scale EHR-based studies regarding delirium, quality improvement, and clinical trails.

(JMIR Form Res 2022;6(6):e33834) doi: 10.2196/33834
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Introduction

Delirium is an acute neuropsychiatric syndrome with features
of inattention and global cognitive dysfunction, associated with
increased hospital length of stay, in-hospital mortality, and
long-term cognitive disability [1]. Delirium occurs in up to 26%
of hospitalized patients; prevalence rates may reach 42% in
patients older than age 65 years [2].

Electronic health records (EHRs) offer a rich source of
information for studies of delirium; however, determining which
patients have delirium is challenging. Manual review of medical
records is time consuming, limiting studies to a small fraction
of patients at risk. A more scalable approach is to use
International Classification of Diseases (ICD) billing codes.
This approach was recently used by a study [3] to assess 200
patients admitted to a skilled nursing facility, revealing that
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ICD codes achieved 96.0% specificity but only 53.1%
sensitivity. Another study [4] analyzed clinical data from 184
older adults at one academic medical center and found that ICD
codes had a specificity of 98% and sensitivity of 18%. Thus,
ICD codes miss a large fraction of patients with delirium.

On the other hand, rich information about patients’ status exists
in narrative clinical notes from doctors, nurses, physical
therapists, and other health care workers [5]. However,
extracting this information is challenging because of the
flexibility of natural language.

In this work, we collected 1.5 million clinical notes from over
10,000 patients from 7 distinct cohorts from among 9 hospitals
and developed a natural language processing (NLP) algorithm
to identify patients with delirium from unstructured EHR notes.

Methods

Data Set Description and Sentence Extraction
We collected 1,565,678 clinical notes from 10,516 patients from
9 hospitals, including Massachusetts General Hospital, Brigham
and Women's Hospital, Cooley Dickinson Hospital, Martha's
Vineyard Hospital, McLean Hospital, Nantucket Cottage
Hospital, Newton-Wellesley Hospital, North Shore Medical
Center, and Spaulding Rehabilitation Hospital. These 10,516
patients were from 7 previously assembled cohort studies:

• Antiepileptic drug (AED) data set: this data set comprises
patients who received AEDs and is used to study adverse
effects of AEDs (n=852).

• GIFTS data set: this data set comprises older patients
admitted for orthopedic surgery and is used to study
delirium (n=576).

• Dementia data set: this data set comprises patients who
were at risk for dementia and is used to study dementia
(n=802).

• COVID-19 data set: this data set comprises patients who
were hospitalized for COVID-19 and is used to study
hospitalization, intensive care unit admission, intubation,
and mortality prediction for patients with COVID-19
(n=3429).

• NCC data set: this data set is used to study neurological
diseases such as delirium, headache, and anosmia for
patients at neurocritical care units (n=1985).

• LTM data set: this data set comprises acutely ill patients
undergoing continuous electroencephalographic monitoring
(n=395). These patients underwent in-person delirium
assessments by research staff. Thus, this data set contains
assessment records rather than clinical notes.

• Control data set: this data set comprises inpatients randomly
selected as a control group from the Massachusetts General
Brigham hospital system (n=2477).

Demographic features of these cohorts are shown in Multimedia
Appendix 1.

Creating the Gold Standard: Sentence Labeling
We first created a comprehensive collection of keywords related
to delirium; these included the following: “delirium,”
“delirious,” “encephalopathy,” “confused,” “confusion,”

“agitated,” “agitation,” “inattentive,” “inattention,” “disorient,”
“disoriented,” “disorientation,” “reorient,” “restraints,”
“lethargy,” “psychosis,” “hallucination,” “inappropriate
behavior,” “fluctuating arousal,” “altered mental status,” “mental
status change,” “fluctuating mental status,” and “waxing and
waning mental status.” We extracted all sentences containing
any of these keywords from the assembled collection of notes.

Next, we created a gold-standard set of labels for sentences.
Examples are shown in Multimedia Appendix 2.

We developed a graphical user interface (GUI) for efficient
iterative labeling of sentences. Active learning, an algorithm to
select the most informative samples, was used to select candidate
sentences in each round. The labeling process was as follows:

• Step 0: candidate sentences were randomly selected from
the set of unlabeled sentences.

• Step 1: experts labeled candidate sentences and created
regular expressions called “always patterns” (described
below in Regular Expression Generation).

• Step 2: unlabeled sentences were screened for “always
patterns,” corresponding labels were assigned to sentences
that match, and these were added to the labeled set.

• Step 3: the labeled sentences were used to train a classifier
(introduced in Prediction Model).

• Step 4: the classifier was used to scan unlabeled sentences
and assign them a label and an embedding vector.

• Step 5: sentence embedding vectors were used to generate
an embedding map via Uniform Manifold Approximation
and Projection [6].

• Step 6: candidate sentences were selected from the
unlabeled data set with two query strategies: uncertainty
based on the entropy of prediction scores and diversity
based on the embedding map (Multimedia Appendix 3).
Each query selects half of the candidate sentences for the
next round. Then, the process was reverted to step 1.

Regular Expression Generation
While labeling sentences, experts created “always patterns”: a
regular expression that, when present, warrants assigning the
corresponding label to the sentence. Multimedia Appendix 2
provides examples of “always patterns” for positive, negative,
and neither patterns. The GUI used “always patterns” to scan
the residual unlabeled sentences to assign a label to all matched
sentences, thus enhancing labeling efficiency.

Prediction Model
We developed three models to identify delirium sentences:
Support Vector Machine (SVM), long short-term memory
(LSTM), and Transformer models. The LSTM model was also
used in active learning when collecting labels. Details of the
three models are as follows.

SVM is a widely used text classifier based on a “bag of words”
representation [7]. Sentences with delirium-related keywords
are first transformed into sentence vectors via “a bag of
unigrams and bigrams,” and the SVM algorithm finds
hyperplanes that separate different categories. The distances
between sample points and hyperplanes are used to calculate
prediction scores.
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Recurrent neural networks with LSTM units (RNN-LSTM) are
common models for sequence learning, where an LSTM unit
contains a cell for memory, an input gate to control input
information flow, an output gate to control output information
flow, and a forgetting gate to update memory [8]. We used a
3-layer bidirectional RNN with LSTM units to encode sentences.
The vector representation corresponding to the keyword location
was used for classification.

A transformer is a previously proposed [9] transduction model
that computes a representation of each word in a sentence
relying on self-attention. It is also the model used in
Bidirectional Encoder Representations from Transformers
(BERT) [10]. We used a 3-layer Transformer model to transform
a sentence into a sequence of vectors. The vector representation
corresponding to the delirium keyword was then used for
classification. The word vectors from BERT were used as initial
vectors.

Comparison of Delirium NLP Results With Other
Delirium Indicators
To evaluate construct validity of our EHR-based delirium
detection algorithms, we evaluated the strength of the association
between presence of delirium as detected by our NLP models
with other clinical outcomes or events known to be associated
with delirium. These included the use of ICD billing codes for
delirium; use of medications related to delirium; use of restraints
and sitters; and in-hospital mortality. For one cohort (the LTM
data set) we had access to one-time in-person delirium
assessments using the Confusion Assessment Method (CAM),
which has been already been validated as a good proxy for
DSM-5 in prior studies. For these, we compared the presence
of delirium, as defined by CAM, with the presence of positive
delirium sentences in clinical notes during hospitalization.
Details are provided in Multimedia Appendix 4.

Interrater Agreement
Pairwise interrater agreement (IRA) is used to measure
agreement between human and human (model) for each
category. Details are provided in Multimedia Appendix 5.

Data Split for Evaluation
We combined the AED, GIFTS, Dementia, COVID-19, NCC,
and Control data sets to yield a data set for sentence labeling
based on active learning. We collected 200,471 labeled
sentences, including those directly labeled by human experts
and those matched by “always patterns.” Of the 200,471 labeled
sentences, 176,800 were “positive,” 15,577 were “negative,”
and 8094 were “neither” sentences.

We designed two types of tests for NLP delirium detection
algorithms: an internal test and an external test (see Multimedia
Appendix 6).

Internal Test
In the internal test, we followed the standard machine learning
evaluation pipeline, randomly splitting the 200,471 labeled
sentences into a training data set (120,283 sentences, 60%),
validation data set (40,094 sentences, 20%) for hyperparameter
tuning, and test data set (40,094 sentences, 20%) for
performance evaluation.

External Test
The LTM data set was not used for training the NLP algorithms.
It was used entirely for testing. The LTM data set contained
16,067 sentences: 14,378 positive, 1193 negative, and 496
neither sentences.

Data Security and Ethics Approval
We have ethics approval (2013P001024) from the MassGeneral
Brigham institutional review board to work with identified data
internally. We will deidentify the data for sharing them with
external partners to test and improve the models together. Some
existing deidentification algorithms have been developed, such
as the Phsyionet algorithm [11] and the Philter algorithm [12],
but the recall of these algorithms is close to 100% rather than
100% perfect. Another option is federated learning, namely
training the model across multiple decentralized machines
holding local data by us and our external partners, without
exchanging them.

Results

Performances of Delirium NLP classifiers
In the following analysis, the 95% CIs were calculated through
bootstrapping [13].

Table 1 compares performances of SVM, RNN-LSTM, and
Transformer on both internal and external tests. As the data set
is an imbalanced multiclass data set, micro F1 scores, and macro
F1 scores were used to evaluate performance [14]. When using
micro F1 scores, the performance of the SVM, RNN-LSTM,
and Transformer models was close on both the internal and
external test sets. However, when using macro F1 scores, which
measure average performance across categories, on the internal
test the Transformer (0.927, 95% CI 0.925-0.930) performed
similarly to the RNN-LSTM (0.922, 95% CI 0.920-0.925), and
both Transformer and RNN-LSTM outperformed the SVM
(0.839, 95% CI 0.835-0.842). In the external test set, the
Transformer (0.918, 95% CI 0.914-0.921) displayed the best
performance, while the SVM (0.885, 95% CI 0.881-0.889)
displayed slightly better performance than the RNN-LSTM
(0.868, 95% CI 0.862-0.874). Overall, the Transformer was
thus the best model based on both micro F1 and macro F1
metrics.

Figure 1 illustrates confusion matrices for the best Transformer,
normalized by row to show recall (sensitivity), and by column
to show precision (positive predictive value). For the Positive
category, precision and recall on both the internal and external
test were close to 0.99. For the Negative category, on the internal
test, precision (0.916, 95% CI 0.911-0.920) was slightly higher
than recall (0.893, 95% CI 0.889-0.897), while on the external
test, recall (0.947, 95% CI 0.942-0.951) was much higher than
precision (0.861, 95% CI 0.852-0.870). For the Neither category,
on both internal and external tests, precision (0.916, 95% CI
0.909-0.923 vs 0.886, 95% CI 0.877-0.894) was better than
recall (0.867, 95% CI 0.860-0.873 vs 0.848, 95% CI
0.836-0.859). In summary, performance on the Negative
category was better than that on the Neither category, and
performance on the Positive category was better still.
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Figure 2 compares receiver operating characteristic (ROC)
curves and areas under the ROC curve (AUCs) for the Positive,
Negative, and Neither categories on both internal and external
tests. On the internal test data, the Transformer (Positive: 0.981,
95% CI 0.980-0.983; Negative: 0.985, 95% CI 0.984-0.986;
Neither: 0.974, 95% CI 0.971-0.976) and RNN-LSTM (Positive:
0.980, 95% CI 0.978-0.981; Negative: 0.982, 95% CI
0.981-0.983; Neither: 0.972, 95% CI 0.969-0.974) were close,
and both were better than SVM (Positive: 0.962, 95% CI
0.961-0.964; Negative: 0.962, 95% CI 0.961-0.963; Neither:
0.966, 95% CI 0.963-0.968).

On the external test, for the Positive category, the Transformer
(0.984, 95% CI 0.983-0.985) was the best, and the SVM (0.974,
95% CI 0.972-0.976) was better than the RNN-LSTM (0.970,
95% CI 0.966-0.972). For the Negative category, the
Transformer (0.992, 95% CI 0.991-0.993) was the best, followed
by RNN-LSTM (0.984, 95% CI 0.982-0.985), and then the
SVM (0.979, 95% CI 0.977-0.981). For the Neither category,
the SVM (0.984, 95% CI 0.982-0.986) was the best, followed
by the Transformer (0.969, 95% CI 0.967-0.973) and the
RNN-LSTM (0.952, 95% CI 0.949-0.955).

We conclude that overall, the Transformer model performed
the best. Hereinafter, “NLP” refers to the Transformer model.

Table 1. F1 scores for the Support Vector Machine, recurrent neural networks with long short-term model, and the Transformer model.

Transformer, mean (95% CI)Recurrent neural networks with long
short-term model, mean (95% CI)

Support Vector Machine, mean (95% CI)Scores

Micro F1

0.978 (0.977-0.979)0.977 (0.976-0.978)0.949 (0.948-0.951)Internal test

0.978 (0.977-0.979)0.967 (0.965-0.968)0.964 (0.963-0.966)External test

Macro F1

0.927 (0.925-0.930)0.922 (0.920-0.925)0.839 (0.835-0.842)Internal test

0.918 (0.914-0.921)0.868 (0.862-0.874)0.885 (0.881-0.889)External test

Figure 1. Precision, recall, and F1 scores for delirium classifiers.
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Figure 2. Receiver operating characteristic (ROC) curves for delirium classifiers. AUC: area under the curve, LSTM: long short-term model, SVM:
Support Vector Machine.

Associations Between Delirium NLP Results and Other
Delirium Indicators
Next, we compared associations between delirium NLP results
and other delirium indicators. Results are shown in Table 2 For
the NCC cohort (n=1985 patients), we assessed associations of
NLP-detected delirium with delirium ICD code usage,
medications, restraints and sitter orders, and mortality. For the
LTM data set (n=395), we analyzed associations with CAM
scores. For comparison, we also calculated the association of
ICD code usage with the same delirium indicators.

We calculated these delirium indicators at the patient level, such
that each patient is assigned a “+1” for NLP-based detection of
delirium if they have one or more sentences classified as Positive
by the NLP Transformer algorithm; otherwise, they were
assigned a “–1.” Similarly, patients were assigned scores of

“+1” or “–1” for each of the other delirium indicators. We used
the φ coefficient (mean square contingency coefficient) to
measure associations between NLP-based delirium detections
and each delirium indicator. When using our NLP detector to
classify sentences in the NCC (or LTM) data set, the NCC (or
LTM) data were only used as test data, as illustrated in
Multimedia Appendix 6.

Table 2 shows that associations of delirium indicators with NLP
results are much stronger than those with ICD codes.

In the NCC data set, the NLP model identified 1117 out of 1985
patients with positive delirium sentences (which were verified
to be correct through manual review) but no delirium ICD codes.
This highlights the low sensitivity of delirium ICD codes relative
to manual chart review, and the excellent sensitivity of the NLP
algorithm.
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Table 2. Associations between delirium natural language processing indicators and other delirium indicators.

Natural language processing classifiers,
mean (95% CI)

International Classification of Diseases
codes, mean (95% CI)

Data sets and delirium indicators

NCC

0.134 (0.133 to 0.135)1International Classification of Diseases codes

0.194 (0.192 to 0.197)0.073 (0.072 to 0.074)Medication

0.358 (0.357 to 0.361)0.177 (0.176 to 0.179)Restraints and sitter orders

0.216 (0.215 to 0.217)0.000 (–0.0002 to 0.0001)Mortality

LTM

0.256 (0.252 to 0.259)–0.028 (–0.025 to –0.030)Confusion Assessment Method

Coverage Analysis
In creating the gold standard for labeling sentences, we
developed many “always patterns” for delirium. While this set
of sentences was large, we hypothesized that it might not be
exhaustive; therefore, we investigated the coverage of our
“always patterns” in another data set.

We analyzed the coverage of “always patterns” as follows. First,
in the development data set (AED, GIFTS, Dementia,
COVID-19, NCC, and control cohorts)—used for labeling the
gold-standard set of sentences and for developing “always
patterns”—97.6% (195,680) of sentences with delirium
keywords were matched by at least one “always pattern.” In the
LTM data set, which was not used for labeling sentences, 78.2%
(12,569) of sentences with delirium keywords matched at least
one “always pattern.”

We next tested the extent to which sentences not matched by
“always patterns” were still accurately classified by the NLP
model. To accomplish this, we randomly selected 400 sentences
as follows:

• 100 sentences that both the Transformer and LSTM models
predicted “Positive” for delirium

• 100 sentences that both the Transformer and LSTM models
predicted “Negative” for delirium

• 100 sentences that both the Transformer and LSTM models
predicted “Neither”; namely, not relevant to delirium

• 100 sentences on which the Transformer and LSTM models
disagreed.

Two human experts (SM and MBW) independently labeled
these 400 unmatched sentences. Pairwise IRA results are shown
in Figure 3, where 95% CIs were calculated through
Bootstrapping [13]. For unmatched sentences, the performance
of model IRA (LSTM, Transformer) was close to that of human
IRA for the Negative category but displayed gaps for Positive
and Neither categories compared with human IRA.

We next investigated whether performance gaps in the new data
set could be easily removed without repeating a large amount
of sentence relabeling. For this investigation, we tried
fine-tuning the Transformer model with a previously reported
procedure [10]. This was readily done (green bars).

We conclude that the Transformer model is quite general, but
not exhaustive; nevertheless, when gaps are encountered, the
model can be readily tuned to accommodate previously unseen
delirium sentence patterns.

Figure 4 illustrates mortality rates for the patients with different
numbers of days with delirium in the GIFTS data set. The
mortality rate increases monotonically with the number of
delirium days.
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Figure 3. Pairwise interrater agreement (IRA) for unmatched sentences. LSTM: long short-term memory.

Figure 4. Mortality rate versus the number of days with delirium.

Discussion

Principal Findings
Our results show that an NLP approach can accurately detect
patients with delirium, using unstructured clinical notes. These
results are likely to be robust because they are based on a large
collection of clinical notes from over 10,000 patients. The
proposed delirium NLP approach is much more accurate, and
especially more sensitive, than delirium ICD codes; it was able
to detect patients who have delirium described in clinical notes
but have no delirium ICD codes in their medical records. Further
enhancing validity, NLP delirium detections are strongly

associated with clinical factors known to be associated with
delirium, including delirium-associated medications, use of
restraints, and in-hospital mortality. This NLP tool will be useful
for large-scale EHR research on delirium.

Application
The delirium NLP approach proposed in this work has many
potential applications. First, the approach will be applied to
many future large-scale studies regarding delirium, such as the
causes of delirium and the effects of delirium on outcomes such
as dementia. Second, the approach can review entire medical
record in order to identify specific parts of the hospital, which
seem to have more delirium, which can be used for quality
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improvement. We can use this to identify factors (eg,
medications) that might explain why delirium occurs. Third,
the approach can be used to develop a delirium prediction model
for clinical trials. The detection results of the NLP approach
can be used as targets of prediction models, and the prediction
models can be used to identify patients at a high risk for
delirium, which provides information for interventions. The
barriers of the applications are data and trust or transparency.

Comparison With Prior Work
Many prior studies have utilized ICD codes to identify delirium
for large-scale EHR studies [3,4]. Our findings confirm
observations from these earlier studies that ICD codes generally
have high specificity but low sensitivity, leading to many missed
cases of delirium. We investigated this finding in detail in the
NCC cohort, where we observed that 1117 of 1985 patients who
had positive delirium sentences had no corresponding delirium
ICD codes. To confirm these findings, we used the NLP
Transformer model to select the sentence with the highest
positive score for each patient, and then manually reviewed the
1117 selected sentences, thereby manually confirming that these
were true positives. These results show that the NLP approach
largely overcomes the low sensitivity of delirium ICD codes.

NLP has been used to extract phenotypes from clinical notes in
several previous studies. McCoy et al [15] used NLP to analyze
discharge notes to improve prediction of suicide and accidental
death after discharge. Gundlapalli et al [16] reported that a
relatively simple case finding method based on string matching
for specific keywords coupled with a negation algorithm and
information extracted by a more complex NLP system could
identify patients with inflammatory bowel disease. Zhou et al
[17] applied an NLP approach to identify patients with
depression on the basis of discharge summaries. Yang et al [18]
explored transformer-based models for clinical concept
extraction. Mascio et al [19] analyzed the impact of various
word representations, text preprocessing, and classification
algorithms on the performance of different text classification
tasks based on EHRs. Most prior medical NLP used negation
detection algorithms to deal with the negative cases. However,
we found many negative cases that did not contain clear negative
expressions. Therefore, we classified phenotype expressions as
positive, negative, or neither (not relevant), and trained 3-class
classifiers.

A few prior studies used NLP for delirium research. One such
study [20] summarized patterns in the delirium literature over
time, using unsupervised learning methods; by contrast, our
work used NLP to extract information from clinical notes.
Another study [21] detected delirium using an open-source NLP
pipeline MedTaggerIE—an unstructured information
management architecture–based information extraction
framework. Shao et al [22] experimented with 3 different topic
modeling methods and a keyword search method for identifying
delirium-related documents and sentences in clinical notes. Weir
et al [23] designed classifiers for patients with delirium by
combining text data with ICD, Ninth Revision codes. Sun et al
[24] defined a generic process for developing a clinical risk

prediction model, applied the model calibration process at 4
hospitals, and generated risk prediction models for delirium.
Jauk et al [25] implemented a random forest–based algorithm
to identify hospitalized patients at high risk for delirium. A key
difference between these prior studies and this study is that they
aimed to detect delirium at the patient level (ie, whether a patient
ever experienced delirium during a hospitalization). By contrast,
our approach detects delirium at the sentence level, which
provides more fine-grained temporal information (ie, on which
days was a patient experiencing delirium). Such information is
important for estimating the overall burden of delirium, and for
studies that attempt to relate time-varying factors to the
development of delirium.

Strengths
This work leveraged a large cohort composed of multiple
different cohorts. These data sets provide a good source for
variety of delirium expression in clinical notes. Additionally,
we developed a novel GUI labeling tool and used active learning
to enhance labeling efficiency. Furthermore, we compared 3
widely used NLP classifiers including a state-of-the-art
Transformer model for delirium detection. Finally, we compared
our delirium NLP detector with other delirium indicators, and
we were able to demonstrate that our NLP method is
substantially better than traditional methods based on ICD codes.

Limitations
Although our data were obtained from 9 hospitals, all were in
the same geographic region (Massachusetts). Thus, our cohort
may not be representative of other US or non-US populations.
One important future direction is to test our delirium NLP
algorithm using data from other regions. Additionally, the
coverage rate of the “always pattern” for the development data
set was 97.6% (n=195,680) owing to active learning, but
decreased to 78.2% (n=12,569) on an independent test set.
Further rounds of active learning to enlarge the available training
data will help further expand the generalizability of the NLP
Transformer model to new data sets. Nevertheless, our
fine-tuning experiments show that extending the model to new
data sets may require only a relatively small amount of
additional labeling effort.

Conclusions
In this work, we developed a new delirium NLP detection
approach that identifies patients with delirium from unstructured
clinical notes. In many cases, the delirium information was only
recorded in clinical notes and was absent from ICD codes. We
anticipate that this model will be useful for large-scale
EHR-based research on delirium, especially detecting delirium
at a fine-grained level such as the note and sentence levels.
Additionally, the labeling process based on active learning
developed for this study was very efficient, achieving a coverage
rate of 97.6% (n=195,680) in the development data set after just
5 rounds of labeling. This labeling method can be used for other
studies related to phenotype detection based on unstructured
clinical notes.
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