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In early 2016, we predicted that the annual rise in carbon dioxide concen-

tration at Mauna Loa would be the largest on record. Our forecast used a

statistical relationship between observed and forecast sea surface tempera-

tures in the Niño 3.4 region and the annual CO2 rise. Here, we provide a

formal verification of that forecast. The observed rise of 3.4 ppm relative to

2015 was within the forecast range of 3.15+0.53 ppm, so the prediction

was successful. A global terrestrial biosphere model supports the expec-

tation that the El Niño weakened the tropical land carbon sink. We

estimate that the El Niño contributed approximately 25% to the record rise

in CO2, with 75% due to anthropogenic emissions. The 2015/2016 CO2

rise was greater than that following the previous large El Niño in 1997/

1998, because anthropogenic emissions had increased. We had also correctly

predicted that 2016 would be the first year with monthly mean CO2 above

400 ppm all year round. We now estimate that atmospheric CO2 at Mauna

Loa would have remained above 400 ppm all year round in 2016 even if

the El Niño had not occurred, contrary to our previous expectations based

on a simple extrapolation of previous trends.

This article is part of a discussion meeting issue ‘The impact of the 2015/

2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms

and implications’.
1. Introduction
By September 2015, indices of the El Niño Southern Oscillation (ENSO) were

showing strong El Niño conditions [1], and forecast centres were predicting a

further substantial strengthening of the El Niño over the coming months. A

large body of previous work had demonstrated a strong correlation between

ENSO and short-term fluctuations in the rate of rise of atmospheric CO2 con-

centration, with El Niño events generally followed by a larger annual rise in

atmospheric CO2 concentration [2–6], except after large volcanic eruptions

[7]. Another point of interest at that time was that the annual cycle in CO2 con-

centrations had been varying around the symbolic threshold of 400 ppm for the

previous 2 years, and in September and October 2015, the annual minimum

monthly mean concentration measured at Mauna Loa was 397.5 ppm and

398.28 ppm, respectively [8]. In October 2015, Keeling [9] noted that
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extrapolation based on previous trends would indicate that

the following year would still see annual minimum concen-

trations below 400 ppm, but that the forecast large El Niño

would be expected to lead to a faster CO2 rise causing con-

centrations to remain above 400 ppm for all of 2016.

Therefore, Keeling informally predicted that October 2015

would be the last time that monthly concentrations below

400 ppm would be seen in the Mauna Loa record.

Following this, Betts et al. [10] published a formal predic-

tion of the annual mean rise in CO2 concentration between

2015 and 2016, using observed and forecast sea surface temp-

eratures (SSTs) in the equatorial east Pacific Ocean and a

statistical relationship between SSTs and the annual CO2

increment. Our published forecast was for the annual mean

CO2 concentration for 2016 measured at Mauna Loa to be

3.15+ 0.53 ppm higher than that for 2015 (figure 1). This

was larger than any annual increment in the Mauna Loa

record so far, including 1997–1998 following the previous

very large El Niño. (It is important to note that, as in our pre-

vious work [5,6], the focus here is on annual increments—the

difference between annual means for successive calendar

years—as opposed to annual growth rates which are the

rates of change across a calendar year, as used in other

studies such as the Global Carbon Budget [11–13].) From

this forecast annual increment, we further forecast that the

annual mean Mauna Loa concentration for 2016 would be

404.45+0.53 ppm, with monthly values varying between a

maximum of 407.57+0.53 ppm in May and a minimum of

401.48+0.53 ppm in September. Therefore this formal pub-

lished forecast [10] supported the informal prediction by

Keeling [9] that CO2 at Mauna Loa would remain above

400 ppm throughout 2016 as a result of the El Niño.

Here, we provide a formal verification of the Betts et al.
[10] forecast against observations, including verification of

individual components of the forecast. We discuss the pro-

cesses involved in the impact of the El Niño on the CO2

rise and highlight some key issues such as precise definitions

of terms and quantities which are important to note in future

forecasts. We also apply the same methodology to the

observed values of emissions and SSTs to estimate the contri-

bution of the El Niño to the CO2 rise between 2015 and 2016,

and assess whether the CO2 concentration would have

remained below the symbolic 400 ppm threshold all year

round in the absence of the El Niño.
2. Details of the forecast process
The CO2 forecast used a multiple linear regression of annual

CO2 increments (DCO2) against annual anthropogenic emis-

sions (1) and the annual mean anomaly in sea surface

temperatures in the region of the equatorial Pacific Ocean

characterizing ENSO activity (N ):

DCO2 ¼ a1 þ a2N þ a31: ð2:1Þ

This had previously been used to explore relationships

between ENSO and the variability in CO2 rise [6], using

SST anomalies averaged over the Niño 3 region of the equa-

torial Pacific (58 N–58 S, 1508 W–908 W). For the 2016 CO2

forecast, the regression was recalculated using SSTs averaged

over the Niño 3.4 region (58 N–58 S, 1708 W–1208 W) because

the El Niño conditions were focused more in the eastern Paci-

fic rather than the central Pacific as in 1997–1998. Previous
work [6] had shown that when this regression was used to

reconstruct CO2 increments between successive years i 2 1

and i, the strongest correlation with observations was seen

when N was the annual mean from 1st April in year i 2 1

to 31st March in year i, so this period was used here.

Annual mean April–March SSTs were taken from the

HadSST3.1.1.0 dataset [14,15] and anomalies in 8C calculated

relative to the 1961–1990 mean. The recalculated regression

used the Global Carbon Project dataset of emissions up to

2014 [11]—emissions data are published for calendar years,

so the regression used the annual total emissions for years

i 2 1, expressed in GtC. CO2 concentrations were taken

from the Mauna Loa dataset maintained by the Scripps Insti-

tution of Oceanography [8]—annual means over the calendar

year were derived by averaging the published monthly mean

CO2 concentrations. The Mauna Loa measurements were

chosen as the focus of the forecast as they provide a very

specific, precisely measured quantity—in contrast, the

global mean concentration relies on estimates and assump-

tions, which introduce additional uncertainties. Although

CO2 is measured at other sites, Mauna Loa is the original

measurement site and provides the longest record as well

as being of historical interest.

Using the above datasets to calculate the multiple linear

regression over the period 1959–2014, using the data avail-

able in October 2015, resulted in the following values of the

regression coefficients: a1 ¼ 20.132 ppm yr21 ; a2 ¼

0.415 ppm yr21 8C 21 ; a3 ¼ 0.237 ppm GtC21.

The forecast of the annual CO2 increment between 2015

and 2016 was calculated at the end of 2015 using equation

(2.1) and the above values of the regression coefficients.

Since observational data on global emissions for 2015 were

not yet available at that time, e was a projection of emissions

for 2015 [11] (table 1). Observed SSTs were available up to

October 2015, so SSTs from the Met Office seasonal forecast

model GloSea5 [16] were used for the remainder of the

required period up to 31 March 2016 and the annual mean

taken of the observed and forecast SSTs. Both the observa-

tional and forecast data are ensemble products. In the case

of the observations, the range of estimates reflects uncertain-

ties arising from the sampling and measurement error of the

SST observations used to construct the dataset. The SST pre-

dictions are an ensemble to reflect the uncertainty arising

from sensitivity to the precise initial state of the simulated

ocean and atmosphere. The uncertainty in the annual

mean combined observed and forecast SSTs was +0.28C
(2 s.d., from the ensemble of seasonal forecast simulations).

The primary quantity being forecast was the annual incre-

ment in CO2 concentration (table 1). We then used this to

forecast the annual mean CO2 concentration at Mauna Loa

for 2016 (table 1) by adding the forecast increment to the

observed 2015 value. We then added an adjustment factor

for the difference between each monthly value and the

annual mean (electronic supplementary material, table S1) in

order to forecast the monthly mean CO2 concentration for

each month of 2016 (figure 2; electronic supplementary

material, table S2). This relies on the assumption that the

mean annual cycle in CO2 concentration over previous years

would represent the annual cycle in 2016. The monthly mean

CO2 concentration for September was of particular interest,

because this would be the lowest value of the year and a key

question was whether this would remain above 400 ppm. We

had forecast the mean CO2 concentration for September 2016
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Figure 1. Identifying, testing, forecasting and verifying the relationship between Niño 3.4 SST anomalies and Mauna Loa CO2 annual increments. (a) Anthropogenic
CO2 emissions (thick black); CO2 annual increments from observations (thin black), reconstructed from regression against emissions and Niño 3.4 anomaly before 2015
(blue) and forecast for 2016 using the forecast annual mean SST (orange). The black star shows the observed CO2 annual increment. (b) Annual (April to March)
mean sea surface temperature anomalies in the Niño 3.4 region from HadSST3 ensemble of homogenized observations (grey) and its median (black line), with the
forecast final annual mean from HadSST3 observations from 1 April to 31 October combined with GloSea5 forecast SSTs for 1 November 2015 to 30 March 2016
(orange). The black stars show the observed annual SST anomaly and annual CO2 increments. Also shown are the years of major El Niño events (red text), and major
volcanic eruptions (blue text) when the relationship between the Niño 3.4 SST and CO2 annual increment breaks down due to the cooling effect of volcanic aerosols.
The forecast method cannot account for the effects of major volcanic eruptions occurring after the forecast has been issued, due to their unpredictable nature.
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to be 401.8+0.53 ppm, which suggested that October 2015

had been the last time that monthly mean concentrations

below 400 ppm would be seen in the Mauna Loa record.

It should be noted that other studies such as the Global

Carbon Project [11–13] quantify the annual CO2 rise differ-

ently, using the in-year growth rate defined as the change

between the start and end of the calendar year, as opposed

to the difference between the annual means of consecutive

calendar years as used here. Implications of these different

approaches are discussed below.
3. Verification of the 2016 Mauna Loa CO2

forecast
The observed annual mean CO2 concentration in 2016 was

404.28 ppm [8], so with the 2015 concentration having been

400.89 ppm [8], the observed annual increment was

3.39 ppm—close to the forecast central value of 3.15 ppm

and well within the error estimate of +0.53 ppm (table 1).

The observed mean 2016 concentration was also close to

the published forecast value of 404.45 and again within the

error estimate. The observed mean concentration for Septem-

ber 2016 was 401.01 ppm, again within the forecast error

estimate (figure 2; electronic supplementary material, table

S2). It was therefore confirmed that, as predicted by Keeling

[9] and Betts et al. [10], October 2015 had indeed been the last
instance in the Mauna Loa record with monthly mean CO2

concentration below the iconic level of 400 ppm.

A point to note is that the Betts et al. [10] published fore-

cast of mean CO2 concentration included two mistakes. One

arose from a misreading of the calculation of estimated

fossil fuel emissions for 2015 published by the Global

Carbon Project [11]. The estimated 2015 emissions were

incorrectly taken to be 10.3 GtC, when in fact the published

estimate was 10.84 GtC. Applying this to equation (2.1), the

forecast annual increment should therefore have been

3.28 ppm. This would have been a more accurate forecast of

the annual increment than the published value. The second

mistake arose from a typographical error when drafting the

paper and adding the forecast annual increment to the

observed 2015 CO2 concentration. Correcting for both these

mistakes, with a forecast annual increment being 3.28 ppm

and the observed concentration for 2015 being 400.89, the

forecast annual mean concentration for 2016 should have

been 404.17+ 0.53 ppm. Again, this would have been a

more accurate forecast than the published value. The cor-

rected forecast annual mean concentration was 0.28 ppm

lower than the published value, so the forecast monthly

values should therefore also have been forecast as 0.28 ppm

lower than those in the published forecast. The forecast

September concentration should therefore have been

401.20+0.53 ppm. Nevertheless, the impact of these

mistakes on the calculations was small in comparison with



Table 1. Inputs and results for the published 2016 CO2 forecast (column 3) and corrected forecast (column 4) compared with observations (column 5).
Regression coefficients a1, a2 and a3 (rows 2 – 4) were used with the annual mean sea surface temperature anomaly N (row 5) and annual total global CO2

emissions 1 (row 6) in equation (2.1) to forecast the annual CO2 increment DCO2 (row 7) and hence the annual mean CO2 concentration (row 8). Column 3
shows the values used in the published forecast [16] which included two mistakes (see §2), and column 4 shows the corrected forecast calculation as it should
have been with the information available at the end of 2015. Column 5 shows the observed values. N is the mean over the Niño 3.4 region for 1 April 2015 to
31 March 2016; for the published and corrected forecasts, N used observed SSTs from HadSST3.1.1.0 from 1 April to 31 October combined with forecast SSTs
from the GloSea5 model for 1 November to 31 March. The observed SSTs are from the updated HadSST3.1.1.1 alone. 1 is the total emissions over January to
December. The forecast used a projection of 1 published in 2015 [11], and the observed 1 was published in 2016 [12]. The forecast CO2 increment and
concentrations were subject to an error estimate of +0.53 ppm.

period published forecast corrected forecast observed

a1 ( ppm yr21) 20.132 20.132

a2 ( ppm yr21 8C 21) 0.415 0.415

a3 ( ppm GtC21) 0.237 0.237

N (8C) Apr 2015 – Mar 2016 2.02+ 0.23 2.02+ 0.23 1.85+ 0.19

1 (GtC) Jan – Dec 2015 10.3 10.84 11.1

DCO2 ( ppm) 2016 – 2015 3.15 3.28 3.39

CO2 ( ppm) annual mean 2016 404.45 404.17 404.28
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the impact of the SST anomaly, and both the published and

corrected forecast values agreed with observations within

the published error ranges.

The error estimates for the monthly concentrations had

been given as +0.53 ppm, the same as for the annual concen-

tration. The observations fell within this range of the

corrected forecast values for eight months (figure 2): the fore-

cast overestimated the concentration in January and August,

and underestimated it in April and November. The observed

April concentration was notably high in comparison with

expectations from the mean seasonal cycle, being almost as

high as the concentration in May.

In our original forecast, we also noted that recent obser-

vations included instances of CO2 rise anomalies of up to

0.6 ppm above the annual increment expected from emissions

alone, due to climate variability unconnected with ENSO.

Therefore, for the El Niño impact to be outside expectations

from the normal trend plus non-ENSO variability, the CO2

increment needed to be at least 2.7 ppm. This provided a

null projection showing that the successful ENSO-based

method added value.

The Niño 3.4 SST forecast used as input to the CO2 rise

forecast also verified well against observations (figure 3).

Niño 3.4 anomaly values subsequently available show the

strong El Niño event peaking in late 2015 and continuing

into early 2016. The seasonal predictions also showed the

event peaking in late 2015. During the peak period, the fore-

cast tended to be warmer than the observations, although

there was always some overlap between the observed and

predicted Niño 3.4 distributions. Later in the forecast (in

early 2016), the centre of the forecast distribution was better

aligned with the observed estimates. The range of estimates

of the annual mean Niño 3.4 used in making the 2016 CO2

forecast (i.e. the combination of observed and forecast data)

showed a very good agreement with the range based on

observations for the whole year (which were not available

at the time of the forecast). The mean of realizations for the

12-month period was 1.85+ 0.198C, slightly less than the pre-

dicted value used in making the forecast (2.02+ 0.238C). This

was not a significant difference considering the strong
ensemble overlap and the year-to-year differences in annual

mean Niño 3.4, which ranged from approximately 21.5 to

þ2.08C (figure 1). As a result, we can conclude that the SST

used as input to the CO2 prediction was accurately forecast.

Care should be taken in the interpretation of probabilistic

forecasts and their verification. The forecast of the CO2

concentration is provided as a central estimate and an uncer-

tainty range, with the uncertainty range corresponding to 2

s.d. The original forecast stipulated that a ‘successful’ forecast

would fall within this range; however, the forecast is prob-

abilistic, with the central estimate and uncertainty

specifying a probability distribution. Therefore, even if the

central estimate and uncertainty are correct, there is still a

chance that the observed value will lie outside the forecast

range (even leaving aside volcanic eruptions which were

explicitly excluded). In any year, the probability that the

observed value will fall outside the forecast range is around

4%. Assuming that forecast errors are independent and nor-

mally distributed then over 5 years, the probability that at

least 1 year will fall outside the range is about 21%. Over

10 years, the probability rises to 37%. For 15 years, the prob-

ability is about 50 : 50. In the long term, a good forecast

would yield a predictable rate of ‘failures’.
4. Understanding the success of the forecast and
potential improvements

The success of a forecast relies on two main factors: the meth-

odology and the input data. The following discussion reflects

on these.

(a) Process understanding supporting the statistical
relationship between El Niño and the CO2 rise
annual increment

Our successful forecast used a method that was partly pro-

cess-based (the SST forecast) and partly statistical (the

relationship between SSTs and the CO2 increment). Does an
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examination of the carbon cycle processes support the expec-

tations from the statistical relationship?

A large body of previous work has shown that the main

contribution to larger CO2 growth rates associated with El

Niño events is reduced net carbon uptake by the terrestrial bio-

sphere [2–6]. This is slightly offset by increased net uptake of

CO2 by the oceans due to reduced outgassing because of

decreased upwelling of deep water with high carbon content

[5]. Here, we estimate the contribution of the terrestrial bio-

sphere to the record rise associated with the 2015/2016 El

Niño by using the JULES land surface model [17]. We focus

here on net biome productivity (NBP) defined as:

NBP ¼ GPP–Ra –Rh –g: ð4:1Þ

where GPP is Gross Primary Productivity, i.e. uptake of

carbon by plant photosynthesis, Ra is autotrophic respiration,

Rh is heterotrophic respiration and g is the release of carbon

through disturbance mechanisms such as anthropogenic land

use and fire.

JULES and other process-based terrestrial biosphere

models generally simulate negative (or reduced) global NBP

in El Niño years [18]. To simulate the response to the 2015/

2016 El Niño, we use the current ‘carbon cycle configuration’

(JULES-C1.1) as used in the Global Carbon Budget [13]. We

simulate land–atmosphere carbon fluxes over the period

from 1860 to 2016, driving JULES-C-1p1 with observed

changes in climate [19,20], global mean CO2 concentration

and land use change [21,22].

To assess the impact of the 2015/2016 El Niño, we first

calculate NBP for the period 1 June 2015 to 31 May 2016—

this is the 12-month period centred around the peak of the

SST anomaly in December. We then calculate the NBP for

the same period starting in each of the previous 10 years

and find the mean of this as a comparison with 2015–2016.

On average over 2005–2014, JULES simulates most of the

terrestrial biosphere to be a net sink of carbon in the annual

mean (figure 4a). In JULES, this is largely due to CO2 fertili-

zation, with some contribution of climate change, particularly

warmer regional climates at higher latitudes. Other terrestrial

biosphere models produce similar results [23,24]. Some

regions show a near-zero or negative NBP due to losses

from anthropogenic land use change offsetting or even dom-

inating CO2 fertilization and climate effects. Negative NBP in

some regions may also be due to regional climate changes

causing conditions to be less favourable for vegetation

growth or enhancing soil respiration.
The land–atmosphere carbon fluxes vary across the year.

JULES simulates a global peak uptake in June coinciding with

the boreal summer and a net carbon loss during the boreal

winter (figure 5a). The seasonal cycle in uptake reflects the

asymmetry in land mass between the North and Southern

Hemispheres. Overall, however, the terrestrial biosphere is

simulated to be net sink of carbon over the previous decade

(2005–2014) averaging 2.82 GtC yr21.

During the 2015/2016 El Niño, the temperate and boreal

regions are simulated to have become weaker sinks of carbon,

and much of the tropics became a net source (figure 4b). Sub-

stantial areas of Brazil, particularly the Atlantic Forest region,

Southern Africa, South and southeast Asia and tropical Aus-

tralia, become sources of carbon to the atmosphere (figure 4).

The transition to source is not consistent across the tropics,

with Central Africa just showing a weakening in the sink.

Europe also switches from a net sink to a net source.

This weakening of the global land carbon sink is simu-

lated throughout the 12-month period (figure 5b). In June

2015–May 2016, JULES simulates lower global total carbon

uptake in comparison with means for each calendar month

over the previous decade. The switch from a net source to

net sink in the tropics occurs all year (figure 5b). During the

period of El Niño, the land becomes a net source of

1.12 GtC, in contrast to the net sink over the previous

decade (2005–2014). The net result is an additional 3.94 GtC

of CO2 in the atmosphere than would have been the case if

2015/2016 had been the same as the previous decade, equiv-

alent to 1.86 ppm.

The regional climate anomalies associated with the 2015/

2016 El Niño therefore reduced simulated terrestrial carbon

uptake in JULES. Overall, JULES simulated the tropical

land areas to have switched from a sink of 1.07 GtC to a

source of 2.63 GtC.

The JULES simulations do not explicitly represent wild-

fire, which can also play a role in carbon emissions from

ecosystems during El Niño events. In the 1997/1998 El
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Niño, extremely high fire emissions from Indonesian forests

contributed to the faster CO2 rise [25], but Indonesian fire

emissions were much smaller in 2015/2016 [26]. In Amazo-

nia, fire is now decoupled from land use—fire activity

relates more strongly to climate variability than to direct igni-

tions related to the deforestation process [27]. The 2015/2016

El Niño appears to have led to more fire in Amazonia, but

mainly in 2015. Fire activity in Amazonia was high in 2015,

with 19% (799 293 km2) of Brazilian Amazonia affected by

at least one active fire detection, experiencing significant posi-

tive ( p , 0.1) active fire anomalies [27]. In this same year, the

area affected by positive active fire anomalies greater than

2s.d. ( p , 0.05–628 901 km2) was approximately twice as

large as anomalies observed during the 2005 and 2010

droughts (363 245 and 388 803 km2, respectively). It was esti-

mated that gross committed CO2 emissions from Amazonia

for 2015 reached a total 0.52 Pg CO2 [27]. However, fire emis-

sions from South America are unlikely to have a direct

contribution to the 2016 rapid rise in atmospheric CO2 as

measured at Mauna Loa. Peak fire activity in South America

occurs in August and September, so the El Niño impacts on

fire emissions from Amazonia are likely to have affected

the CO2 rise in 2015 rather than 2016.

These model results support previous expectations that

the 2015/2016 El Niño caused a weakening of the terrestrial
carbon sink, which resulted in the atmospheric CO2 concen-

tration rising faster than usual. This suggests that the

statistical relationship between Niño 3.4 SSTs and CO2

annual increment is supported by understanding of the

Earth system processes and appropriate for use in forecasting

the CO2 rise.

(b) Shape of seasonal cycle and assumption of
stationarity

The shape of the seasonal cycle is assumed to be stationary in

our method. This implicitly assumes no change in the growth

rate across the year, which is contradicted by of the observations

of varying in-year growth rates. Nevertheless, it appears that the

assumption of stationarity may be valid for predicting the

annual maximum and minimum monthly values, as there is

little long-term trend in the amplitude of the seasonal cycle

(electronic supplementary material, figure S1).

Regarding the in-year growth rates, 2015 had a large

growth rate because the concentrations at the end of the

year were anomalously high. Nevertheless, the in-year

growth rate was still large across 2016 despite concentrations

already being anomalously high at the start of the year. The

JULES simulations suggest that the land–atmosphere

carbon fluxes were impacted by El Niño until at least June
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Figure 6. Impact of El Niño on monthly CO2 concentrations in 2016. Concen-
trations including the influence from El Niño are shown with observations
(black). The hindcast concentrations (blue) were calculated using observed
emissions and observed SSTs that included the El Niño influence (table 4).
Concentrations without the influence of El Niño were estimated with two
methods: (i) adding the previous decade’s trend of 2.1 ppm to the observed
monthly concentrations for 2015 (dashed magenta) and (ii) adding the
annual increment calculated with a zero El Niño SST anomaly to the 2015
annual mean concentration (table 4), and then adding the same monthly
adjustment factors used in the forecast and hindcast (electronic supplemen-
tary material, table S1) (solid magenta).
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2016 (figure 5), so it seems that the El Niño impacts on tropi-

cal ecosystems lasted longer than the Niño 3.4 SST anomaly

which ended in May.

These issues are important in the context of the annual

Global Carbon Budget (GCB) calculations [11–13]. That rou-

tinely quotes the in-year growth rate, but for the 2017 GCB

[13], we provided a forecast which was based on our defi-

nition of annual increment [28]. Our forecast of the 2016–

2017 annual increment was used to provide CO2 concen-

trations for October–December, which were combined with

observed monthly concentrations to give an estimate of the

mean CO2 concentration for 2017 in time for publication

before the end of the year. That combined observed/forecast

estimate verified better than the forecast issued at the start of

the year [28] when compared with the observed annual incre-

ment. There are additional difficulties in forecasting the in-

year growth rate a year in advance, because effects of

ENSO could affect the end-of-year CO2 concentrations but

cannot currently be forecast with skill more than a few

months in advance. However, the annual GCB calculations

are routinely made in or around August, which is when sig-

nals of ENSO start to emerge. Therefore, it may be possible to

develop a method for forecasting the monthly CO2 concen-

trations for the final few months of the year at this time, for

inclusion in annual GCB calculations.

Monthly CO2 concentrations measured at a single site

such as Mauna Loa may be affected by other factors in

addition to those arising from the impacts of climate variabil-

ity on surface–atmosphere carbon fluxes and the global mean

CO2 concentration. For example, local wind directions differ-

ent from the climatological average could make a difference.

In such cases, the monthly anomalies would not be represen-

tative of the global anomaly—the Mauna Loa concentration is

normally regarded as a proxy for the annual global mean

concentration, but this may not always be the case, especially

on shorter timescales. Investigation of this is outside the

scope of the current paper, but could involve comparison

with monthly anomalies at other CO2 measuring stations
around the world. In future Mauna Loa CO2 forecasts, it

may be appropriate to calculate error estimates for forecast

monthly concentration that account for these additional

uncertainties, rather than using the same error estimate as

for the annual mean forecast.
(c) Is the forecast robust to the input data?
Contribution of input data and regression
coefficients to forecast accuracy

The inputs to our CO2 forecast themselves include predic-

tions—the SSTs for the coming months and the emissions.

We can assess the importance of these by performing a hind-

cast, i.e. recalculating the forecast using equation (2.1) with

input data from observations (table 2). (Note that this is differ-

ent from the corrected forecast discussed above, which dealt

with mistakes made in the forecast production but still only

used input data that were available at the time.) Here, we

assess whether the retrospective use of actual SSTs and emis-

sions allows such a hindcast to give an improved calculation

of the CO2 rise compared with the forecast.

As noted above, the observed value of N was 1.85+
0.198C, slightly smaller than forecast. With a value of a2 of

0.415 ppm yr21 8C 21, this meant that the contribution of

the second term of equation (2.1) to the forecast was

0.77 ppm yr21 instead of 0.83 ppm yr21 using the forecast

N. The contribution of that term was therefore 0.06 ppm

smaller than in the forecast. However, the annual mean

anthropogenic emissions published for 2015 were larger

than the projected value used in the forecast, at 11.1 GtC as

opposed to 10.84 GtC. With a3¼ 0.237, the third term of

equation (2.1) contributed 2.63 ppm instead of 2.57, an

increase of 0.06. The error in the emissions estimate therefore

made a smaller contribution than the SST forecast to the error

in the CO2 annual increment, but partly offset it.

If the forecast had used those numbers, the predicted CO2

annual increment would therefore have been 3.27 ppm—

slightly further from the observed value of 3.39 ppm, but

negligibly so.

Moreover, each year the historical dataset of global emis-

sions is revised based on new information, not only for the

most recent year but also previous years (electronic sup-

plementary material, figure S2). This would affect the

regression of CO2 concentrations against emissions, resulting

in revised regression coefficients. We can assess the impact of

this by recalculating the forecast using equation (2.1) and

revised regression coefficients derived using more recent

data (table 3).

Using updated regression coefficients from the GCB 2017

dataset [13] and the same observed input data as above

reduced the forecast CO2 increment to 3.21 ppm, further

from the observed value, but with the forecast error estimate

still encompassing the observed value.

The overall conclusion is that neither perfect knowledge of

the SSTs and emissions nor updating the regression coefficients

on the basis of more recent data would have given a more ‘accu-

rate’ forecast in terms of agreement of the central estimate with

observations. However, these updates would also have not

caused the forecast to be ‘inaccurate’ in terms of the obser-

vations falling outside of the forecast error bars. The forecast

using information available at time therefore appears to be

robust to the uncertainties in the input information.



Table 2. Impact of using observed SST and emissions data on calculation of 2015/2016 CO2 annual increment.

period corrected forecast hindcast observed

a1 ( ppm yr21) 20.132 20.132

a2 ( ppm yr21 8C 21) 0.415 0.415

a3 ( ppm GtC21) 0.237 0.237

N (8C) Apr 2015 – Mar 2016 2.02+ 0.23 1.85+ 0.19

1 (GtC) Jan – Dec 2015 10.84 11.1

DCO2 ( ppm) 2016 – 2015 3.28 3.27 3.39

CO2 ( ppm) annual mean 2016 404.17 404.16 404.28

Table 3. Updated hindcast using regression coefficients for equation (2.1) calculated using different releases of the Global Carbon Budget (GCB) emissions
dataset, which present revised historical values and updated Mauna Loa CO2 concentrations up to the most recent year. Column 3 shows the coefficients as used
in the 2016 CO2 forecast [10], derived using data from GCB 2015 [11]. Columns 4 and 5 show the coefficients recalculated with updated emissions and CO2

concentration from GCB 2016 [12] and GCB 2017 [13], respectively, and the subsequently recalculated DCO2 and CO2 concentration for 2015 – 2016.

period GCB 2015 GCB 2016 GCB 2017 observed

a1 ( ppm yr21) 20.132 20.080 0.045

a2 ( ppm yr21 8C 21) 0.415 0.419 0.426

a3 ( ppm GtC21) 0.237 0.229 0.214

N (8C) Apr 2015 – Mar 2016 1.85+ 0.19 1.85+ 0.19 1.85+ 0.19

1 (GtC) Jan – Dec 2015 11.1 11.1 11.1

DCO2 ( ppm) 2016 – 2015 3.27 3.24 3.21 3.39

CO2 ( ppm) annual mean 2016 404.16 404.13 404.10 404.28
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5. Further analysis: attribution of causes of the
observed CO2 annual increment

(a) Comparison with previous CO2 rise: mean and
previous record

The observed mean CO2 rise for the decade prior to 2015 was

steady at approximately 2.1 ppm yr21, so the rise of 3.39 ppm

in 1 year was a substantial increase. Before 2015, the growth

rate did not rise despite an increase in anthropogenic emissions,

and this has previously been attributed increased net uptake of

carbon by the terrestrial biosphere due to increased CO2

fertilization accompanied by a lack of increase in respiration

resulting from the temporary slowdown in the rate of global

warming [29]. We note that our reconstruction of CO2 incre-

ments using equation (2.1) captures the hiatus in the rate of

CO2 rise between ca. 2003 and 2014 (figure 1). Since the only

climate-related term in equation (2.1) is the Niño 3.4 SST

anomaly, this suggests that the relatively cool conditions in the

equatorial Pacific in several of these years may have played a

role in the hiatus in the CO2 rise. La Niña conditions are associ-

ated with smaller annual CO2 rises (figure 1), with generally

wetter and cooler conditions in many areas. This may be consist-

ent with an emerging understanding of the role of Pacific

decadal variability in the global warming hiatus [30–32].

Therefore, although the large increase in CO2 rise in

2015/2016 was largely associated with the El Niño, there

was also probably a contribution from the cessation of the

anomalously slow rate of rise associated with cooler

conditions in the tropical Pacific.
The previous largest annual increment, in terms of the

difference between annual mean for successive calendar

years, was 2.9 ppm between 1997 and 1998 [8] following the

large El Niño which occurred in those 2 years. The observed

CO2 annual increment in 2015/2016 was therefore substantially

larger than that following the previous large El Niño event. By

contrast, the in-year growth rates for 1998 and 2016 are more

similar—this appears to be because the rapid growth associated

with the 1997/1998 El Niño occurred mainly across a single

year, whereas that in 2015/2016 continued across both years.

The contrasting definitions of year-to-year annual incre-

ment and in-year growth rate make an important difference

to the year identified with a record growth rate due to the

2015/2016 El Niño. Focusing on the increment in annual

mean concentrations leads to 2016 being identified as the

year with the most rapid increase in CO2 concentrations so

far. However, if the in-year growth rate is used, this was

larger in 2015 than 2016; the El Niño was becoming strong

by September 2015, so impacts on land–atmosphere carbon

fluxes and hence CO2 concentrations would already have

been happening. This is supported by simulations with a

land surface model (see §4a).

(b) Attribution of causes of the record annual CO2 rise
in 2016 and comparison with 1998

The contribution of the El Niño to the 2015/2016 record CO2

rise can be estimated by recalculating equation (2.1) with no

SST anomaly, i.e. N ¼ 0. Using the observed 2015 emissions

of 11.1 GtC and the most recent regression coefficients



Table 4. Estimating the contribution of El Niño to the annual CO2 increment in 2015/2016.

period with El Niño no El Niño observed

a1 ( ppm yr21) 0.045 0.045

a2 ( ppm yr21 8C 21) 0.426 0.426

a3 ( ppm GtC21) 0.214 0.214

N (8C) Apr 2015 – Mar 2016 1.85+ 0.19 0

1 (GtC) Jan – Dec 2015 11.1 11.1

DCO2 ( ppm) 2016 – 2015 3.21 2.42 3.39

CO2 ( ppm) annual mean 2016 404.10 403.31 404.28

Table 5. Estimating the contribution of El Niño to the annual CO2 increment in 1997/1998.

period with El Niño no El Niño observed

a1 ( ppm yr21) 0.045 0.045

a2 ( ppm yr21 8C 21) 0.426 0.426

a3 ( ppm GtC21) 0.214 0.214

N (8C) Apr 1997 – Mar 1998 1.81 0

1 (GtC) Jan – Dec 1997 8.4 8.4

DCO2 ( ppm) 1997 – 1998 2.61 1.84 2.9
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(column 5 of table 3), we estimate that the 2016 annual CO2

increment without El Niño would have been 2.42 ppm. The

reconstructed CO2 increment with El Niño calculated consist-

ently with this was 3.21 ppm (table 4), so this method

suggests that the El Niño increased the 2016 annual CO2

increment by 0.79 ppm. We therefore estimate that the El

Niño contributed approximately 25% to the record annual

CO2 rise between 2015 and 2016, with the other 75% being

due to anthropogenic CO2 emissions.

The relative contributions of El Niño and emissions to the

1997/1998 annual mean CO2 increment can also be estimated

in this way. The Niño 3.4 index for the 1997/1998 El Niño

was 1.818C [14,15], slightly smaller than for 2015/2016,

although the 1997/1998 El Niño was different in character

to that of 2015/2016 with the temperature anomaly being

focused more in the central Pacific. The annual emissions in

1997 were 8.4 GtC [13], including both fossil fuel emissions

and land use change. Applying these numbers to the

regression gives a hindcast of 2.6 ppm for the CO2 increment

(table 3), an underestimate compared to the observed rise.

This underestimate might be due to the Niño 3.4 index

being less representative of the magnitude of the 1997/1998

El Niño; the Niño 3 region might be more representative.

The annual CO2 increment in the absence of El Niño can

then, in principle, be estimated with the same method as

applied to the 2015/2016 event above. This results in an esti-

mated ‘no El Niño’ CO2 rise of 1.84 ppm and an El Niño

contribution of 0.77 ppm. This is similar to that for 2015/

2016 (table 5) in terms of the absolute contribution, but is a

larger proportion (30%) of the overall rise that year.

Three caveats should be borne in mind concerning this.

The first is the 10% underestimate of the observed CO2 incre-

ment. The second is that the Niño 3.4 SST Index may not be
as appropriate as Niño 3 for 1997/1998, with the latter prob-

ably resulting in a larger estimate of the impact of El Niño.

The third is that the emissions data show a clear spike in

1997/1998 (figure 1a), and this arises from a spike in the

land use emissions [13] associated with major wildfires in tro-

pical peatlands in Indonesia [20]. This temporary increase in

land use emissions is therefore being classified as an anthro-

pogenic term. However, it could also be viewed as part of the

response to El Niño. Although the fires were ignited by

human activity, mainly forest clearance, their extent and

impact was magnified substantially by the drought con-

ditions associated with the El Niño.

Despite these caveats, it appears that the main reason

why the CO2 annual increment in 2015–2016 was larger

than 1997–1998 is that anthropogenic emissions increased

substantially in that period. Emissions had risen by 2.7 GtC

between 1997 and 2015 (an increase of over 30%).

(c) Would Mauna Loa CO2 have remained above
400 ppm all year round without the El Niño?

The monthly CO2 concentration without the influence of the

El Niño can be estimated in two ways. The first method is a

simple linear extrapolation of the previous trend of

2.1 ppm yr21, as in our forecast paper [10]. The CO2 concen-

tration for September 2015 was 397.50 ppm, so this would

give a September mean CO2 concentration of 399.60 ppm

(figure 6). However, this assumes that the previous trend

was representative of the current trend and not itself anoma-

lous—but as noted above, other work [29] suggested that

actually the recent trend has been smaller than it should

have been, due to the temporary slowdown in the short-

term rate of global warming. Therefore, the extrapolation of
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that trend may not be an appropriate method for estimating

the non-El Niño concentration. The second method involves

taking the estimated annual ‘no El Niño’ CO2 concentration

for 2016 (403.31 ppm—table 4) and adding the monthly

adjustment factor for September (22.97 ppm). This gives a

value of 400.34 ppm for September 2016 (figure 6). This esti-

mate implies that the monthly mean CO2 could have

remained above 400 ppm all year round in 2016 even without

the El Niño.

The second method relies on the assumption of the

stationary amplitude of the seasonality and hence assumes

that the estimated contribution of El Niño to the 2015–2016

annual increment is representative of the contribution to the

September 2016 concentration. A further assumption is that

the annual increment is being added to a baseline that it not

affected by the El Niño. With the Niño 3.4 anomaly already

being strongly positive by September 2015, and the effects

on land–atmosphere carbon fluxes already being evident in

model simulations for that month (figure 5), this assumption

may not be entirely valid. However, an accurate assessment of

the importance of this goes beyond the limits of our simple

methodology here, so provides scope for further research.
6. Conclusion
A record CO2 rise between 2015 and 2016 was successfully

forecast in advance, using a seasonal forecast of sea surface

temperatures and a statistical relationship with CO2. The suc-

cessful calculation of the annual CO2 rise is robust to updates

to the input data using observed SSTs and more recent data

on emissions. The 2015/2016 CO2 rise was faster than the

average over previous decade, due to the impact of El Niño

acting mainly on tropical ecosystems. The annual CO2 rise

had barely increased over the previous decade due to a

prevalence of La Niña conditions, so the cessation of this

influence also contributed to the large increase in CO2 rise
in 2016. The 2015/2016 CO2 rise was also faster than that fol-

lowing the previous large El Niño in 1997/1998, due to the

increase in anthropogenic emissions since then. 2016 was

the first year in the Mauna Loa record when monthly CO2

concentrations remained above the symbolic threshold of

400 ppm all year, and previously, we had suggested that

this would not have been the case without the influence of

the El Niño. However, a revised estimate suggests that the

annual minimum CO2 concentration at Mauna Loa may

have remained above 400 ppm even in the absence of El

Niño, due to ongoing anthropogenic emissions. The forecast

of the CO2 annual increment has since become a regular pro-

duct in the Met Office long-range forecast portfolio and a new

component of the annual Global Carbon Budget. Further

refinements to the forecast could be made, particularly con-

cerning the shape of the seasonal cycle and the in-year CO2

growth rate.
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