
Pooled Screening for Synergistic Interactions Subject to
Blocking and Noise
Kyle Li1, Doina Precup1, Theodore J. Perkins1,2,3*

1 School of Computer Science, McGill University, Montreal, Quebec, Canada, 2 Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, 3 Department of Biochemistry,

Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada

Abstract

The complex molecular networks in the cell can give rise to surprising interactions: gene deletions that are synthetically
lethal, gene overexpressions that promote stemness or differentiation, synergistic drug interactions that heighten potency.
Yet, the number of actual interactions is dwarfed by the number of potential interactions, and discovering them remains a
major problem. Pooled screening, in which multiple factors are simultaneously tested for possible interactions, has the
potential to increase the efficiency of searching for interactions among a large set of factors. However, pooling also carries
with it the risk of masking genuine interactions due to antagonistic influence from other factors in the pool. Here, we
explore several theoretical models of pooled screening, allowing for synergy and antagonism between factors, noisy
measurements, and other forms of uncertainty. We investigate randomized sequential designs, deriving formulae for the
expected number of tests that need to be performed to discover a synergistic interaction, and the optimal size of pools to
test. We find that even in the presence of significant antagonistic interactions and testing noise, randomized pooled designs
can significantly outperform exhaustive testing of all possible combinations. We also find that testing noise does not affect
optimal pool size, and that mitigating noise by a selective approach to retesting outperforms naive replication of all tests.
Finally, we show that a Bayesian approach can be used to handle uncertainty in problem parameters, such as the extent of
synergistic and antagonistic interactions, resulting in schedules for adapting pool size during the course of testing.
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Introduction

The complex machinery of the cell is capable of producing

strong, unexpected interactions between its individual components

or other factors. A prime example of this is the phenomenon of

synthetic lethality [1]. A pair of genes is synthetically lethal if the

deletion of either gene individually has no or minimal influence on

the organism, yet the deletion of both kills the organism. Networks

of such interactions have been shown to contain important

information about pathway and process relationships between

genes [2], and so discovering these interactions is of great interest.

Another important example is the Yamanaka factors, a set of four

genes (Oct-3/4, SOX2, c-Myc and Klf4) whose overexpression

can transform differentiated cells back into a pluripotent state very

much like that of embryonic stem cells [3,4]. This discovery has

had numerous implications for stem cell research, including ready

production of embryonic-like stem cells without the use of

embryos, generation of patient-specific stem cells, and a greater

understanding of the networks controlling stemness and differen-

tiation more generally [5,6]. Notably, none of the four factors are

individually sufficient to restore a stem-like state, and indeed,

Yamanaka and colleagues discovered the four factors by

simultaneously overexpressing 24 known stem cell-related fac-

tors—a simple, though quite effective, pooling strategy [3].

Interactions are also important in the pharmaceutical world.

While adverse interactions are a well-known clinical problem [7],

interactions can also be beneficial. Multi-component therapies,

which rely upon synergistic interactions between individually

ineffective or weak drugs, are increasingly being used to address

complex diseases such as cancer, HIV/AIDS, diabetes, and

immune disorders [8–11].

Discovering interactions can be difficult. One reason is the sheer

number of interactions that are possible. Abstractly, if we have n

‘‘factors’’ which may interact, then there are
n

2

� �
~O(n2)

possible pairwise interactions,
n

3

� �
~O(n3) possible three-way

interactions, and so on. Often, the number of actual interactions is

vastly smaller than the number of potential interactions. For

instance, in the largest screen for interactions between pairs of

yeast genes to date [2], approximately 3% of the 5.4 million pairs

tested showed a significantly unexpected influence on growth rate,

and only a fraction of those were synthetically lethal. Similarly low

rates of unexpected interactions have been observed in the

relatively few attempts at high-throughput pooled drug screening

[11–14]. Thus, exhaustive testing for interactions requires

significant effort and has a rather low success rate.

Another source of difficulty is that interactions between factors

may be masked by other factors, variously called blockers,

inhibitors or antagonists [15–17]. In drug screening, the presence

of one compound, which itself does not affect the biological target,
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may nevertheless neutralize the positive effect of compounds with

which it is combined [17]. Blocking has also been identified as a

challenge in screening DNA libraries [15,18]. While we are not

aware of genes whose expression blocks the reprogramming ability

of the Yamanaka factors, it was recently shown that depleting

Mbd3 greatly increases the efficacy of reprogramming—that is,

the fraction of cells that return to a stem-like state [19]. Thus,

Mbd3 is a strong, though not absolute, inhibitor of the Yamanaka

factor synergy.

A further difficulty is that one always has to consider the

possibility that a test may produce a false positive or false negative

result (e.g. [20–24]). In high-throughput screens, both types of false

results are common, and the experimental design must be able to

account for such errors. A naive strategy is simply to replicate each

test a fixed number of times, say r. This allows one to gain greater

certainty in the results, reducing the chance of both false positives

and false negatives. However, this strategy increases the experi-

mental burden by a factor of r, which is often considered

prohibitive. An alternative, and probably more common strategy,

is to perform an initial screen and then conduct confirmatory

testing only on the positive results from the screen. This allows one

to eliminate false positives from further consideration, but it does

not address false negatives at all.

In principle, pooled screening offers ways to address all three of

the difficulties just mentioned. To introduce the idea of pooled

testing, let us consider the seminal work of Dorfman [25], who

discussed the problem of testing blood samples of potential military

recruits for signs of syphilis. The test for syphilis was very sensitive.

For reasonable pool sizes p (meaning p different blood samples are

combined and then tested), a negative reading could be assumed to

mean that none of the original samples were positive. However, a

positive reading would mean that at least one of the original

samples was positive. In this case, the individual samples would

then need to be retested to identify precisely which recruits were

infected. Dorfman showed that if the overall prevalence of syphilis

is sufficiently small, so that relatively few pools are positive, then

performing the pooled screen plus the positive-pool follow-ups can

be far more efficient than testing each recruit’s blood individually.

Moreover, he showed how to select an optimal pool size based on

the estimated prevalence of the disease.

Since Dorfman’s work, the theory and practice of pooled

screening has expanded enormously (see [14,26,27] for theory as

well as pointers to many application areas). In the most standard

formulations of screening problems, which omit synergy and

antagonism, methods for dealing with testing errors range from

simple grid-based schemes [27] to the recently-developed and

powerful Shifted Transversal Design [11,24,28,29]. A basic

principle of such designs is that any individual factor appears in

multiple pools, reducing the possibility of false negatives. Indeed,

screens can be designed to automatically correct for a bounded

number of testing errors (either false positives or false negatives)

even without follow-up testing, giving a guaranteed degree of

robustness (e.g., [15, 24, 28]).

Error-resilient schemes also provide some protection against

antagonism. For instance, imagine a high-throughput drug screen

in which there is a particular active compound c. Compound c will

be tested multiple times in combination with other compounds,

and will fail to be detected only if every one of those pools contains

an inhibitor. (These could be viewed as ‘‘false negatives’’, though

the tests are really correct, given the presence of the unknown

inhibitors.) A better approach, however, is to employ a design that

explicitly addresses the possibility of inhibitors [15,16,30–33].

Intuitively, given a bound on the number of inhibitors, such

pooling designs ensure that the active compound(s) (or positive

factors) occur in enough different pools with non-inhibiting factors

that their effects will be detected.

The majority of the work on pooled screening does not address

the issue of synergy or interactions between factors, although even

single-factor schemes can be bent to this purpose. One can hold a

factor x constant and search a library of other factors y for

interactions with x using a pooled screen. This approach has been

used in screening DNA libraries [15] and yeast two-hyrbid

screening [29,34], to name two examples. There are, however,

explicit schemes for searching for synergistic groups, sometimes

called complexes, among a library of factors [12,27,35]. The

essential problem is to create a screen ensuring that all

combinations up to a certain size appear in one or more pools

(depending on one’s requirement for error tolerance). Relatedly,

there is work on threshold-testing problems where it is not

necessarily a particular combination of factors that produces a

reading, but positive readings come when enough positive factors

are included in a pool—and potentially, not too many inhibitors

[36–38].

In this paper, we consider all three issues of synergy, antagonism

and noisy testing. To our knowledge, the only previous works to

address all three issues simultaneously are those of Chang et al. [32]

and Chang et al. [33]. These works propose non-adaptive

screening designs—that is, a way of selecting a set of pools given:

the number of factors n, bounds on the number and sizes of

synergistic groups, a bound on the number of inhibitors, and a

bound on the number of errors (false positive or false negative) that

will occur during the screen. After the screen is performed, the test

results can be analyzed to identify all the synergistic groups

correctly, without additional testing.

We focus instead on adaptive designs. In general, an adaptive

design is a scheme for choosing a sequence of pools to test, in

which the choice of next pool is allowed to depend on the

outcomes of the earlier tests. Such designs can be quite

sophisticated. We will, however, explore rather simple randomized

designs, along the lines of Farach et al. [15]. In our view and

experience, simplicity of a design is a point in favor of adoption.

Moreover, the randomized designs we analyze lend themselves to

analytical tractability. In particular, we are able to resolve

questions such as: What is the expected screen size—the number

of tests that need to be performed—to discover synergistic

combinations of factors? What is the optimal pool size?

How does noise in test readings require the design to be changed,

and how does it affect sample size and optimal pool size? How

can we design a screen if we do not know how many factors may

be interacting or how many factors may be blocking an

interaction?

Our analysis also differs from most previous work, and in

particular Chang et al. [32] and Chang et al. [33], in the manner

that testing errors are modeled. Most analyses assume an absolute

bound e on the number of errors that will occur during a screen.

While this is better than assuming no errors at all, we consider it

unrealistic that the number of errors e is independent of the size of

the screen. Instead, we assume that each test has a fixed

probability of producing an error. Under this assumption, no

non-adaptive screening strategy can absolutely guarantee suc-

cess—which is another motivation for our interest in adaptive

designs. Conversely, even simple randomized adaptive screens can

be guaranteed to eventually find synergistic groups with proba-

bility one, if they are allowed to proceed long enough.

Although our analysis is largely developed from the point of

view of group testing theory, pooled screening problems can also

be related to the theory of learning sparse Boolean functions [39–

47]. In a generic version of this problem, we assume the existence

Pooled Screening for Synergistic Interactions
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of a Boolean function of interest f : f0,1gn?f0,1g. However, we

assume that f really only depends on m%n of the input variables.

Identifying those m relevant inputs is therefore of great interest—

sometimes of greater interest than identifying exactly how f
depends on those inputs. We can relate sparse Boolean functions

to the pooled screening context by saying that the ith input feature

is 1 if the ith factor is included in the pool, and f just returns

whether or not the pool tests as positive. In the standard pooled

testing problem, without synergy and without blockers, a pool is

supposed to read positive if any of m individually-positive factors is

present in the pool. Thus, f is simply the disjunction of the m
corresponding input features. In a formulation that allows for

synergy, and assuming for simplicity that we seek a single m-way

synergy, f is instead the conjunction of the m corresponding input

features. If we additionally allow for k blockers, then f would be

the conjunction of the m synergy features and the negation of the k
blocking features. In the present study, we will generally assume

that m is small compared to n; however, we will make no such

assumption about k. As such, our problem does not technically fit

within the assumptions of a sparse Boolean function learning

problem. Nevertheless, as has been shown for sparse Boolean

function learning [41,42,46–48], we will see that relatively few

pools—even if selected randomly—are sufficient for identifying the

m factors of interest.

Results

Randomized pooled screening guarantees discovery of
synergistic combinations, despite blocking, and can
vastly outperform exhaustive testing

We begin by analyzing a basic scenario with synergy and

blockers. We assume there are n individual factors in which we are

interested—genes, drug compounds, etc.—and that we can test

these factors either individually or in combinations. Each test

results in either a positive or a negative outcome. A positive

outcome is the outcome of interest—for instance, synthetic

lethality between two genes, or synergy between drugs. A negative

outcome means the factor or combination of factors tested either

had no effect or merely had the expected effect, and is therefore

not of interest. As mentioned above, in screens for gene

interactions related to yeast growth rates, just a few percent of

potential interactions turn out to be real, and strong interactions

are rarer yet. Similarly, in a typical drug screen, a few percent of

individual compounds may have some effect on a biological target,

while the number of synergistic combinations is expected to be

quite small. Here, we make the pessimistic assumption that the set

of n factors contains just a single synergistic combination of m
factors that has a positive effect. Therefore, the goal of the screen is

to find this particular combination. We call these factors the

desirable factors. Establishing the utility and feasibility of pooled

screening under this scenario implies that it would be all the more

useful under less pessimistic conditions. In the Discussion section,

we outline how our results can straightforwardly be extended to

the case of multiple synergistic combinations. We also assume that

there are k factors that are blockers. Whenever one of the blockers is

present in a pool along with the desired factors, the positive effect

is completely abolished. The remaining n{m{k factors are

neutral, and do not effect the outcome of the test. For now, we will

assume that the parameters n, m, and k are all known—although

of course the identities of the m desirables and k blockers are

unknown. Later, we will lift this assumption, treating m and k as

unknowns about which we maintain probabilistic beliefs that can

change during the course of testing. We will focus first on the

noise-free case, in which a pool of factors gives a positive reading if

and only if it contains all m desired compounds, none of the k
blockers, and any number of neutral factors.

The number of factors, n, may be large—hundreds or

thousands for genes, and possibly into the millions for large drug

screens. We expect m to be relatively small, as in the examples of

synthetic lethality (m~2), the Yamanaka factors (m~4), or drug

cocktails (typically m~2 . . . 4). We also allow m~1, an individ-

ually-active factor, as a special case, although our primary interest

is in identifying synergies between factors. The number of

blockers, k, can vary widely.

Pooled experiment designs often have two phases. In the first

phase, a collection of pre-chosen pools are tested. In the second

phase, sometimes called the decoding phase, members of positive

pools are tested further, either individually or in groups, to

determine the cause of the positive reading. In the first phase, the

main design choices concern the sizes of the pools and the method

used to assemble each pool. For our initial model of the screening

problem, we consider the screening design shown in Figure 1A.

Pools of size p are drawn repeatedly, uniformly randomly, and

with replacement, from the n factors. This sequence of pools is

tested until a positive reading is achieved. Recent work on drug

screening has shown that a biased random selection procedure,

which aims to better cover a feature space of chemical descriptors,

can improve the efficiency of such randomized screening [13].

However, for simplicity and analytical tractability, we focus on the

more straightforward selection method. For the screening proce-

dure in Figure 1A, as long as random pools of size pƒn{k are

chosen, the procedure will eventually find a positive pool with

probability one—simply because there is at least one positive pool

of this size. Thus, the first phase terminates with probability one.

Once a positive reading is obtained, the second phase of the

design is responsible for identifying the desirable factors from the

positive pool. There are m desirables that need to be discovered in

the pool of size p§m. A simple approach, requiring p tests, is to

exclude each factor from the pool in turn and test the rest of the

factors as a pool. If the reading is negative, then the factor that was

excluded is one of the m desired factors. If the reading is positive,

then the factor that was excluded is neutral and can be discarded

from the pool. More generally, because the positive pool cannot

contain blockers, one could use any scheme for identifying m-way

synergies from a library of factors [12,26,27]—but in this case

from just the p factors in the positive pool, rather than the entire

library of n factors.

In the classic work of Dorfman [25], the optimal pool size is

determined by trading off the costs of the first and second phases.

In his formulation, larger pools increase the efficiency of the first

phase, but tend to decrease the efficiency of the second phase, as

more pools will be positive and their larger size means that more

follow-up tests will be needed. In our study, the ƒp tests required

by the decoding phase are generally inconsequential compared to

the number of tests needed in the first phase. So, the efficiency of

the first phase is our primary concern. Larger pool sizes are

favored by the desire to reduce the number of tests needed. In

particular, larger pools test more factors simultaneously and test

more possible synergies simultaneously. However, the presence of

blockers favors smaller pools, so that positive readings are not

masked. This tension determines the optimal pool size. In some

cases, particularly when the number of blockers k is very small, the

second phase of the design can take substantial testing effort

compared to the first phase, and should not be ignored. We return

to this issue in the Discussion section.

We begin by computing the expected time (i.e., number of tests)

until a positive reading is found in the first phase. In order to get a

positive reading for a particular test, we must assemble a pool that

Pooled Screening for Synergistic Interactions
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contains all m desirable factors, p{m neutral factors, and no

blockers. The total number of pools of this sort is
n{m{k

p{m

� �
,

out of a total of
n

p

� �
possible pools of size p. Thus, the probability

that a randomly selected pool of size p gives a positive reading

is

Pnmk(p)~

n{m{k

p{m

� �
n

p

� � : ð1Þ

As we have assumed that pools are drawn independently and

tested sequentially until a positive reading is found, the time until

obtaining a positive reading is just a geometric waiting time

random variable, with success probability Pnmk(p). Therefore, the

expected number of tests as a function of p is

Tnmk(p)~

n

p

� �
n{m{k

p{m

� � : ð2Þ

To give some intuition for the relationship between p and

Tnmk(p), Figure 2 shows Tnmk(p) for varying values of n, m, k and

p. In panel A, the three curves show Tnmk(p) for the three cases:

seeking a single active factor from a set of n~106, seeking a

synergistically active pair of factors from a set of n~1415
candidates, and seeking a synergistically active trio of factors from

a set of n~183 candidates. In each case, we assume 10% of the

factors are blockers. These values were chosen because the

straightforward approach of testing all
n

m

� �
subsets takes

approximately one millions tests in each case—a feasible number

by current, high-throughput methods. If we imagine running

through those one million tests, but stopping as soon as the

desirable combination is identified, then the expected testing effort of

the naive, exhaustive screen is 500000 tests.

An immediate observation is that pooled testing can greatly

increase the efficiency with which the desirable factor(s) are

identified. For the m~1 case, testing at the optimal pool size of

p�~9 reduces the expected number of tests needed to 258119—a

twofold reduction in testing effort. For m~2 and m~3, the

optimal pool sizes of p�~19 and p�~26 reduce the expected

number of tests to 35796 and 5175 respectively, corresponding to

fourteen-fold and nearly 100-fold reductions in testing effort

respectively. Achieving these improvements requires relatively

large pool sizes. Pool sizes as large as 19 or 26 are feasible for

gene overexpression or knockdown studies (as in [3]). They may or

may not be feasible in drug screening, due to general toxicity

effects; the study of Severyn et al. [11] used a pool size of ten. In any

given case, there may be limits on how large a value of p is

feasible. However, even if one sticks to a relatively modest p~5,

the expected numbers of tests needed for the cases m~1, 2, and 3
go down to 304832, 137489 and 124118 respectively—a

savings of 40% to 70%. In this simple scenario, then, we see

that pooled testing has the potential for greatly increasing the

efficiency of discovering desirable factors or combinations of

factors.

Figure 2B shows the effect of varying the number of blockers, k,

for n~100 and m~2. Increasing k has a dramatic effect on the

expected number of tests as well as the optimal pool size.

Qualitatively, both panels show that Tnmk(p) appears to initially

decrease with p and then increase. Intuitively, Tnmk(p) decreases at

small p because of the increased chance of including all the

desirable factors in the pool, but it increases at larger p because of

the increased chance of including blockers. (Shortly, we will show

analytically that Tnmk(p) is unimodal in all but a few degenerate

situations.) This implies that there is usually a single, optimal

choice of p, although the curves also show that there can be a

significant range of values of p for which Tnmk(p) is nearly as good

as at the optimal pool size.

Finally, we note that if one takes p~m, the minimum pool size

with which it is possible to discover an m-way synergy, the

expected number of tests is just Tnmk(m)~
n

m

� �
. This is exactly

the same as exhaustively running through all possible m-way

combinations—although it is twice the expected effort, if we

assume that the exhaustive screen ends when the combination is

found.

To determine the optimal pool size for given n, m and k,

consider the ratio

Figure 1. Sequential designs for pooled screening, in the case of noiseless tests (A), and with the possibility of noisy tests (B).
doi:10.1371/journal.pone.0085864.g001

Pooled Screening for Synergistic Interactions

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e85864



Tnmk(pz1)

Tnmk(p)
~

n

pz1

 !

n{m{k

pz1{m

 !

n

p

 !

n{m{k

p{m

 !
~

n!

(pz1)!(n{p{1)!
(n{m{k)!

(pz1{m)!(n{p{k{1)!
n!

p!(n{p)!
(n{m{k)!

(p{m)!(n{p{k)!

~
(pz1{m)(n{p)

(pz1)(n{p{k)
:

ð3Þ

If this ratio is less than one, then testing with pool size pz1 is

more efficient than testing with pool size p. This leads to the

following criterion.

Tnmk(pz1)

Tnmk(p)
v1u

(pz1{m)(n{p)

(pz1)(n{p{k)
v1upv

mn{k

mzk
ð4Þ

This confirms the observation (see Figure 2) that Tnmk(p) is

unimodal in p, decreasing as p increases to a certain threshold and

then increasing afterwards. If
mn{k

mzk
is an integer, then

p�~
mn{k

mzk
is the optimal choice of p. If

mn{k

mzk
is not an integer,

then the smallest integer greater than that, denoted qmn{k

mzk
r is

the optimal choice. In either case, we can write the optimal choice

for p as

p�~ arg min
p

Tnmk(p)~qmn{k

mzk
r ð5Þ

Equation 5 always yields a valid choice for p that falls in the

range ½m,n{k� (see Materials and Methods for proof). This

ensures termination of the screening procedure with probability

one. It is possible that p�~qmn{k

mzk
r~m, so that the optimal

pool size is no larger than the minimum necessary to discover an

m-way synergy. In particular, this can happen when the number of

blockers, k, is very large. For example, in the case n~100 and

m~2, the optimal pool size is p�~2 when k§66. In such cases,

Tnmk(p) is monotonically increasing in p. The case k~0 is a

degenerate situation in which Tnmk(p) is monotonically decreasing

in p and p�~qmn

m
r~n. As stated above, optimal pool size for us

is determined by a tradeoff between library and synergy size,

favoring large pools, and the number of blockers, favoring small

pools. In the absence of blockers, there is really no need for phase

one—the primary purpose of which can be viewed as identifying a

pool or sub-library that still contains the synergistic group, but

without any blockers. In this case, approaches for finding

synergistic combinations without blockers should be employed

[35].

Figure 3A shows p� as a function of m and k, for n~100.

Optimal pool size drops rapidly at low k, and plateaus at p�~m
for high values of k. Figure 3B shows the expected number of tests

for various m and k if the optimal pool size is used. The qualitative

shape of the curves for Tnmk(p�) can be understood by analyzing

the ratio Tnmkz1(p)=Tnmk(p).

Tnmkz1(p)

Tnmk(p)
~

n

p

� �
n{m{k{1

p{m

� �
n

p

� �
n{m{k

p{m

� �
~

n{m{k

n{p{k
ð6Þ

For fixed p, Tnmk is non-decreasing in k, because

n{m{k§n{p{k. The ratio is greatest when p is large. If we

Figure 2. Expected number of tests in phase one, assuming noiseless tests, as a function of pool size, p. (A) Three different choices of
library size, n, and synergistic group size, m, for which exhaustive combinatorial testing requires one million tests (or 500000 expected tests, assuming
early stopping is allowed). In each case, the number of blockers is k~qn=10r, or approximately 10% of the library. (B) Varying k, with n~100 and
m~2.
doi:10.1371/journal.pone.0085864.g002
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consider p� instead of a fixed p, then intuitively, p� is largest when

k is small, so we expect Tnmk(p�) to be increasing fastest (in terms

of ratio) when k is small and to level off at large k, when p�~m.

Testing errors do not change optimal pool size, and are
best handled by follow-up testing on positive pools

In realistic situations, test results, especially from high through-

put methods, may be erroneous. In such a scenario, a positive

reading no longer guarantees that we have the desired combina-

tion in the pool. Similarly, a negative reading does not imply that

we failed to have the desired combination and no blockers in the

pool. In this section, we assume that the test has a fixed probability

0ƒev1=2 of producing an erroneous reading, either a false

positive or a false negative. We assume the same error rate for

both positive and negative readings for simplicity, but the case of

different error rates is a straightforward extension.

In this new setting, a positive reading arises either from a truly

positive pool with a correct reading (true positive) or from a truly

negative pool with an incorrect reading (false positive). Let pz be

the event that a randomly drawn pool is truly positive, p{ be the

event that a randomly drawn pool is truly negative, and tz the event

that a randomly drawn pool tests as positive. Then, the probability

of getting a positive reading for a randomly chosen pool of size p is

Pnmke(p) ¼D P(tz)

~P(pz)(1{e)zP(p{)e

~Pnmk(p)(1{e)z(1{Pnmk(p))e

~(1{2e)Pnmk(p)ze:

ð7Þ

Note that Pnmk(p)~P(pz) is the probability of drawing a truly

positive pool, just as in the previous section.

To accommodate for testing errors, one generally uses replicates

to maintain a certain level of confidence. There are many ways to

incorporate replicates. The most straightforward scheme is to

repeat every test some fixed number of times. In a subsequent

phase, tests that are ‘‘sufficiently positive’’ are followed up.

(Sufficiently positive may mean that all or most of the replicates

test positive, though there are other ways to combine multiple

tests, depending on the setting.) In the present setting, however, it

turns out that replicating the tests on every pool is inefficient.

Because the vast majority of tests are expected to be negative,

replicating all those tests to be sure that they are negative wastes

significant effort.

We propose an alternative, as shown in Figure 1B. We start with

random pool selection and repeat until we obtain a first positive

reading. This pool could be a false positive, so we perform T

replicate tests on the same pool. A confidence level S[(T=2,T � is

defined such that if there are at least S positive readings out of the

T replicates, we consider the pool to be a true positive, and we

proceed to the decoding phase (whose testing effort we ignore, as it

is generally small). If, however, the T replicates do not contain S

positive readings, we consider that the initial positive reading was a

false positive, and we continue testing randomly drawn pools. Note

that, in this scheme, it is possible that a truly positive pool is read

as negative. In this case, the procedure simply continues to draw

random pools of factors for testing. Although an occurrence of a

positive pool may be ‘‘missed’’, eventually, the procedure should

draw a truly positive pool that tests as positive, both initially and in

at least S of the T confirmation tests.

The expected number of tests required by this procedure obeys

Tnmke(p)~
1

Pnmke(p)
zTz(1{P(szDtz))Tnmke(p) ð8Þ

where P(szDtz) is the probability that a pool that tests positive in

its first test also tests positive in at least S of the T follow-up tests—

that is, it is confirmed as a truly positive pool. The rationale behind

this recurrence is simply that the total expected number of tests

can be decomposed into the number of tests until obtaining the

first positive reading, the automatic T follow-up tests, and, if the

follow-up tests do not confirm that the pool is a true positive, the

expected tests from then on (which, as the process is memoryless, is

the same as at the start of the process). The expected number of

tests is thus

Tnmke~
1

P(szDtz)

1

Pnmke(p)
zT

� �
ð9Þ

Figure 3. Optimal pool size and testing complexity. (A) The optimal pool size, p� , as a function of the number of blockers, k, for varying
numbers of desirable factors, m. (B) The corresponding expected number of tests needed to identify the desirable factors. These curves are for library
size n~100.
doi:10.1371/journal.pone.0085864.g003
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We will shortly consider the behavior of Tnmke for various

parameter values, but first let us derive the optimal pool size. The

probability P(szDtz) depends on the pool size, even though the

notation does not make it explicit. Thus, the above formula for

Tnmke depends on p in two different places. Remarkably, it turns

out that the optimal pool size is the same as for the noise-free case.

In fact, that same pool size minimizes both the
1

P(szDtz)
term and

the
1

Pnmke(p)
term simultaneously. The latter claim follows readily

from Equation 7, keeping in mind that ev 1
2
, so that 1{2e is

positive. The claim that the same p� also minimizes
1

P(szDtz)
takes

more effort to show. We relegate its proof to the Materials and

Methods.

Figure 4A shows the expected number of tests under the noisy-

testing model, for n~100, e~0:1, T~20, S~15, and varying m
and k, assuming the optimal pool size is used. With these

choices of S and T , if a pool initially tests positive but is actually a

negative pool, the chance of erroneously confirming it as a positive

pool is approximately 10{11. The chance of failing to confirm a

truly positive pool is approximately 1%; if this did happen, of

course, the procedure would continue to look for a positive pool.

Hence, with very high probability, the procedure finishes by

identifying a truly positive pool. Qualitatively, the expected

number of tests is very similar to the expectation under the

noise-free model (see Figure 3B). Figure 4B shows the ratio of

the expected number of tests under the noisy model to the

expectation under the noise-free model, for varying error rates, e,

k~10, and with all other parameters the same. Naturally, when

the error rate is small, little extra effort is involved. In the case

m~1, there is about 75% extra testing effort, which is almost

wholly due to the T~20 follow up tests. As the error rate

increases, so does the testing effort ratio, reaching a value between

three and four for these parameter settings. A more standard

approach to dealing with the possibility of noisy readings is to

replicate each test some fixed number of times, usually at least

three. Even at a high level of noise, e~0:1, the testing scheme we

propose is approximately as efficient as naive triplicate testing.

Further, our scheme has the added benefit of producing a correct

answer with very high probability. In contrast, the naive

replication scheme has a nontrivial chance of missing the desirable

combination, and is almost certain to return a large number of

false positives. For instance, if we require all three replicates to be

positive, then the truly synergistic combination has 1{(1{e)3

chance of being called positive. With e~0:1, there is a 27%

chance that it will not be correctly identified. At the same time, the

expected number of false positives is
n

m

� �
e3. For instance, with

n~100, m~2, and e~0:1 we expect 5 false positives, and with

m~3 we expect 162 false positives. If we would require only 2 of 3

replicates to test positive, our chance of detecting the truly

synergistic combination increases, but so does the expected

number of false positives.

Bayesian adaptive scheduling when the numbers of
synergistic and/or blocking factors are unknown

So far, we have assumed that all the parameters of the problem

(n, m, k and e) are known. In reality, this is usually not the case. Of

course, the total number of factors n, is typically known. Often, the

error rate of the assay, e, has been established based on calibration

testing or previous screens. The value of m may well be unknown,

though it is generally expected to be relatively small, say between 1

and 4. We expect that the number of blockers, k, will often be

unknown and that we can expect significant uncertainty about its

value.

With unknown m and/or k, there are several ways to proceed.

We could optimistically assume that m~1 and k~0. However,

if our assumption is violated, we may find ourselves with an

endless stream of negative results and no way to explain them. On

the other hand, we could pessimistically assume that m is large (say,

four) and that k~n{m. In this case, we would only test pools

of size m, but this approach misses out on much potential gain

in efficiency by using larger pools. Furthermore, such a situa-

tion is not what we expect in practice. We are left, then,

with m likely being small and k being somewhere between 0 and

n{m.

In this section, we explore a Bayesian approach to handling

uncertainty about the true values of m and k. We assume that

before screening begins, there is a prior belief P0(m,k) that

represents our estimate of the chance that there are m desirable

factors and k blockers. As we will show shortly, these beliefs can be

updated as screening proceeds. For simplicity, we assume noise-

free testing (e~0), although the following can be generalized to

the noisy testing case. With noise-free testing, if we obtain a

positive pool, then we move to the decoding phase and our belief

over m and k becomes irrelevant. As long as we continue to get

negative readings, however, we can update our belief about m and

k.

Suppose that for the tth test, we choose a random pool of factors

of size pt. Below we describe several possible schemes for choosing

the pool sizes as a function of t. Let Nt denote the event that the

first t tests come out negative. Let Pt(m,k) denote our belief over

m and k after t negative tests. The following equation describes

how we can update the belief as each negative test result comes in.

(Again, if we get a positive test, then we can discard our beliefs and

proceed to the decoding phase.)

Pt(m,k)~P(m,kjNt)

~P(m,kjNt,Nt{1)

~
P(Ntjm,k,Nt{1)P(m,kjNt{1)

P(NtjNt{1)

~
P(Ntjm,k,Nt{1)P(m,kjNt{1)P

m0,k0 P(Nt,m0,k0jNt{1)

~
P(Ntjm,k,Nt{1)P(m,kjNt{1)P

m0 ,k0 P(Ntjm0,k0,Nt{1)P(m0,k0jNt{1)

~
(1{Pnmk(pt))Pt{1(m,k)P

m0 ,k0 (1{Pnm0k0 (pt))Pt{1(m0,k0)

ð10Þ

Because all the terms on the right hand side are known, this shows

how the beliefs at time t depend on the beliefs at time t{1.

This leaves the question of how to choose the sizes of pools to

test. For given n, p� can be viewed as a function of m and k. As m

and k are unknown, we propose the expedient of choosing pt

based on our beliefs after the first t{1 tests, Pt{1(m,k).
Specifically, we propose the pool size should be chosen by

averaging the optimal pool size over the unknown parameters,

rounding as necessary.
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pt~round
X
m,k

Pt{1(m,k)p�(n,m,k)

 !

~round
X
m,k

Pt{1(m,k)qmn{k

mzk
r

 ! ð11Þ

Certainly, other choices are possible. For example, we might

choose pt to minimize the expected number of tests, assuming no

further change in pool size.

pt~ arg min
p

X
m,k

Pt{1(m,k)Tnmk(p) ð12Þ

Or, we might choose pt based on the expected values of m and k,

or some percentiles of their distribution. We leave a detailed

exploration of such strategies for future work, and limit our

attention to Equation 11 for determining pool sizes.

As an example, suppose that n~100 and that we know m~2,

but that the number of blockers is uncertain. Figure 5A plots the

sequence pt in two different cases. For one, we assume a uniform

initial belief over k: P0(k)~
1

n{mz1
for 0ƒkƒn{m. For the

other case, we assume that each non-desirable factor has a 10%

chance of being a blocker, leading to a binomial belief,

P0(k)~
n{m

k

� �
0:1k0:9n{m{k. The figure also shows Et(k),

the expected value of k according to the belief distributions, as

testing progresses. The figure shows that, in either case, the

expected value of k increases as testing progresses. Intuitively, this

is because a large number of negative test results are more likely if

k is higher. As a result, the suggested pool size drops as testing

progresses, because larger (estimated) values of k favor smaller

pool sizes. Formally, this can be derived readily from Equation 10,

using the fact that Pnmk(p) is non-increasing in k. For the uniform

initial belief, Et(k) stops changing shortly after the 6000th trial.

This is because pt~m at the point. In this case, the probability of a

positive test, Pnmk(m), is the same regardless of k, so we gain no

new information about the value of k.

Figure 5B shows the expected number of tests for each of these

pool-size sequences, for different possible true values of k. The

horizontal line shows the expected number of tests under a naive

exhaustive screen, which for n~100 and m~2 involves

100

2

� �
=2~2475 tests. The thicker solid curve shows the number

of tests taken by the pool-size schedule induced by a uniform belief

for k. If k truly is small, this strategy requires less than 20% as

much testing as the naive strategy, and there are some savings even

if the true k is as large as 35. The dotted line shows the tests

expected under the fixed choice p~8, the initial pool size

suggested by a uniform belief for k. For k up to 33 it actually does

better than the adaptive Bayesian strategy, because it persists in

using the larger, beneficial pool size p~8, whereas the Bayesian

strategy switches to a lower pool size if testing runs long enough.

However, for large values of k, the Bayesian strategy does better

by a large margin, because it correctly deduces the benefit of the

smaller pool size. The dashed lines show the expected number of

tests using the Bayesian strategy with the binomial initial belief

over k, as well as the fixed strategy p~18, which is the optimal

pool size for the initial belief. If the true k is close to what is

predicted by the binomial belief, then these strategies perform

dramatically better than the naive screen, and modestly better

than the uniform prior. On the other hand, if the initial belief is far

from correct, then these strategies perform disastrously, because

they persist in using a pool size that is far too large. As with the

uniform initial belief, the fixed choice p~18 outperforms the

Bayesian adaptive strategy for the smallest values of k (though the

difference is slight), and the adaptive strategy does better for larger

values of k.

In Figure 6A, we consider the case that n~100 and k~10, but

that m is unknown. We explore two cases for the initial belief over

m: a uniform distribution on 1ƒmƒ4, and a geometric

distribution: P0(m)~2{m. The figure shows that, as testing

proceeds, the belief distributions for m shift towards higher values,

as higher values of m are a more likely cause of large numbers of

negative tests. In this case, the pool size increases during the course

of testing, as larger values of m imply larger optimal pool sizes. In

Figure 6B, we consider the case that n~100 but neither m nor k
are known with certainty. We assume an initial belief that is

uniform over all combinations of m and k with 1ƒmƒ4 and

Figure 4. Number of tests needed, if one allows for the possibility of noisy test outcomes. (A) The expected number of tests as a function
of the number of blockers, k, and the number of desirable factors, m, for n~100 and noise level e~0:1, assuming screening with optimal pool size.
(B) The ratio of the number of tests expected under the noisy model to the number expected under the noiseless model, for varying error rates e,
with k~10.
doi:10.1371/journal.pone.0085864.g004
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0ƒkƒn{m. As the number of tests increases, the belief

distributions for both m and k shift towards larger values. The

increase for m is difficult to see in the figure, but the expected

value changes from approximately 2:5 to 3:1 over the course of

100000 negative tests. The increasing estimates of m and k place

competing forces on pt. The former tends to increase the optimal

pool size while the latter tends to decrease it. For the particular

choices made here regarding n and the initial belief, the pool size

turns out to decrease until roughly trial 71000, at which point it

starts switching back and forth between six and seven. This

continues until roughly trial 96000, at which point the pool size

stays at six up to the 100000th trial.

Discussion

We have explored several closely-related models of pooled

screening, allowing for both synergy and antagonism between

factors. A basic finding is that pooled testing can have significant

benefits in terms of efficiency compared to naive one-at-a-time

testing of factors or exhaustive combinatorial testing, as has been

found in many other studies (see Hughes-Oliver [14,26,27] for a

review). This is true even with such impediments as high levels of

potential antagonism, noisy readings, or uncertainty in key

problem parameters. We derived formulae for the theoretically

optimal choice of pool size, showing, to our surprise, that it is

unaffected by noise in the testing procedure—although noise does

Figure 5. Pooled screening with uncertainty in the number of blockers. (A) The evolution of the expected value of k with respect to the
belief over k, along with the pool size schedule pt, as testing proceeds. Repeated negative tests increase the belief that k is larger, driving down the
recommended pool size. (B) The expected number of tests until discovering the desirable combination of factors, for several fixed pool-sizes and for
the Bayesian adaptive strategy. These results assume a set of n~100 factors from which we seek a synergistic pair (m~2).‘‘Uniform’’ refers to the
assumption that the belief about k is initially uniform on the range ½0, n{m�.‘‘Binomial’’ refers to the assumption that the initial belief about k is
binomial(n{m, 0:1).
doi:10.1371/journal.pone.0085864.g005

Figure 6. Pooled screening with uncertainty in the number of desirable factors and blockers. (A) When the number of blockers, k, is
known but the number of desirable factors, m, is not known, increasing numbers of negative tests are evidence for higher values of m, which raises
the optimal pool size. (B) The situation in which both m and k are unknown. Beliefs for both m and k shift towards larger values over time (though it
is difficult to see the increase in Et(m) on this scale), resulting in competing forces on the ideal pool size.
doi:10.1371/journal.pone.0085864.g006
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necessitate follow-up testing to confirm results. We also argued

that, in the case of noisy testing, it is better not to test every pool in

replicate, but only to retest the positive pools. This means that

some truly positive pools may pass by as false negatives.

Nevertheless, the testing effort involved in being certain about

the many truly negative pools is not justified in a high-throughput

screening scenario. It is better to wait for a subsequent pool to test

positive.

Throughout the paper, we assumed that the pool size should be

chosen to minimize the testing cost of phase one—the discovery of

a positive pool—and ignored the testing cost of phase two—

identification of the synergistic combination from the positive pool.

This choice allowed us to derive analytical formulae for the

expected number of tests at a fixed pool size and for the optimal

pool size. This choice is also justified because in many cases the

phase one cost greatly exceeds the phase two costs. However, this

is not always the case, especially when the number of blockers is

small. For instance, consider searching for a single active

compound in a library of 100 factors, only one of which is a

blocker. By our memoryless design, the optimal pool size is 50, and

allows identification of a positive pool in 3.96 expected tests. By

information-theoretic reasoning, subsequently identifying the

responsible factor must involve at least log2 50~5:64 tests. Thus,

the second phase has higher expected testing cost than the first

phase. A more complete approach would consider the costs in

both phases. Although explicit formulae might not be possible to

derive, numerical computations could readily be performed to

determine the optimal pool size.

We have also assumed that the goal of screening is to identify a

single m-way synergistic combination. Our results can be extended

to discovering a fixed number c of such combinations by running

the proposed scheme repeatedly, until the c distinct combinations

are discovered. We omit a detailed analysis. Intuitively, for a given

pool size, each randomly sampled pool would have c times the

chance of being positive as would be the case with a single

synergistic combination. Thus, the first combination would be

discovered c times as quickly as in the case of a single combination.

The second combination must be one of the c{1 remaining

combinations, and so would happen c{1 times as quickly; and so

on. The total expected number tests would thus be approximately

a factor of
1

c
z

1

c{1
z . . . z1& log c larger than the number of

tests required for discovering a single combination. The optimal

pool size should not change, because it should be chosen to

maximize the probability that any individual randomly-chosen

pool is a true positive, regardless of how many synergistic groups

there are.

In the memoryless randomized policies we have studied, the

pool size is part of the experimental design, but the actual factors

chosen to constitute each pool are not—they are simply drawn

uniformly randomly from the set of factors. As shown in

Remlinger et al. [13], for example, biasing this random choice

with prior information about the factors can increase the success of

screening. In that paper, synergistic effects were modeled but

treated as undesirable—a false positive reading. Nevertheless, it

would be interesting to try to incorporate some notion of biased

random sampling into our analyses, to see if results with similar

flavor hold. For that matter, simply keeping track of which pools

have already been tested, and favoring pools that have not yet

been tested, would likely reduce expected testing effort.

The efficacy of pooling depends strongly on the number of

blockers—a parameter which we expect would often be hard to

know or even estimate a priori. We showed that even if this

parameter is unknown, one can adopt a Bayesian view and

maintain a belief state over the number of blockers, which is

updated as testing proceeds. The pool size can then be chosen

based on this belief. Of course, if one’s belief does not match

reality at all, poor performance—worse than choosing the minimal

pool size—is possible. However, we showed through numerical

calculations that for a wide range of the unknown number of

blockers, a Bayesian choice of pool size can greatly outperform

choosing the minimal pool size.

We also showed that the size of the synergistic combination, m,

if unknown, can be treated in a Bayesian manner. The procedure

we described could also be extended to account for testing errors

and even unknown error rates, by maintaining a belief over the

error rate parameter. A much greater extension would be to treat

the identities of the desirable and blocking factors themselves in a

Bayesian manner. If we dispense with the m and k parameters,

and imagine that each factor is either desirable, neutral, or

blocking, then there are 3n possible ground truths. In principle, we

can imagine maintaining beliefs over these 3n possibilities, and

using techniques from the theory of partially observable Markov

decision processes [49] to determine an optimal screening strategy.

Exact methods would likely be too computationally intensive to

apply to this problem, but it would be interesting to see if

approximate methods could be applied to generate superior

screening designs.

Although genetic and drug interactions were the primary

motivations for our work, other application areas could be

addressed by the same ideas. While we have already mentioned

yeast two-hybrid screening for protein-protein interactions

[24,29], yeast one-hybrid screening for protein-DNA interactions

[50] might benefit similarly. Likewise, looking for cancer

therapeutics based on small interfering RNAs [51] might

benefit from pooling, under the assumption that multiple

interfering RNAs are needed to down-regulate the multiple

pathways that become mis-regulated in cancer. Recombinant

congenic experiments, in which genetically healthy and genetically

diseased animals are first cross-bred and then inbred to isolate

complex genetic causes of disease, also have a strong flavor of

pooled screening [52]. Some of the ideas in this paper might

provide novel and useful views of these other types of screening

procedures.

Materials and Methods

Feasibility of p�

In the first part of our results, where we analyzed a noise-free

model of the screening problem, we claimed that the formula for

p�, namely p�~qmn{k

mzk
r, always produces a value in the range

½m,n{k�. In the case k~0, this is immediately true. Otherwise,

for kw0, the following shows that p� is always at least as large as

m:

n§mzk

[nwmzk{1

[mnwm2{mzmk

[mn{kwm2{mzmk{k

[mn{kw(m{1)(mzk)
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[
mn{k

mzk
wm{1

[qmn{k

mzk
r§m

On the other hand, we can see that p� is no larger than n{k as

follows:

0ƒn{m{k

[{1vn{m{k

[{kvnk{mk{k2

[mn{kvmnznk{mk{k2

[mn{kv(mzk)(n{k)

[
mn{k

mzk
vn{k

[qmn{k

mzk
rƒn{k

Probability of confirming a positive test in the noisy
model

In our analysis of screening with noisy testing, we claimed that

the pool size p� that maximizes the probability of choosing a truly

positive test, P(pz)~Pnmk(p), also maximizes the probability of a

test being confirmed as positive under the noisy testing model,

P(szDtz). Here, we prove that claim.

P(szjtz)~P(szjpz)P(pzjtz)zP(szjp{)P(p{jtz)

~P(szjpz)
P(tzjpz)P(pz)

P(tz)
zP(szjp{)

P(tzjp{)P(p{)

P(tz)

~
P(szjpz)P(tzjpz)P(pz)zP(szjp{)P(tzjp{)P(p{)

P(tzjpz)P(pz)zP(tzjp{)P(p{)

~
P(szjpz)(1{e)Pnmk(p)zP(szjp{)e(1{Pnmk(p))

(1{e)Pnmk(p)ze(1{Pnmk(p))

ð13Þ

In the formula above, P(szDtz) depends on the pool size, p,

only through the Pnmk(p) terms. Although it may not be

immediately obvious, this formula is increasing as a function of

Pnmk(p). To show this, replace Pnmk(p) with the variable x in

Equation 13, obtaining:

P(szDtz)~
P(szDpz)(1{e)xzP(szDp{)e(1{x)

(1{e)xze(1{x)
ð14Þ

We treat x as a real variable in the range (0,1), and differentiate

with respect to it.

LP(szDtz)

Lx

~

((1{e)P(szjpz){eP(szjp{))((1{2e)xze)

{(P(szjpz)(1{e)xzP(szjp{)e(1{x))(1{2e)

((1{2e)xze)2

~
(e{e2)(P(szDpz){P(szDp{))

((1{2e)xze)2
ð15Þ

Because 0vev 1
2
, we have e{e2

w0. So, the first factor in the

numerator is positive. P(szDpz) is the probability of obtaining at

least S successes out of T tries, where each try succeeds with

probability 1{e. P(szDp{) is the probability of at least S successes

when the probability of each success is only ev1{e. Thus, the

former is larger, and the second factor in the numerator above is

also positive. This means that P(szDtz) is strictly increasing as a

function of x~Pnmk(p). Therefore, choosing p that maximizes

Pnmk(p) also maximizes P(szDtz).
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