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α,ω-Dodecanediol is a versatile material that has been widely used not only as an adhesive
and crosslinking reagent, but also as a building block in the pharmaceutical and polymer
industries. The biosynthesis of α,ω-dodecanediol from fatty derivatives, such as dodecane
and dodecanol, requires anω-specific hydroxylation step usingmonooxygenase enzymes.
An issue with the whole-cell biotransformation of 1-dodecanol using cytochrome P450
monooxygenase (CYP) with ω-specific hydroxylation activity was the low conversion and
production of the over-oxidized product of dodecanoic acid. In this study, CYP153A33
from Marinobacter aquaeolei was engineered to obtain higher ω-specific hydroxylation
activity through site-directed mutagenesis. The target residue wasmutated to increase flux
toward α,ω-dodecanediol synthesis, while reducing the generation of the overoxidation
product of dodecanoic acid and α,ω-dodecanedioic acid. Among the evaluated variants,
CYP153A33 P136A showed a significant increase in 1-dodecanol conversion, i.e., 71.2%
(7.12 mM from 10mM 1-dodecanol), with an increased hydroxylation to over-oxidation
activity ratio, i.e., 32.4. Finally, the applicability of this engineered enzyme for ω-specific
hydroxylation against several 1-alkanols, i.e., from C6 to C16, was investigated and
discussed based on the structure-activity relationship.
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INTRODUCTION

Cytochrome P450 monooxygenases (CYPs) are oxidoreductases that catalyze the insertion of an oxygen
atom into diverse substrates, with excellent regio-/stereo-selectivity (Park et al., 2020b); CYP consists of
heme-thiolate structures in its catalytic core. CYP enzymes are classified into several groups depending on
the electron transfer system of redox proteins. In general, bacterial CYPs belong to the class I system,
which consists of a CYP core harboring a heme domain, ferredoxin, and ferredoxin reductase, which
require independent expression during the oxidation reaction (Finnigan et al., 2020).

Its substrate spectrum includes fatty derivatives such as fatty alkanes, alcohols, and acids (Jung
et al., 2016; Hsieh et al., 2018), of which fatty alcohols are a promising feedstock in the chemical and
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biochemical industries. Several fatty alcohols have been used as
repeating monomers in the polymer industry, or as solvents,
lubricants, surfactants, and precursors for organic synthesis (Lee
et al., 2018). In particular, α,ω-alkanediols are versatile chemicals
that can be obtained via the consecutive oxidation of alkanes/1-
alkanol or the reduction of diacids by carboxylic acid reductase
(Kirillova et al., 2009; Olmedo et al., 2016; Hsieh et al., 2018).
They are also widely used as monomer precursors for polyesters,
polyamides, and polyurethane, through cascade oxidation,
amination, and polymerization reactions (Ahsan et al., 2018).
For example, α,ω-alkanediols are widely used as building blocks
for polyester synthesis through direct esterification reactions (Dai
et al., 2017).

During the oxidation of long-chain fatty derivatives, however,
regioselectivity is critical for obtaining high-purity products,
varying depending on the CYP enzyme family and its carbon
chains (Munday et al., 2016); for example, the most well-known
CYP102A1, also called BM3, was reported to prefer ω-1 or ω-2
regioselectivity over the ω-position (Whitehouse et al., 2011;
Whitehouse et al., 2012; Li and Wong, 2019). In addition,
CYP505 and CYP102A showed distinct preferable ratios at the
ω-1, ω-2, and ω-3 positions; a CYP enzyme responsible for
ω-carbon-specific hydroxylation has also been identified
(Whitehouse et al., 2012). The CYP153 family, for example,
has been isolated and characterized to function as an
ω-specific hydroxylase of long-chain fatty derivatives;
additionally, CYP2E1, CYP4A1, and CYP153A G307, all prefer
ω-specific hydroxylation on the ω-1, 2, and 3 positions (Holmes
et al., 2004; Kuzgun et al., 2020). The CYP153A family is classified
as a class I CYP enzyme, requiring redox proteins to mediate
electron transfer (Van Beilen et al., 2006). Several CYP153
subfamily members, such as CYP153A7 and CYP153A33,
showed a wide range of substrate specificities, such as ω- and
ω-1 specific hydroxylation activity against C12 fatty acids, and
have demonstrated a high degree of structural plasticity and
flexibility in substate recognition sites (Fujita et al., 2009;
Fiorentini et al., 2018).

To utilize the CYP153 family for preparing α,ω-alkanediols
from alkanes or 1-alkanol, it is necessary to secure the active
CYP153 enzyme with high regioselectivity against the targeted
chain of substrates. Another limiting factor in such bioconversion
is the overoxidation activity of the CYP153 enzyme, which is
known to proceed with the continuous oxidation of the produced
alcohols into acid via aldehyde. Although the oxidation of alcohol
and aldehyde reportedly occurs via alcohol dehydrogenase or
fatty alcohol oxidase and aldehyde dehydrogenase enzymes,
respectively, some CYP enzymes have also been reported to
catalyze overoxidation reactions as well (Scheller et al., 1998;
Eschenfeldt et al., 2003). Although the exact reaction mechanisms
of overoxidation are not clearly understood and need
clarification, the overoxidation products can be attributed to
the catalytic activity of CYP in converting alcohol to aldehyde,
followed by oxidation to acids. According to previous reports,
purified CYP52A3 from Candida maltose could oxidize the first
oxidation product of 1-hexadecanol, thus generating 1,16-
hexadecanedioic acids without the intervention of other
enzymes such as ADH and FAO (Scheller et al., 1998).

Similarly, studies demonstrated that CYP52A13 and
CYP52A17 isolated from Candida tropicalis (ATCC20336)
displayed overoxidation activity on long-chain saturated and
unsaturated fatty acids; postulating the path of the NADPH-
dependent conversion of fatty acids to corresponding fatty
aldehydes and α,ω-dicarboxylic acid (Eschenfeldt et al., 2003).

Previously, our group reported the production of 1,12-
dodecanediol from 1-dodecanol or dodecane as a substrate,
using CYP153A from Marinobacteri aquaeolei and Nfa22290
from Nocardia farcinica (IFM10152) in combination with putida
ferredoxin and ferredoxin reductase (CamA) (Park and Choi,
2020). During the biotransformation of dodecane, the conversion
to diol was less than 10%, and its overoxidation products,
i.e., dodecanoic acid (lauric acid) and 12-hydroxydodecanoic
acid were observed as byproducts. This suggests that
overoxidation limited the production of α,ω-alkanediols, and
needs to be engineered to obtain CYP153A deficient in
overoxidation activity.

Based on our structural understanding, CYP153A enzymes
appear to have a high degree of structural plasticity and flexibility
in the catalytic core site that hosts the substrate recognition site.
Structural analysis of the CYP153A33 enzyme to enhance
terminal hydroxylation of fatty acids has also been reported;
the substrate-binding pocket of the enzyme has an inverted
conical shape. It has thus been suggested that the fatty acid
substrate can be vertically combined (Sara et al., 2016). In this
study, the activity ratio of ω-site-specific hydroxylation to
overoxidation by CYP153A33 variants was increased by
mutation of the substrate-binding pocket, i.e., by substituting
key amino acids through the destruction of proline-proline
linkages. In addition, whole-cell biotransformation by wild-
type CYP153A33 and its mutants was investigated with
medium- and long-chain fatty alkanols. Interestingly, the
CYP153A33 mutant displayed significantly higher ω-specific
hydroxylation activity on dodecanoic acid and a low ratio of
overoxidation activity, when compared to the wild-type. These
results would be of great help for further research on the CYP-
dependent oxidation of fatty derivatives.

MATERIALS AND METHODS

Chemical Reagents and Media
All fatty alcohols, fatty acids, and solvents were obtained from
Sigma-Aldrich (Seoul, South Korea) and Sejin CI (Seoul, South
Korea). The culture media used in this research were obtained
from Becton, Dickinson, and Company, U.S., and the ethyl
acetate solvent was obtained from Samchun Chemical Co.
Ltd., South Korea.

Site-Directed Mutagenesis of CYP153A33
and Construction of Expression System in
E. coli
Mutations in the protein structure were induced through site-
directed mutagenesis, using the pair of primers, 5′-CAGCCC
CTCCGCAGGGTCACCGAG-3′, and 5′-CTCGGTGACCCT
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GCGGAGGGGCTG-3′. After the preparation of two PCR
templates, the final PCR was conducted using another pair of
primers (i.e., 5′-AAA CAT ATG ATG CCA ACA CTG CCC
AGA-3′, and 5′-AAA CTC GAG TTA ACT GTT CGG TGT
CAG-3′); restriction sites were NdeI and XhoI. The enzyme
expression system was identical to that used in previous
research (Park et al., 2020b). Putidaredoxin camB and
putidatedoxin reductase camA from Pseudomonas putida were
overexpressed as the redox proteins for CYP catalysis, and the
long-chain fatty acid transporter fadL from Escherichia coli was
overexpressed in E. coli BW25113(DE3)ΔfadD (Bae et al., 2014;
Park and Choi, 2020). The CYP153A33 and mutant genes were
each inserted into a pET-24ma (+) expression vector, and the
camA and camB genes were cloned into a pETduet-1 expression
vector; the fadL gene was cloned into pCDFduet-1 MCS1. The
mutant CYP153A33 P136A was also inserted into a pET-24ma
(+) expression vector, and was included in an identical whole-cell
transformation system (Park and Choi, 2020).

Enzyme Expression and Whole-Cell
Reaction of Primary Fatty Alcohols Using
Recombinant E. coli Cells
Recombinant E. coli BW25113(DE3)ΔfadD was cultured in a
Luria-Bertani medium containing kanamycin, ampicillin, and
spectinomycin at 37°C for 9 h with shaking at 200 rpm (Bae
et al., 2014; Park and Choi, 2020). The cells were then grown in
50 ml of Terrific Broth containing the same antibiotics, at 37°C for
approximately 4 h until an OD600 of 2.4, was reached; Erlenmeyer
baffled flasks were used for culturing. Next, 0.5 mM 5-
aminolevulinic acid (ALA), 0.25 mM of isopropyl-β-D-
thiogalactopyranoside (IPTG), and 0.1 mM iron (II) sulfate
were added for protein expression. Induced cells were
incubated at 30°C for 10 h with shaking at 200 rpm. For
whole-cell reaction, the cells were harvested by centrifugation
at 8,000 rpm for 10 min and then washed twice with a 0.1 M
potassium phosphate buffer (pH 7.0). The cell pellets thus
obtained were resuspended in 0.1 M potassium phosphate
buffer containing 1% (w/v) D-glucose and diluted to an OD600

of 30. Reactant (10 ml) containing 10 mM of 1-alkanol was
incubated at 30°C and 200 rpm using a 100-ml Erlenmeyer
baffled flask.

Gas Chromatography Analysis
Whole-cell reaction samples were analyzed using gas
chromatography. Ingredients in the samples were extracted
with an equal amount of ethyl acetate at 50°C. The
supernatant was separated by centrifugation and derivatized
into N,O-bis(trimethylsilyl) trifluoroacetamide at 70°C for
40 min. The derivatized sample was analyzed using a 6500 GC
gas chromatography system (Younglin, Suwon, South Korea); an
Agilent J&W GC column (CP-Sil 5 CB, 30 m, 0.25 mm i.d.;
0.25 μm film thickness) was used for its analysis. The
conditions for the detection of 1-dodecanol, α,ω-dodecanediol,
dodecanoic acid, and ω-hydroxydodecanoic acid are mentioned
below (Park and Choi, 2020). The initial column temperature was
80°C, which was then increased to 230°C at 20°C/min and
maintained for 1.5 min. The capillary flow rate was 2 ml/min,
and the carrier gas was nitrogen (N2); the same column was used
for the detection of other extracts as well. The initial column
temperature was 130°C, which was then increased to 230°C at
20°C/min and maintained for 3 min.

Structural Analysis of Enzyme and
Enzyme-Substrate Docking Simulation
Enzyme-substrate docking simulation was conducted using
PyMOL2 (Schrödinger, Inc., US). Structural analysis of
CYP153A33 was conducted using AutoDockTools-1.5.6
(Scripps Research, San Diego, CA), using PDB 5FYF (DOI: 10.
2210/pdb5FYF/pdb) as the template.

RESULTS

Whole-Cell Transformation of 1-Dodecanol
by CYP153A33 Expressing E. coli
The CYP153A33-encoding gene was co-expressed with CamAB
redox proteins for the whole-cell biotransformation of 1-
dodecanol. 10 mM of 1-Dodecanol (A) was used as the
substrate, and the whole-cell bioconversion resulted in diverse
production profiles, including α,ω-dodecanediol (B), dodecanoic
acid (C), ω-hydroxydodecanoic acid (D), and α,ω-dodecanedioic
acid (E) (Figure 1). After 3 h of reaction, the production titer of
α,ω-dodecanediol was the highest, and each product was

FIGURE 1 | Multistep cascade reaction of 1-dodecanol by CYP153A33-dependent whole-cell transformation. Conversion was calculated when CYP153A33
reached the highest α,ω-dodecanediol production. Conversion of dodecanoic acid to ω-hydroxydodecanoic acid was conducted independently, using dodecanoic acid
as a substrate; (A) 1-dodecanol, (B) α,ω-dodecanediol, (C) dodecanoic acid, (D) ω-hydroxydodecanoic acid, (E) dodecanedioic acid.
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separated by gas chromatography for simultaneous quantitative
analysis. The production profile with conversion included 20.5%
α,ω-dodecanediol, 2.8% dodecanoic acid, 2.0%
ω-hydroxydodecanoic acid, plus miscible amounts of
α,ω-dodecanedioic acid. The conversion of
ω-hydroxydodecanoic acids to dodecanedioic acid was also
observed as less than 5%, indicating that ω-specific
hydroxylation to the terminal carbon of the fatty substrate is
the most dominant reaction. The relatively lower dodecanoic acid
accumulation might be due to the reduction reaction of the
aldehyde to alcohol by endogenous enzymes in the host strain
of E. coli BW25113(DE3)ΔfadD.

The major product was identified as α,ω-dodecanediol, but the
conversion was low, i.e., only 23.3%. Although one of the
overoxidation products of 1-dodecanal was not detected in the
whole-cell biotransformation, another overoxidation product of
ω-hydroxydodecanoic acid was generated with a similar amount
of dodecanoic acid, whose hydroxylation ratio to overoxidation
activity was calculated as 13.7. In a control experiment that
converted 1-dodecanol to dodecanoic acid by using E. coli
BW25113(DE3)ΔfadD cells harboring an empty vector, less
than 0.1 mM of dodecanoic acid was produced, suggesting that
this conversion was attributed to both CYP153A33 and the
endogenous oxidase enzymes in host cells. In addition, a
separate experiment for dodecanoic acid bioconversion via
CYP153A33-expressing cells resulted in 25.6% conversion to
ω-hydroxydodecanoic acid, while 2% conversion was observed
in the 1-dodecanol bioconversion. This suggests that CYP153A33
favors fatty acid forms as a substrate, rather than 1-alkanol and
overoxidation activity, which was higher with α,ω-dodecanediol
(9.8%) than it was with 1-dodecanol (2.8%).

Overoxidation Activity of CYP153A33 and
Sequence Analysis With CYP52A Family
Understanding the correlation between end-point production
and rate at each step revealed that the highest rate could be
observed in the 1-dodecanol conversion, while the lowest was
observed in the ω-hydroxydodecanoic acid conversion. These
oxidation patterns are in accordance with previous results by
Scheller et al., wherein the purified CYP52A3 displayed
overoxidation activity during the oxidation of hexadecane,
which was further confirmed using kinetic studies
demonstrating higher Vmax values against alkane, 1-alkanol, 1-
alkanal, and lower Vmax against acid, diol, and hydroxy acid.

CYP153A33 showed slight homology (around 20%) with
CYP52A3, CYP52A13, and CYP52A17, which were all
previously proven to have good overoxidation activity;
however, some conserved regions were found in the substrate-
binding domains and the active site. Firstly, the residues at the
entrance of the substrate access channel may differentiate in their

FIGURE 2 | (A) Construction of a CYP153A33 structure model, used to
calculate the distance between the heme center and hydroxyl functional group
of docked dodecanoic acid. (B) 1-dodecanol-docked CYP153A33 structural
model; P135-P136 linkage was found at the substate recognition site
which holds ω-OH terminal of the docked dodecanoic acid. (C) Among two
proline residues, Pro136 has direct interaction with the ω-OH terminal of
docked dodecanoic acid. (D) Selection of target residues in the active site and

(Continued )

FIGURE 2 | substrate binding site of CYP153A33. Among the screened
residues, D134A and P136A were finally selected for the evaluation of 1-
dodecanol bioconversion.
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substrate specificity and binding affinity with the -OH functional
group of the hydroxylated product. Secondly, the CYP153A33
and CYP52A families contain a conserved sequence
(i.e., NXXLLXIVXGXDTT) in the central I-helix, suggesting
that these residues might be responsible for the high
ω-regioselectivity of the CYP153A33 and CYP52A families.
One important clue about this overoxidation activity appears
to lie in the feedback regulation, as the final product (i.e., α,ω-
dodecanedioic acid) acts as a competitive inhibitor of 1-
dodecanol binding and may be important for the metabolic
regulation of P450 activity (Scheller et al., 1998).

Selection of Key Residue in Substrate
Binding Pocket and Site-Directed
Mutagenesis of CYP153A33
Based on the analysis of conserved sequences of the CYP153A33
and CYP53A families, we attempted to engineer CYP153A to
lower the overoxidation activity by mutating key residues binding
the generated hydroxyl functional group. Firstly, a structural
model of CYP153A33 was constructed based on the crystal
structure of CYP153A (PDB code: 5FYF), followed by docking
simulation with a dodecanoic acid substrate. The constructed
model showed an obvious path from the hydroxyl functional
group of dodecanoic acid to the heme active site, allowing the
long-chain fatty acids to access and bind to one another without
hindrances. Additionally, the distance of the linear path was
calculated to be 20.6 Å (Figure 2A).

On the active site in the pocket of the dodecanoic acid-docked
CYP153A33 model, proline-proline contiguous amino acid
sequences at Pro135 and Pro136 were identified (Figure 2B).
Proline residues are known to act as structural disruptors in the
middle of regular secondary structure elements such as α-helices
and β-sheets, thereby increasing the rigidity of protein structures
and inhibiting the flexibility of enzymes when incorporated into
peptide bonds in the active site (Morgan and Rubenstein, 2013).
Since Pro135 and Pro136 were located in the heme active site,
bound to the expected hydroxylated carbon atom of
α,ω-dodecanediol to facilitate further oxidation to aldehyde by
holding and facing the substrate-enzyme complex to the heme
active site, Pro136 in the proline-proline linkage was selected as
the first target for a mutation (Figure 2C). In addition, key
residues including Gln129, Asp134, Met129, and Ser140 in the
substrate recognition site were identified, and their mutation was
first investigated via docking simulation with 1-dodecanol. The
selected residues were exchanged with smaller, hydrophobic
residues to minimize the effect on pocket polarity and to

FIGURE 3 | Evaluation of 1-dodecanol bioconversion by whole-cell
reaction of CYP153A33 mutant strains. (A)Whole-cell biotransformation of 1-
dodecanol by CYP153A33 D134A. The production time-profile includes
α,ω-dodecanediol, dodecanoic acid, and ω-hydroxydodecanoic acid,
from 10 mM of 1-dodecanol substrate. (B) Production of α,ω-dodecanediol,
(C) dodecanoic acid, and (D) ω-hydroxydodecanoic acid from 10 mM of 1-
dodecanol substrate, through whole-cell biotransformation of 1-dodecanol

(Continued )

FIGURE 3 | using CYP153A33 P136A (solid line) and wild-type
(dotted line) strains. (E) Multistep cascade reaction of 1-dodecanol by
CYP153A33 P136A-dependent whole-cell transformation. Conversion was
calculated when CYP153A33 P136A reached the highest α,ω-dodecanediol
production. Conversion of dodecanoic acid to ω-hydroxydodecanoic acid
was conducted independently, using dodecanoic acid as a substrate;
(A) 1-dodecanol, (B) α,ω-dodecanediol, (C) dodecanoic acid, (D)
ω-hydroxydodecanoic acid, (E) dodecanedioic acid.
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increase the chance of substrate access to the active site by
lowering the rigidity of the substrate access path. Mutated
CYP153A33 structures—Q129L, Q129V, D134A, P135A,
P135G, P136A, S140G, and M228L—were generated and
evaluated (Figure 2D). Excluding D134A and P136A, the
docking model did not show a dramatic decrease in the
affinity energy and distance from the heme iron center. Next,
CYP153A33 D134A and P136A mutants were constructed and
their whole-cell activities were investigated.

Whole-Cell Transformation of 1-Dodecanol
by CYP153A33 D134A and P136A
Whole-cell biotransformation of 10 mM 1-dodecanol was
performed with a recombinant E. coli system expressing
each CYP153A33 variant of D134A and P136A; however,
no significant increase in bioconversion activity was observed
in the mutant strains of D134A. The highest tier could be
reached after 5 h of reaction, and less than 0.7 mM of α,
ω-dodecanediol was produced from 10 mM 1-dodecanol,
which was much less than that of wild-type CYP153A33
(Figure 3A). Other oxidative metabolites of dodecanoic
acid and ω-hydroxydodecanoic acid were produced less
than 2% conversion.

Interestingly, among the mutant strains, only the
CYP153A33 P136A mutant showed a significant increase in
α,ω-dodecanediol production, while also having a dramatic
decrease in the overoxidation ratio. The conversion of 1-
dodecanol to α,ω-dodecanediol was increased up to 71.2%
within 5 h of the whole-cell reaction, and it was 3.47 times
higher than that of the wild-type CYP153A33 (Figure 3B).
Therefore, the hydroxylation ratio over overoxidation activity
dramatically increased to 32.4, which was a 2.3-folds increase
compared to that of the CYP153A33 wild type. In addition,
the conversion of dodecanoic acid to ω-hydroxydodecanoic
acid by the P136A mutant independently increased up to
2.38 times with 60.9% conversion. The final overoxidation
production of α,ω-dodecanedioic acid was not completely
converted by P136A; direct conversion to dodecanoic acid
was less than 3% by both CYP153A33 and P136A (Figure 3C).
This seems to be because 1-dodecanol was mostly consumed
by the P136A mutant for hydroxylation and could be due to
the increased amount of conversion to α,ω-dodecanediol, by
increasing the access opportunity to the active site of 1-
dodeacanol results from the flexibility of the pocket.
Similarly, dodecanoic acid accumulated at higher
concentrations after 5 h, through wild-type CYP153A33
and E. coli control strains not harboring any CYP-redox
plasmids than P136A (Figure 3D).

The overall conversion values of CYP153A33 P136A, when
the highest conversion of α,ω-dodecanediol production reached,
are summarized in Figure 3E for easy comparison with those of
wild-type CYP153A33. It is worth noting that the hydroxylation
activity against 1-dodecanol and dodecanoic acid was
significantly increased and the hydroxylation ratio with
overoxidation activity also increased significantly.

FIGURE 4 |Whole-cell biotransformation of medium- and long-chain 1-
alkanols into corresponding α,ω-alkanediols. Time-dependent production
profile of α,ω-alkanediol in bioconversion of: (A) 1-nonanol, (B) 1-decanol, (C)
1-undecanol, (D) 1-tetradecanol, and (E) 1-hexadecanol, using
CYP153A33 P136A (solid line) andwild-type (dotted line) strains. (F)Summary
and comparison of α,ω-alkanediol production using CYP153A33 P136A
(black bar) and wild-type (grey bar) strains.
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Evaluation of Substrate Specificity of
CYP153A33 P136A Against Medium and
Long-Chain Fatty Alkanols
The bioconversion activity of CYP153A33 P136A against
medium-and long-chain 1-alkanols was then evaluated. Under
similar reaction conditions, the whole-cell reaction was
conducted in the presence of 1-alkanol substrates including 1-
hexanol (C6), 1-nonanol (C9), 1-decanol (C10), 1-undecanol
(C11), 1-tetradecanol (C14), and 1-hexadecanol (C16). The
production of each α,ω-alkanediol was first evaluated and
compared with the bioconversion activity of the wild-type
CYP153A33 (Figures 4A–E). No oxidation product could be
found in the C6 bioconversion; CYP153A33 showed higher
α,ω-alkanediol production with C9, C10, and C11 1-alkanol,
while P136A showed higher conversion with C12, C14, and
C16 1-alkanol. In particular, the maximum yield was more
than double that of the wild-type, and 3.4 mM of
α,ω-tetradecanediol can be produced via 1-tetradecanol
bioconversion within 5 h of reaction. In most cases, however,
bioconversion was much lower than C12 of 1-dodecanol,
suggesting that CYP153A33 P136A accepts C12 fatty alcohol
as the most favorable substrate with exceptionally high
conversion (Figure 4F), unlike for C14 and C16.

The overoxidation activity of CYP153A P136A with C9 to
C16 1-alkanols was also investigated (Figures 5A–E). The lowest
overoxidation activity was observed for the P136Amutant against
tetradecanoic acid, while the highest was observed for
CYP153A33 against nonanoic acid. In general, the P136A
mutant displayed lower overoxidation activity throughout the
examined (C9 to C16) 1-alkanols compared to the
CYP153A33 wild-type. Interestingly, the overoxidation activity
of both wild-type CYP153A33 and the P136A mutants decreased
as the carbon chain increased fromC9 to C12 and increased as the
carbon chain increased from C14 to C16, suggesting that the
lowest activity is between the C12 and C14 chain-lengths of 1-
alkanol. In the 1-tetradecanol bioconversion, no overoxidation
product(s) of tetradecanoic acid were observed.

DISCUSSION

In this study, CYP153A33, a well-known enzyme with ω-specific
hydroxylation activity in fatty primary alcohols, was engineered
to obtain a higher hydroxylation activity with 1-dodecanol, along
with increased α,ω-dodecanediol conversion. As a result, the best
variant of CYP153A33 P136A could be selected, and the
bioconversion of 1-dodecnaol increased significantly. The
overoxidation product decreased significantly or was not
observed in 1-alkanol bioconversion by CYP153A P136A,
suggesting that the ratio of hydroxylation to overoxidation
activity is also critical if it is mediated by endogenous

FIGURE 5 |Whole-cell biotransformation of medium- and long-chain 1-
alkanols into corresponding fatty acids through overoxidation. Time-
dependent production profile of fatty acids in bioconversion of: (A) 1-nonanol,
(B) 1-decanol, (C) 1-undecanol, (D) 1-tetradecanol, and (E) 1-
hexadecanol, using CYP153A33 P136A (dotted line) and wild-type (solid line)

(Continued )

FIGURE 5 | strains. (F) Summary and comparison of fatty acids production
using CYP153A33 P136A (black bar) and wild-type (grey bar) strains.
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enzymes. One thing that should be addressed here is that the
origin of CYP153A33 is bacterial, i.e., it is not from a yeast host.
Since overoxidation activity was observed by the CYP52A family
from Candida species of yeast, the catalytic activity and
overoxidation-related mechanisms could differ (Scheller et al.,
1998; Eschenfeldt et al., 2003). The sequence identity between the
CYP52A family and CYP153A33 was less than 20%, and both
have different electron transfer systems. Although this study
targeted the production of α,ω-alkanediol, the overoxidation
product of α,ω-alaknedioic acid is also a very useful
biochemical for the chemical industry, potentially being used
as polymer building blocks, surfactants, and lubricants.
Therefore, if extensive, overoxidation could be beneficial for
such purposes, by providing a direct route to the
α,ω-alkanedioic acid.

In terms of the rates of conversion and production, conversion
of more than 70% within 3 h of the whole-cell reaction is very
promising, especially in bioprocesses that include CYP
bioconversion. In addition, most CYP-dependent
oxyfunctionalizations have low turnover rates and NAD(P)H
cofactor utilization. The engineered CYP153A33 P136A strain
can produce α,ω-dodecanediol with a productivity of 0.29 g/L/h.
This value is very promising, considering the reported space-time
yields of CYP-dependent whole-cell biotransformation (Park
et al., 2020a).

The application of overoxidation deficient CYP enzymes
for alkane oxidation is very diverse. For example, direct use of
alkanediol for various monomers for polyesters, polyamides,
and polyurethane can be possible. Also, preparation of
diamine, which can be applied for polyamide monomers,
by introducing an amine functional group through cascade
oxidation and transamination can be possible. This diamine
synthesis is very competitive compared to the method by fatty
acid decarboxylase enzymes (Cha et al., 2021). However,
there are still more rooms to be engineered for the more
efficient whole-cell biotransformation of the CYP153A

P136A. For example, engineering approach could be made
available by providing additional redox potentials or by
introducing transporting channels into the host cell
membrane (Choi et al., 2014; Park and Choi, 2020); this
would contribute to a higher production titer, as
previously reported. A limitation of the CYP-dependent
oxidation process is the use and additional and required
feeding of aminolevulinic acid as a heme precursor to
activate the CYP core structure (Kim et al., 2017;
Namgung et al., 2019). This heme precursor is expensive
and must be fed extracellularly during induction. Also, the
supply of oxygen, which is one of the co-substrates in CYP-
dependent oxidation reaction, could be one of the limiting
factors. Altogether, there are still challenges to be overcome
and solutions to be potentially engineered in further research.
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