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Inflammatory bowel disease (IBD), mainly including ulcerative colitis (UC) and

Crohn’s disease (CD), is an autoimmune gastrointestinal disease characterized

by chronic inflammation and frequent recurrence. Accumulating evidence has

confirmed that chronic psychological stress is considered to trigger IBD

deterioration and relapse. Moreover, studies have demonstrated that patients

with IBD have a higher risk of developing symptoms of anxiety and depression

than healthy individuals. However, the underlying mechanism of the link

between psychological stress and IBD remains poorly understood. This

review used a psychoneuroimmunology perspective to assess possible

neuro-visceral integration, immune modulation, and crucial intestinal

microbiome changes in IBD. Furthermore, the bidirectionality of the brain–

gut axis was emphasized in the context, indicating that IBD pathophysiology

increases the inflammatory response in the central nervous system and further

contributes to anxiety- and depression-like behavioral comorbidities. This

information will help accurately characterize the link between psychological

stress and IBD disease activity. Additionally, the clinical application of functional

brain imaging, microbiota-targeted treatment, psychotherapy and

antidepressants should be considered during the treatment and diagnosis of

IBD with behavioral comorbidities. This review elucidates the significance of

more high-quality research combined with large clinical sample sizes and

multiple diagnostic methods and psychotherapy, which may help to achieve

personalized therapeutic strategies for IBD patients based on stress relief.
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gut axis, anxiety, depression, psychiatric comorbidities, psychotherapy
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Introduction

Inflammatory bowel disease (IBD), mainly including

ulcerative colitis (UC) and Crohn’s disease (CD), is an

autoimmune gastrointestinal disease (1). This disease is a

common condition affecting approximately 1.5 million people

in the United States and 2.2 million people in Europe, with an

increasing global incidence (2). Although the exact etiology of

IBD remains elusive, the complex interaction between genetic

factors, environmental factors, host immune regulation,

intestinal microbes and microbial metabolites plays a vital role

in the pathogenesis of IBD (3–6). The course of IBD is long and

variable, often alternating between periods of quiescent disease

and periods of relapsing disease with more active inflammatory

episodes (7). Given that IBD is prone to relapse and difficult to

treat, it can significantly impact patients’ quality of life (QoL)

(8, 9).

In recent years, accumulating evidence has shown that the

interaction between brain and gut is closely related to the

occurrence and development of gastrointestinal (GI) diseases

such as IBD and irritable bowel syndrome (IBS) (10). From this,

the concept of brain–gut axis was proposed, which refers to the

complex bidirectional communication network between the

central nervous system and the intestine (11, 12). This axis

enables the cross-talk between the nervous system (including the

central nervous system, autonomic nervous system, and enteric

nervous system), the endocrine system and the immune system

(13–15). A dysregulation of this axis is arguably involved in the

pathophysiology of IBD which has long been associated with

mental conditions, such as stress, anxiety, and depression. It has

been reported that psychological stress is involved in the

permeability, motility, sensitivity, and secretion of the

intestine, composition of gut microbes, and the promotion of

the development and reactivation of intestinal inflammation in

animal models of colitis (16–19). Furthermore, in some clinical

studies, stress, anxiety, and depression have been considered

triggers of IBD relapse and clinical deterioration (20, 21). IBD

patients are at higher risk of depression than healthy individuals

(22–24). Additionally, a recent meta-analysis has demonstrated

that patients with active disease were more prone to experience

symptoms of psychological disorders than those with inactive

disease (22). Although the bidirectional effects of the brain–gut

axis might help explain these observations (25, 26), the complex

mechanisms underlying the interaction between psychological

stress and the pathophysiology of IBD have not been

fully understood.

A recent study suggested that stress resulting from the

spread of the new coronavirus disease 2019 (COVID-19) has a

strikingly positive relationship with CD activity (27). Therefore,

in the context of the ongoing epidemic and spread of COVID-

19, to elucidate the interplay between mental states and IBD

evolution and better understand the bi-directional modulation
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through the brain–gut axis, it is essential to explore the exact

mechanism of the link between mental health and IBD evolution

and provide leads for therapeutic interventions. In this review,

we used a psychoneuroimmunology perspective to discuss the

mechanism by which chronic psychological stress impacts

neuroendocrine immune regulation, damages the intestinal

immune function and microbiota homeostasis, and

subsequently aggravates IBD progression (Figure 1). Moreover,

we found that disordered gut homeostasis in IBD was

responsible for driving the brain pathology, exacerbating

inflammatory response in the CNS, and contributing to

anxiety- and depression-like behavior (Figure 2). Additionally,

the application of neuroimaging studies in evaluating possible

neuromechanisms involved in IBD and adjunctive effects of

some promising microbiota-targeted treatment, psychological

therapies and antidepressants are discussed.
Neuroendocrine stress
response pathways

Different regions of the brain, especially the hypothalamus,

amygdala, and hippocampus, interact with each other through

complex neural networks involved in the generation of stress

responses. Stress-induced neuroendocrine changes occur by two

effector pathways: the hypothalamic-pituitary-adrenal (HPA)

axis and the autonomic nervous system (ANS) (28). The HPA

axis is activated by various stressors and, in conjunction with the

ANS, enables the body to mount coordinated responses to

perceived threats.
Psychological stress and the HPA axis

The HPA axis is a classic neuroendocrine regulatory network

involved in the adaptive response to psychological stress.

Chronic psychological stress can induce the lasting activation

of the HPA axis (29). The hypothalamus secrets excessive

corticotropin-releasing hormone (CRH), triggering the release

of adrenocorticotropic hormone (ACTH) from the anterior

pituitary gland. ACTH itself stimulates the secretion of adrenal

glucocorticoids (GCs) by the zona fasciculata of the adrenal

cortex, such as cortisol in humans and corticosterone in rodents

(28, 30, 31).

Recent studies have shown that the HPA axis plays a

significant role in stress and intestinal diseases. Firstly, CRH

might be involved in the regulation of the intestinal barrier

function, intestinal peristalsis, and secretion function in some

intestinal diseases, such as IBS and IBD (32). Some studies have

indicated that corticotropin-releasing hormone receptors

(CRHRs) on the surface of mast cells (MCs), dendritic cells

(DCs), T cells, and other gastrointestinal immune cells bind to
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FIGURE 1

The mechanism by which chronic psychological stress aggravates IBD. (A) Stress activates the HPA axis: Stress induces the hypothalamus to
release CRH, which triggers the release of ACTH from the hypophysis. ACTH subsequently initiates GC over-synthesis and release in the adrenal
cortex. CRH reaches the colon through the blood and binds to CRHRs on the surface of MCs to promote degranulation and the production of
proinflammatory cytokines IL-1b and TNF-a, which, in turn, increase the permeability of the colonic epithelial barrier. Furthermore, the
overproduction of GC reduces tight junction protein expression between colonocytes, impairing the intestinal barrier function. (B) Stress
activates the SNS but inhibits the vagus nerve: The sympathetic nervous system is stimulated by stress, which causes the adrenal medulla to
secrete excessive AD and NE, promoting the activation of NF-kB signaling and mediating higher secretion of inflammatory cytokines in
peripheral tissues. The inhibition of the anti-inflammatory effect of the vagus nerve promotes macrophage-induced TNF-a production, which
aggravates the progress of colitis. (C) Stress is involved in innate and adaptive immune dysfunction by regulating specific immune cells and
cytokine production: Stress induces macrophages to infiltrate the colon and polarize into an M1 phenotype. Additionally, stress promotes
intestinal DCs to secrete IL-6 and IL-23, which induces Tregs to differentiate into a Foxp3+IL17+TNF-a+T cell phenotype. M1 macrophages and
Foxp3+IL17+TNF-a+T cells secrete corresponding inflammatory cytokines to aggravate the colonic inflammatory response. (D) Stress induces
microbiome community dysbiosis: Stress causes dysbiosis by increasing intestinal pathogens and decreasing SCFA-producing bacteria in the
intestine. Intestinal pathogens can cause and exacerbate colitis by impairing the intestinal barrier and activating intestinal immunity. Decreased
SCFAs lead to reduced tight junction protein expression and goblet cell numbers, which in turn lead to impaired intestinal barrier function and
aggravated colonic inflammation. HPA axis, hypothalamic-pituitary-adrenal axis; CRH, corticotropin-releasing hormone; ACTH,
adrenocorticotropic hormone; GC, glucocorticoids; CRHRs, CRH receptors; ANS, autonomic nervous system; SNS, sympathetic nervous system;
AD, adrenaline; NE, noradrenaline; VS, vagus nerve; MCs, mast cells; SCFAs: short-chain fatty acids; MLN, mesenteric lymph node; ENS, enteric
nervous system.
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excessive CRH released by the hypothalamus during stress

responses, inducing MC degranulation, T cell-related adaptive

immune response activation, increased intestinal-epithelial

permeability, and increased pro-inflammatory cytokine

production (33–36). In a recent study conducted on humans,

the stress induced by public speaking raised serum cortisol levels

in some subjects, and it was only in these subjects that the

intestinal barrier function was disrupted, suggesting that the
Frontiers in Immunology 04
HPA axis was activated. Moreover, exogenous CRH

administration in humans reproduced the impact of public

speaking-induced psychological stress, which increased small

intestine permeability (37). Additionally, the overproduction of

GCs and CRH induced by chronic psychological stress reduces

the expression of tight junctions in the intestine, damaging the

function of the intestinal mucosal barrier, which is closely

related to IBD progression (38–40).
FIGURE 2

IBD leads to anxiety- and depression-like behavioral comorbidities by inducing neuroinflammation. Chronic psychological stress, such as anxiety
and depression, aggravates colitis by activating the HPA axis and disrupting the ANS. This is accompanied by an increase in the production of
LPS, pro-inflammatory cytokines (TNF-a, IL-1b, and IL-6), and gut leak. Additionally, peripheral inflammation causes a decrease in tight junction
protein expression between endothelial cells in the BBB. Then, the disruption of BBB integrity predisposes the translocation of circulating
inflammatory mediators into brain tissues, which leads to the inflammatory response in the CNS by increasing IL-1b, IL-6, and TNF-a levels,
activating the TLR4/NF-kB inflammatory pathway, as well as increasing iNOS and nitrite levels in brain tissues. Further, circulating inflammatory
mediators reaching the brain affect neuroglial networks and activate microglial cells, which further exacerbate the inflammatory response in the
CNS. Additionally, activated microglial cells can promote neurodegeneration of the hippocampal nerve, which also contributes to mood
disorders. Furthermore, overactivation of the kynurenine pathway generates excess QUIN in the brain, which impairs neurons and neuroglial
cells, resulting in inflammation–mediated depression. IBD, inflammatory bowel disease; HPA axis, hypothalamic-pituitary-adrenal axis; ANS,
autonomic nervous system; LPS, lipopolysaccharide; BBB, blood–brain barrier; CNS, central nervous system; TRP, tryptophan; KYN, kynurenine;
QUIN, neurotoxic quinolinic acid.
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Psychological stress and the ANS

Stress controls the autonomic response by stimulating the

sympathetic nervous system, which causes the adrenal medulla

to secrete excess epinephrine and norepinephrine, subsequently

inducing central and peripheral tissues to secrete excessive

inflammatory mediators/proinflammatory cytokines and

promote the activation of inflammatory nuclear factor-kB
(NF-kB) signaling (41). The gut itself has a rich supply of

nerves, called the enteric nervous system (ENS). The neurons

of the sympathetic and parasympathetic nervous system

communicate with enteric nerves to form a complex neural

network that has been termed the brain–gut axis. The ENS

contains a large number of neurons that are responsible for

regulating many functions of the gastrointestinal tract (28, 42).

The stress-induced activation of the sympathetic nervous system

excites the enteric ENS and increases the density of nerve fibers

and the number of cholinergic neurons in the intestinal mucosa,

leading to higher permeability of the intestinal epithelium (43,

44). Clinical studies have shown that lesions in CD and UC

patients have a higher number of submucosal nervous plexuses

and increased epithelial permeability (45).

The vagus nerve is a parasympathetic nerve which can

achieve bidirectional communication between the CNS and

the gastrointestinal tract (46). The release of acetylcholine

from the efferent fibers of the vagus nerve inhibits

macrophage-induced tumor necrosis factor (TNF)-a
production through interneurons of ENS synapses between

efferent vagus nerve endings and macrophages. Secretions

from the vagus nerve are released through synapses and can

also inhibit TNF-a secretion by splenic macrophages (46). Given

the impact of TNF-a on IBD progression, the vagal inhibition of

TNF-a secretion could be a promising avenue for treatment

(47–49). A newly-identified vasovagal liver–brain–gut reflex

circuit could control the number of peripheral regulatory T

cells and maintain gut homeostasis (50).

It has shown that psychological stress inhibits the anti-

inflammatory effect of the vagus nerve as stress reduces nerve

tension and accelerates the production of inflammatory

cytokines in several diseases, such as treatment-refractory

depression, posttraumatic stress disorder, and IBD (46, 51, 52).

Meta-analyses have indicated that the expression levels of some

proinflammatory cytokines, like interleukin (IL)-1, IL-6, and

TNF-a are significantly upregulated during depressive episodes

(53, 54). In both UC and CD patients, lower vagal activity was

associated with systemic inflammatory manifestations, especially

excessive TNF-a and C-reactive protein (CRP) production (49,

55). Systemic inflammation, by itself, can lead to a depressive

state and promote IBD flare-ups (20, 56, 57). Excitedly, vagus

nerve stimulation (VNS) has shown promise for modulating

neuroinflammation and suppressing intestinal inflammation

associated with IBD (58–63). Kibleur et al. (60) have found
Frontiers in Immunology 05
that chronic VNS decreased anxiety and resulted in general

clinical improvement of CD. An additional study demonstrated

that VNS improved the intestinal barrier function by promoting

intestinal epithelial renewal (48). Thus, by restoring vagus nerve

activity, VNS is potentially useful in the treatment of IBD (46).
Chronic psychological stress
disturbs intestinal immune function
during IBD

The dysfunction of innate and adaptive immune pathways is

the primary cause of intestinal inflammation in patients with IBD

(10, 64, 65). It is well known that the immunopathogenesis of IBD

has been involved in mediation by various different cell types,

including classic immune cells, like macrophages, MCs,

neutrophils, DCs, monocytes, and adaptive immune cells, such

as T cells, and nonimmune cells, like epithelial cells, endothelial

cells, and mesenchymal cells (66, 67). However, it is still unclear to

what extent psychological stress is involved in the regulation of the

immunopathology of these immune cells during the aggravation/

relapse of IBD or intestinal inflammation. In other words,

spatiotemporal regulation of psychological stress on these

immune cells and cytokine production is important to elucidate

the mechanism underlying stress-mediated IBD/intestinal

inflammation. Table 1 presents a summary of the stress-induced

dysfunction of specific immune cells and the mechanisms

involved in IBD progression/inflammatory aggravation.
Chronic psychological stress activates
intestinal mucosal MCs

MCs are effectors of the brain–gut axis that produce

neurotransmitters and pro-inflammatory cytokines in response

to stress signals to regulate the permeability of the intestinal

epithelial barrier via the HPA axis (81). Animal experiments

have shown that chronic psychological stress-induced CRH is

released by the hypothalamus and binds to MC CRHR-1 to

induce activation and degranulation of MC and increase the

permeability of the intestinal epithelium while blocking CRH

release inhibits MC degranulation and the production of TNF-a
and protease, which delays the impairment of intestinal barrier.

Intriguingly, in stressed rats with an MC defect, intestinal

epithelial function and morphology were not markedly altered

(68, 82). One Clinical study found that public speaking-caused

psychological stress results in the activation of HPA axis and the

elevated level of CRH only in some volunteers that the intestinal

permeability was higher than the other volunteers, whereas,

symptoms could be eliminated by MC stabilizers (37). These

studies have implied that psychological stress aggravates the

permeability of the intestinal epithelial barrier likely through an
frontiersin.org
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intestinal mucosal MC activation-dependent pathway (37).

Additionally, the study of Mackey et al. (69) found that when

C57BL/6 mice were exposed to restraint stress (RS), female mice

had significantly higher intestinal permeability, serum histamine

levels, and MC degranulation than male ones, suggesting that

changes to the intestinal epithelial barrier induced by
Frontiers in Immunology 06
psychological stress through the regulation of MCs were sex-

specific. This phenomenon might be caused by G-protein-

coupled estrogen receptor (GPER) on MCs of the colonic

mucosa. Estrogen promotes stress-induced MC degranulation

through GPER (70). In a comorbid mice model of neonatal

maternal separation (NMS) stress and colitis, the researchers
TABLE 1 Stress-induced dysfunction of specific immune cells and mechanisms promoting IBD development/inflammatory aggravation.

Cell
type

Species Stress
model

Stress-induced cell dysfunction Mechanisms/Conclusions

MCs Rat CWAS MC hyperplasia and increased activation in the
mucosa.

MC-dependent ultrastructural damage in epithelial cells, decreased the
number of goblet cells, adherence and internalization of bacteria in the
epithelium, and inflammatory cell infiltration in the lamina propria, which
induced barrier dysfunction of the ileum and colon. None of these changes
occurred in MC-deficient rats (68).

MCs Human Public speech
stress,
Intraperitoneal
injection of
CRH

MCs were activated and released proteases and
inflammatory cytokines, such as TNF- a.

Acute public speech stress mediates the increase in CRH on the HPA axis.
CRH binds to CRH1R on human intestinal mucosal MC, activates MC,
and releases protease and proinflammatory cytokines, such as TNF-a,
increasing intestinal permeability (37).

MCs Mice ARS MC hyperactivity with female predominance.
Female mice had a higher capacity for MC
mediator synthesis, storage, and release than
males.

Estrogen promotes stress-induced mast cell degranulation through GPER.
Thus, female mice exhibited a greater serum histamine response and
intestinal permeability than male ones, however, there were no differences
in corticosterone secretion (69, 70).

MCs IL10-/-

Mice
NMS Increased MC activation and colonic tryptase

release.
Increased MC activation and colonic tryptase release damage the
expression of tight junction protein between colonocytes and promote
neutrophil recruitment and subsequent reactivate the immune response
(71).

Mac Mice SDR Increases in colonic F4/80+Mac. SDR exposure leads to increased production of CCL2 in the colon. CCL2
recruits inflammatory monocytes from the bone marrow into the colon
and differentiate into Mac. Increased Mac produces excessive inflammatory
cytokines and mediators, such as TNF-a and iNOS, which exacerbate
Citrobacter rodentium-induced colitis (72).

Mac Mice Intraperitoneal
injected CRH

Enhanced M1/M2 polarization in the left colon
from IBD mice.

Peripheral administration of CRH increased M1/M2 polarization,
aggravating intestinal inflammation in IBD mice. Blocking intestinal
autophagy significantly attenuated this effect (73).

Mac Human Depression Monocyte subpopulation disequilibrium toward
intermediate and non-classic phenotypes and Mac
polarization towards an M1 phenotype.

M1 macrophages strongly express iNOS and pro-inflammatory cytokines,
such as IL-1b, IL-6, and TNF-a, deteriorating intestinal inflammation (74).

Mac Mice CSDS Induce autophagy-dependent degradation of
NLRP3 in Mac.

CSDS induced a marked accumulation of kynurenic acid in the intestine;
the kynurenic acid/GPR35 axis promotes autophagy-mediated NLRP3
degradation in macrophages, which aggravates colitis injury. Blocking
intestinal autophagy partially reversed this effect (75).

Th17/Treg Mice CRS The inhibitory ability of intestinal Treg cells was
compromised while Treg cell frequency in the
intestine remained unchanged. CRS induced
Foxp3+ Treg cells to differentiate into Foxp3+

IL17+ TNF-a+ T cells in the intestine.

CRS-derived prolactin increases the production of IL-6 and IL-23 by
activating NF-kB signaling in DCs. IL-6 and IL-23 induced Treg cells to
lose immunosuppressive function and express high levels of TNF-a (76).

Th17/Treg Mice CSDS Decreased splenic T cell frequency, increased IL-
17-producing CD4+ and CD8+ T cells, and
reduced Treg numbers and TGF-b gene
expression in the spleens of susceptible mice.

CSDS promoted Th17 cell differentiation and suppressed Treg cell
differentiation, and increased the levels of serum IL-1b and IL-6
predominantly in susceptible mice (77).

Th17/Treg Mice CUMS Upregulated the ratio of Th17/Treg. CUMS promoted the infiltration of immune cells and increased the levels
of pro-inflammatory cytokines IL-17A and IL-1b in ileum, enhancing the
severity of intestinal inflammation (78, 79).

Neutrophil Mice CRS Promotes neutrophil infiltration in colon tissue. CRS resulted in the elevated expression of pro-inflammatory cytokines (IL-
1b, IL-6, IL-17A, and IL-22) and neutrophil chemokines (CXCL1 and
CXCL2), and promoted neutrophil infiltration into colonic tissues (80).
MCs, mast cells; Mac, macrophage; Th17, T helper type-17 cell; Treg, regulatory T cell; CRS, chronic restraint stress; CWAS, chronic repeated water avoidance stress; CRH, corticotropin-
releasing hormone; ARS, acute restraint stress; GPER, G-protein-coupled estrogen receptor; NMS, neonatal maternal separation; SDR, social disruption; CSDS, chronic social defeat stress;
CUMS, chronic unpredictable mild stress.
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have explored that NMS stress exacerbates colitis in IL10-/- mice

by disrupting intestinal barrier. Notably, increased MC

activation and colonic tryptase release were found which could

damage the expression of tight junction protein between

colonocytes and promote neutrophil recruitment and

subsequent reactivate the immune response, thus like play a

vital role in defects in intestinal barrier function (71).
Chronic psychological stress promotes
M1 phenotype polarization and
autophagy in macrophages

Macrophages play a key role in IBD pathogenesis, and

macrophage infiltration, along with an imbalance in the

macrophage M1/M2 ratio, is associated with IBD development

(83, 84). Recent studies have indicated that macrophages are

involved in the pathophysiology of psychological stress-induced

IBD aggravation. Social disruption (SDR) stress has been shown to

increase the number of F4/80+ macrophages in the colon and thus

enhanced severity of infectious colitis in mice (72). Additionally,

as the stress mediator, CRH can abnormally enhance the

macrophage M1/M2 polarization in the left colon of mice with

IBD (73). Similarly, in clinical studies, depression promoted the

migration of monocytes from the blood to the intestinal mucosa,

causingmacrophages to infiltrate colonic tissues, which aggravates

inflammation. CD patients with depression have a higher number

of M1 macrophages and higher levels of their secreted

proinflammatory cytokines and a lower number of M2

macrophages and lower levels of their secreted anti-

inflammatory cytokines (e.g., IL-10) than those without

depression, suggesting that depression promotes macrophage

polarization into an M1 phenotype and accelerates IBD

progression (74). Another recent study has shown that the

stress-induced over-activation of macrophage autophagy might

also aggravate IBD (75). The results indicated that chronic social

defeat stress (CSDS) caused kynurenic acid accumulation in

mouse colons, which, in turn, enhanced macrophage autophagy

in the intestine. This induced the defective activation of NLRP3

inflammasomes, making mice more vulnerable to dextran sulfate

sodium (DSS)-induced colitis (75). Thus, it is possible that chronic

psychological stress is involved in IBD’s pathophysiology by

promoting the infiltration of macrophages into the colon and

polarization of macrophages into an M1 phenotype, which both

enhance autophagy.
Chronic psychological stress regulates
T cell differentiation, phenotype,
and function

CD4+CD25+Foxp3+cells, which express the inhibitory

receptor, CTLA-4, and produce high levels of IL-10 and TGF-
Frontiers in Immunology 07
b, are the key regulatory T cells (Tregs) responsible for inducing

immune tolerance and preventing colitis by inhibiting immune

effector cell activation through cell contact and inhibitory

cytokine production (76, 85). The unbalanced T helper type-

17 (Th17) cell/Treg ratio associated with intestinal inflammation

is a typical feature of the disruption in mucosal immune

homeostasis (86–88). Present studies indicate psychological

stress-induced alterations in the differentiation frequency of

Th17 and Treg subsets. In CSDS mouse model, stress

enhanced splenic IL-17-producing Th17 differentiation,

suppressed Treg cell differentiation and decreased the levels of

TGF-b in the stress susceptible mice (77). Similarly, in CUMS

mouse models, stress upregulated the ratio of Th17/Treg in the

ileum, disrupted immune homeostasis by activating the

inflammatory response and thereby enhance intestinal

inflammation (78, 79). These studies have implied that an

investigation of the precise mechanism by which chronic

psychological stress impacts Th17 and Treg subset

differentiation is imperative to understand the mechanism of

stress-induced adaptive immunity response of intestinal T cells.

A recent study found that chronic psychological stress also

induced phenotypic and functional changes in T cell subsets. In

CRS mouse models, chronic stress did not change the frequency

of Treg differentiation in the intestine but could induce

phenotypic changes in Treg cells and damage their inhibitory

function. In the study, chronic psychological stress stimulated

serum prolactin secretion and, in turn, activated inflammatory

NF-kB signaling to induce IL-6 and IL-23 production from DCs.

This change in the intestinal DC phenotype induced Tregs to

differentiate into Foxp3+ IL17+ TNF-a+ T cells that produced a

lot of TNF-a and enhanced intestinal inflammation. The study

also showed that chronic stress aggravated colitis symptoms in

mice on DSS/TNBS treatment (76). These findings showed that

chronic psychological stress regulates the differentiation

frequency, phenotype, and function of Th17 and/or Treg cells

in a complex manner, providing important research directions

for the study of how chronic psychological stress regulates

intestinal immune function and affects IBD development.

Except for the immune cells mentioned above, neutrophils

may also be one of the target cells of psychological stress-

induced IBD. A recent study revealed that chronic

psychological stress upregulated the levels of neutrophil

chemokines (CXCL1 and CXCL2) which stimulated neutrophil

mobilization and infiltration into colonic tissues, thereby

secreted excessive proinflammatory cytokines (IL-1b, IL-6, IL-
17A, and IL-22), so the robust inflammatory response

aggravating colitis in a DSS-induced mice model (80).

Obviously, there are many other immune cells involved in the

occurrence of IBD, such as natural killer (NK) cells, natural killer

T (NKT) cells, and innate lymphoid cells (ILCs) (67). However,

whether these immune cells are involved in the mechanisms

underlying the interaction of psychological disorders with the

IBD progression has not been studied. Perhaps, such studies
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should be initiated under both experimental conditions and

human clinical trials.
Neuroimmune modulation of biogenic
amines with focus on
Th17 Cells

It has shown that biogenic amines, mainly including

catecholaminergic dopamine, norepinephrine, and adrenaline,

5-hydroxytryptamine (5-HT)/serotonin, and histamine, are

direct neurotransmitters present in central and peripheral

tissues with potential effects on neuroimmune interaction and

brain–gut axis (89–92). Particularly, serotonin is one of the

critical neurotransmitters that not only involves the

pathogenesis of various psychological and psychotic diseases,

but also alleviates neuroinflammation by manipulating immune

cell activity and cytokine production (93). More than 90% of

serotonin is contained in the gut and accumulating evidence has

demonstrated that serotonin may be of relevance in relation to

the psychopathology of IBD and IBD with psychological

comorbidities by modulating the IL-17/Th17 signaling

response (89, 90). It has demonstrated that serotonin follows a

receptor-specific pattern to suppress the release of inflammatory

mediators IL-1b, IL-6, TGF-b3 and IL-23 and thus inhibit the

development of pathogenic Th17 cells (94–96).

Along with biogenic amines, recent studies have shown the

critical pathogenetic role of Th17-cells and Th17-immune

response in participation in the gut-brain axis to mediate

chronic neuroinflammatory and autoimmune diseases (97).

Intriguingly, studies have found that compared to that of

healthy control, patients with depression have decreased Tregs

and concentration of serotonin, as well as increased Th17 cells

(92, 98). Th17-cells produce pro-inflammatory cytokines such as

IL-17A, IL-21, IL-22, and interferon-g (IFN-g) (99, 100). IL-17A
production and the expression of IL-6 and chemokine receptor-

6 promote penetration of Th17-cells through the blood–brain

barrier (BBB) into the CNS and induced the mental disorders

and neuroinflammation (101, 102).

Although the precise mechanisms of action of Th17 cells in

depression remain unclear, Th17 cells appear as a promising

therapeutic target for depression. The neutralization of IL-17A

by anti-IL-17A antibodies or supplement of serotonin to block

the release of gut Th17 cells might represent a reasonable and

feasible therapeutic approaches to improve depression

symptoms (92).

In addition to regulating immune cells directly,

psychological stress can also affect host immunity through

altering the composition and abundance of the intestinal

microbiota. The disturbed intestinal microbiota induced the

increased expression of inflammatory cytokines both in the

gut and in systemic tissues by promoting the colonization and

amplification of pathogens, activating immune responses, and
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promoting intestinal inflammation (103, 104). Therefore, the

precise mechanism by which stress manipulates intestinal

microbiota and thus shapes host immunity has become a

central segment to further analyzing the pathology of IBD

with psychological comorbidities.
Chronic psychological stress
disrupts the intestinal microbiome
in IBD

The brain–gut axis is a sophisticated bidirectional

communication network between the CNS and the intestine.

Recently, the intestinal microbiome has been regarded as the

third critical component of the brain–gut axis, and the concept

of a brain–gut–microbiota axis has been proposed (105, 106). As

mentioned above, psychological stressors can change to the

composition of intestinal microbiota, and promoting intestinal

inflammation (103, 104). In this context, increasing attention

has been placed on the interactive regulatory mechanism of the

brain and microbiota during disease progression (107, 108).

Table 2 provides a summary of stress-induced microbiome

community dysbiosis and the mechanisms involved in IBD

progression/inflammatory aggravation.

A acute stress can reduce the abundance and diversity of

bacterial species, increase colonic colonization/amplification of

pathogens–, especially the Proteobacteria population, including

Citrobacter rodentium, Helicobacter pylori, and Clostridium, and

upregulate the expression of inflammatory cytokines in the

colon and plasma, this exacerbating gastrointestinal

inflammation (104, 109–112). Long-term chronic stimulation

also changes the composition of intestinal microbiota, further

damaging immune homeostasis in the intestinal mucosa and

aggravating colitis (17, 113–115). Chronic stress induced

spontaneous colitis or exacerbated chemically-induced colitis

by promoting the expansion of pathogens and activating the

mucosal immune response (17, 113–115). For example, in

chronic subordinate colony housing (CSC) pretreated mice,

the abundance of Helicobacter and Paraprevotella was

remarkably increased and simultaneously activated the host’s

immune response. After adding DSS, mouse mesenteric lymph

node cells were further increased, more IFN-g and IL-6 was

produced, and intestinal tissue damage worsened (113).

Similarly, male C57BL/6 mice that received CRS pretreatment

and subsequent DSS intervention showed a more significantly

increased abundance of pro-inflammatory bacteria, such as

Peptostreptococcaceae, Helicobacter, Streptococcus, and

Enterococcus faecalis, further increasing inflammation,

activating the IL-6/STAT3 inflammatory signaling, and

aggravating colitis. Unexpectedly, the stress sensitization of

colitis was not stopped in IL-6 knockout mouse models, which

suggestes that a high inflammatory response was not the main
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TABLE 2 Stress-induced microbiota dysbiosis and mechanism promoting IBD/inflammatory aggravation.

Species Stress
model

Stress-induced microbiota dysbiosis Mechanism/Conclusions

Mice 6 days of short-
term SDR

Decreased the relative abundance of Bacteroides,
Coprococcus spp., Dorea spp., and Pseudobutyrivibrio
spp. while increasing the relative abundance of
Clostridium.

Increased levels of circulating IL-6 and monocyte chemoattractant protein-1
were directly related to a decrease in microbiome abundance, including
Coprococcus spp., Dorea spp., and Pseudobutyrivibrio spp., which could allow for
an increase in the abundance of Clostridium, and, subsequently, translocated
and induced an inflammatory response (104).

Mice 7 days of short-
term RS

Microbial richness and diversity decreased. After the oral
administration of C. rodentium, the colonization of C.
rodentium increased significantly.

The increased colonization of the C. rodentium pathogen triggers an increase in
TNF-a and iNOS gene expression in colonic tissues and causes severe intestinal
inflammation (109).

Rat Cold stress A significant increase in Proteobacteria. The increase in the abundance of pro-inflammatory Proteobacteria and the
upregulation for the levels of pro-inflammatory cytokines and biomarkers, such
as IL-1b, TNF-a, and Cox-2, in the colonic mucosa (110).

Mice Immobilization
stress

Increased the relative abundance of Proteobacteria and
reduced the relative abundance of Firmicutes and
Actinobacteria in the fecal microbiota.

The immobilization stress (IS) induced the increase of fecal Proteobacteria
population and overproduction of LPS, led to gut immune responses, and
accelerated the development of colitis (111).

Mice Immobilization
stress

Increased Proteobacteria, and Firmicutes populations and
decreased the Bacteroidetes population in the fecal
samples.

The IS induced disturbance of the gut microbiota composition, particularly
increased the pathogenic Proteobacteria population. Transplanting the feces of
mice exposed to IS into normal mice could induce colonic shortening, increase
myeloperoxidase activity, the expression of IL-1b, TNF-a, and IL-6, and NF-
kB+/CD11c+ cell population in the colon (112).

Mice CRS Increased relative abundance of inflammation-related
bacteria, including Helicobacter, Peptostreptococcaceae,
Streptococcus, and Enterococcus faecalis.

Increased abundance of specific inflammation-related bacteria activated the IL-
6/STAT3 signaling pathway, which facilitated the development of DSS-induced
colitis. This was abolished after antibiotic treatment (17).

Mice CSC CSC increased the relative abundance of Helicobacter
and Paraprevotella.

CSC exposure activated the host immune response toward Helicobacter and
Paraprevotella, increased the number of mesenteric lymph node cells, and
promoted the release of IFN-g and IL-6, which induced the progress of
spontaneous colitis or the deterioration of experimental colitis (113).

Mice CWAS In B6-Tcra−/− mice, exposure to CWAS increased the
level of the genus Clostridium.

Increased relative abundance of the genus Clostridium induced the increase in
production of the toxin, phospholipase C, which aggravate the colitis severity
(114, 115).

Mice and
Human

CRS In mice under CRS and UC with depression, the
abundance of Akkermansia muciniphila was significantly
decreased.

The decreased abundance of Akkermansia muciniphila accelerated the
microbial-mediated disruption of intestinal barrier function and colitis
aggravation (16).

Mice PNMS An increase in Desulfovibrio, Streptococcus, and
Enterococcus abundance and a decrease in
Bifidobacterium and Blautia abundance in 3-week-old
PNMS offspring. The sustained proliferation of
Desulfovibrio appeared from the weaning period to
adulthood.

PNMS inhibited the intestinal development of offspring by increasing the
abundance of pathogenic bacteria, especially causing the sustained excessive
proliferation of Desulfovibrio in the offspring, and eventually led to the
deterioration of colonic inflammation in adulthood (116).

Human PNMS Infants had significantly higher relative abundances
of Proteobacterial groups and lower relative abundances
of lactic acid bacteria and Bifidobacteria.

Proteobacterial groups contain pathogens, such as Escherichia and Enterobacter.
This aberrant colonization was related to infant gastrointestinal symptoms and
increased levels of inflammation in the gut (117).

Human/
Mice

Depression and
anxiety

Lower fecal microbial community richness and diversity,
with more Lactobacillales, Sellimonas, Streptococcus, and
Enterococcus but less Prevotella-9 and Lachnospira.

Depression/anxiety increased Streptococcus and Enterococcus but decreased
Prevotella-9 and Lachnospira. This disorganized gut microbiota caused immune
activation and elevated intestinal TNF-a, IL-6, and LPS levels (118).

Human/
Mice

Depression Depression increased the Enterococcaceae population in
IBD patients.

Depression increased the Enterococcaceae population, NF-kB+/Iba1+ cells,
expression of IL-1b and IL-6, in IBD patients, which cause more severe colitis
with a disrupted intestinal barrier, and accelerated the translocation of fecal LPS
into the blood (119).

Rat CUMS CUMS exposure decreased Prevotella-9 abundance and
the fecal SCFA level.

Reductions in the number of SCFA-producing bacteria, Prevotella-9, decreased
goblet cell numbers, and reduced level of the tight junction protein, occludin 1,
which disrupted the mucosal barrier integrity and augmented the expression of
inflammatory cytokines, IL-6 and IFN-g, further exacerbating intestinal
inflammation (120).
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RS, restraint stress; C. rodentium, Citrobacter rodentium; CSC, chronic subordinate colony housing; PNMS, prenatal maternal stress; LPS, lipopolysaccharide; SCFAs, short-chain fatty acids.
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cause of the chronic stress-aggravated colitis. Conversely,

antibiotic treatment eliminated the intestinal microbiota factor

and the difference between the stressed group and the non-

stressed group (17). Additionally, Clostridium perfringens and

Clostridium sordelli i are both pathogens producing

phospholipase C, a major virulence mediator. The abundance

of these bacteria was increased in water avoidance stress (WAS)-

treated mice, and both strains of bacteria have been associated

with colitis exacerbation (114, 115). These findings indicated

that the key target of chronic stress-induced intestinal

inflammation is intestinal microbiota (17, 113–115).

Researchers have also found that the change in microbial

flora induced by CRS results in insufficient intestinal mucosal

barrier-related protein, mucin-2, thus, disrupting the colonic

mucus and aggravating colitis in murine models, suggesting that

the microbial flora factor plays a synergetic role in damaging the

intestinal barrier (16, 17). More especially, researchers have

demonstrated that the population of Akkermansia muciniphila

(A. muciniphila) was obviously reduced in CRS mice and UC

patients with depressive symptoms. Remarkably, its abundance

changes were positively correlated with mucin-2 expression. The

administration of A. muciniphila could repair colonic mucus

layer and modify the gut microbiota. Their results suggest that A.

muciniphila plays a beneficial role in protecting the intestinal

mucosa in IBD patients with psychological disorders (16).

Interestingly, maternal stress during pregnancy also affects the

offspring. Prenatal maternal stress (PNMS) can increase the

abundance of pathogenic bacteria, especially proteobacterial

groups, and decrease the abundance of beneficial bacteria,

especially Bifidobacterium and Blautia, which has profound

pathological impacts on the infant’s immune system and

ultimately increases the susceptibility of adult mice offspring to

colitis (116, 117).

While much of the current understanding of the link

between stress and intestinal microbiome comes from animal

models (121, 122), many human and patient-related studies of

the brain–gut–microbiome axis are in progress (123–125). A few

clinical studies have also associated stress with microbiome

homeostasis and gastrointestinal health (118, 126, 127).

Studies have shown that the richness and diversity of the fecal

microbiome were dramatically reduced in IBD patients with

anxiety or depression compared to patients without anxiety or

depression (118, 126, 127). For patients with IBD in remission,

Humbel et al. found that psychological disorders were negatively

correlated with the abundance of Clostridia, Bacilli, Bacteroidia,

and b- and g-Proteobacteria. Although Proteobacteria is widely

considered as pathogenic bacteria, the population of b- and g-
Proteobacteria was generally reduced with increasing anxiety in

this study. Thus, the clinical trials with large samples are needed

to further confirm the validation of this questionable finding.

Psychological disorders have also been linked to a decrease in the

composition and richness of some bacteria such as

Lachnospiraceae, Fusobacteriaceae, Ruminococcaceae, and
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Veillonellaceae (127). Additionally, studies have demonstrated

that the relative abundance of Desulfovibrio in patients with UC

and Bifidobacterium in patients with CD is associated with

depression, whereas the abundance of Sutterella, RF 32, and

Lactococcus associated with patients’ QoL only among patients

with CD (127). For patients with active UC, a prospective study

of 240 Chinese patients has demonstrated that, in total, almost

50% of the patients had symptoms of anxiety or depression

(118). The researchers have found that patients with UC and

depression/anxiety (UCD/UCA) had more Lactobacillales,

Sellimonas, Streptococcus, and Enterococcus but less Prevotella

9 and Lachnospira than those with UC without depression or

anxiety (UCND/UCNA) (118). Correspondingly, the

researchers also found an obvious increase in the abundance

of the Enterococcus genus and a reduction in, among others,

Bifidobacterium, Roseburia, Lachnospiraceae/Lachnospira, and

Ruminococcus in IBD patients (119, 128, 129). From this point of

view, these studies also suggested that psychological stress

aggravating IBD might be related to the amplification of

intestinal pathogens and the decrease in the number of

beneficial bacteria. However, because the above-mentioned

research comprise cross-sectional observational studies of gut

microbiota, it remains to be clarified whether the observed

changes in the gut microbiome are a cause or a consequence

of IBD and psychological disorders, and a comprehensive

dissection of the interactions between the microbiota and the

host is needed. It is also necessary to use germ-free animal

models to verify the validity of the conclusions. A recent Fecal

microbiota transplantation (FMT) study has partially solved

these problems (126). The results of this study showed that

fecal transplantation in IBD patients with depression (IBD/D+-

F) caused more severe IBD-like colitis in specific pathogen-free

(SPF) recipient mice than in IBD patients without depression

(IBD/D−-F). Additionally, it should be noted that the

Enterococcaceae population was higher in IBD/D+-F than in

IBD/D−-F (126). Unfortunately, the study used the SPF mice

model rather than the germ-free mice model. Nevertheless, the

above-discussed studies suggest that the alterations of

the intestinal microbiota might be not only a vital factor in the

appearance of psychological symptoms but also a target of future

microbiota-modulating therapeutic strategies targeting at IBD

patients or IBD patients with psychological comorbidities.

In addition to the intestinal microbiota itself, the microbial

metabolites also participate in the pathogenesis of colitis. Short-

chain fatty acids (SCFAs), one of the important metabolites of

intestinal flora, play a major role in several physiological

processes, including the maintenance of the intestinal barrier,

the inhibition of opportunistic intestinal pathogen colonization,

and the regulation of the Th17/RORgt+ Treg cell balance (130,

131). A recent study of the animal model revealed that CUMS

causes a significant decline in the intestinal Prevotella-9 and

Alloprevotella abundance (120). Furthermore, clinical studies

also found that the relative abundance of Roseburia, the
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butyrate-producing bacterial strain, was negatively correlated

with depression in CD (127, 132). As mentioned above,

compared to UCND/UCNA, UCD/UCA had less Prevotella-9

and Lachnospira (118). Microbial dysbiosis and low abundance

of butyrate-producing bacteria, including Prevotella-9 and

Lachnospira, reduces butyrate levels in the intestine, lowers

intestinal epithelial tight junction protein expression, and

decreases the number of goblet cells, resulting in damage to

the barrier function of the mucosal layer and aggravating the

colonic inflammatory response (118, 120). Additionally, the

levels of a few metabolites, such as 2’-deoxy-D-ribose and L-

pipecolic acid, which were enriched in UCND/UCNA, were

decreased, accompanied by a reduction in immunoglobulin

proteins in UCD/UCA, implying that the two beneficial

metabolites might play a significant role in the host immune

response of UCD/UCA. Particularly, the prophylactic

administration of these metabolites could significantly alleviate

the depressive-like behaviors in mice with colitis and decrease

central and peripheral circulating inflammatory cytokine levels

(118). The above studies have strongly confirmed that stress can

induce alterations to the fecal microbiota and metabolites,

further aggravating intestinal inflammation. Interestingly, the

modulation of the intestinal microbiota changes stress

responses, further emphasizing the bidirectionality of the

brain–gut axis. FMT has become an attractive therapeutic

strategy (133). It has shown that the severity of anxiety,

depression and obsession in IBD patients decreased after FMT

(134). In a stress model that mimics social isolation, altering the

intestinal flora with the administration of rifaximin could reduce

stress responses and brain function deterioration (135). In

another repeated psychosocial stress model, SCFAs

supplementation alleviates increase in intestinal permeability

(136). Such findings were complemented by those of studies

assessing the protective effect of probiotics during stress. For

example, it has been demonstrated that treatment with

probiotics (i.e., Lactobacillus casei [LcS]) relieved stress-

induced abdominal dysfunction (137). Probiotic supplements

also may alleviate stress-induced colitis by suppressing gut

bacterial LPS and subsequently inhibiting the intestinal

inflammatory response (138).
IBD leads to anxiety- and
depression-like behavioral
comorbidities

Studies have shown that anxiety/depression-like behavior, as

-comorbidity, is likely to evolve into one of the main features of

IBD (139–141). Moreover, long-term follow-up of patients

found that patients who were clinically active at baseline but

had no symptoms of anxiety or depression at the start of the

study had a significantly higher risk of developing new-onset
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anxiety or depression symptoms (142). However, the pathologic

mechanisms by which intestinal inflammation induces cerebral

structural changes and, thus, lead to behavioral comorbidities

remain unclear. Based on gathered evidence, we proposed the

potential mechanism by which IBD leads to anxiety/

depression (Figure 2).

It has been shown that circulating pro-inflammatory

mediators in IBD patients might be the main culprits

promoting the development of CNS inflammation.

Consequently, increasing evidence indicates that mood

disorders are associated with altered inflammatory statuses in

the CNS (143–145). In some studies involving the use of

experimental colitis animal models, peripheral inflammation

elevated the levels of proinflammatory cytokines such as TNF-

a, IL-1b, and IL-6 in the hippocampus, cerebral cortex, and

hypothalamus (146–153). Furthermore, researchers have also

found the overexpression of TLR-4, phosphorylated-NF-kB p65,

myeloid differentiation primary response 88 (Myd88), and

NOD-like receptor protein 3 (NLRP3) in the hippocampi of

animals in IBD groups compared with control animals,

indicating the activation of the TLR4/NF-kB inflammatory

pathway and NLRP3 inflammasomes in the CNS (148, 153,

154). That evidence suggests that colitis could lead to CNS

inflammation, which culminates in the occurrence of

abnormal behavior in animals. Additionally, peripheral

inflammation also significantly increased inducible NO

synthase (iNOS) and nitrite levels in the hippocampus and

cerebral cortex, contributing to the occurrence of anxiety- and

depression-like behavioral comorbidities (151, 154, 155). For

example, compared with those in the control group, mice with

colitis showed longer-lasting immobility in the forced swimming

test (FST), and higher expression levels of pro-inflammatory

mediators (including TNF-a), iNOS expression, and nitrite

content in the hippocampus. However, when NOS inhibitors

were used to prevent iNOS and nitrite production, mice with

colitis had a shorter rest time in FST, lower TNF-a and nitrite

levels in the hippocampus, and reduced inflammatory injury in

the hippocampal region (155).

Hence, the crucial mechanism by which peripheral

inflammation contributes to the progression of several CNS

disorders remains unknown. Other studies demonstrated that

colitis can increase the amounts of bacteria-derived toxic

byproducts (LPS), pro-inflammatory cytokines (including

TNF-a, IL-1b and IL-6), and gut leak (126, 153, 156).

Moreover, the expression levels of tight junction proteins,

including ZO-1, occludin, and zonulin, were significantly

decreased in the cerebral tissues of experimental animals with

colitis (153, 156, 157). These findings have confirmed that colitis

can cause endothelial damage to the BBB. Furthermore, a broken

BBB is beneficial in translocating circulating proinflammatory

mediators into cerebral tissue, leading to the inflammatory

response in the CNS and affecting neuroglial networks and

activated microglial cells that further exacerbate the
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inflammatory response in the CNS (145). Additionally, activated

microglial cells can impair the proliferation and differentiation

of hippocampal progenitor cells by producing serotonin-

depleting enzymes and mediators, and consequently,

promoting neurodegeneration, which is associated with the

pathophysiology of depression-like behaviors (158, 159).

More recently, new mechanisms leading to these behavioral

comorbidities in IBD have been proposed. Carloni et al. (160)

described a vascular barrier existing in the brain choroid plexus

(PVB), which is able to respond to intestinal inflammation

through bacteria-derived LPS. An in vitro experimental model

of choroid plexus endothelial cells has shown that PVB closure is

associated with short-term memory and mental deficits.

Speculation that the dysfunction of the gut-brain vascular axis

might be a factor worthy of attention leading to IBD-related

psychiatric comorbidities. Additionally, Chen et al. (161)

reported that IBD-related psychological disorders could be

related to the activation of the kynurenine pathway (KP) due

to chronic inflammation. After the activation of KP, excessive

neurotoxic quinolinic acid and less neuroprotective kynerunic

acid were produced in cerebral tissue, ultimately resulting in

inflammation-induced depression.

Understanding the mechanisms of how IBD leads to

psychiatric comorbidities and exploring the causal relationship

between these comorbidities and IBD are important for the

prevention, treatment, and prognosis of IBD. Although the

current studies are mostly limited to animal models, many of

the findings provide valuable clues to clarify the potential link

between IBD and anxiety- and depression-like behaviors in

humans. With the development of functional brain imaging

technology that can monitor the changes in brain signaling and

morphology, the mechanism of the brain–gut bidirectional

communications and novel avenues for intervention can be

further clarified.
Application of neuroimaging studies
in evaluating the possible
neuromechanisms of IBD

Brain–gut interactions may be able to explain the increased

prevalence of psychiatric symptoms in IBD, however, studies on

the pathological changes in the brain caused by IBD remain

equivocal. In recent years, functional brain imaging mainly

including positron emission tomography (PET) and functional

magnetic resonance imaging (fMRI), has enabled in vivo

analyses of the interactions and neurological mechanisms

between the brain and digestive tract, advancing the scientific

understanding of this relationship. Compared with PET, fMRI is

non-invasive, safer and easier to operate. Therefore, it is

more widely used to image changes in brain function in

IBD (162–165).
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Agostini et al. (166) used fMRI to investigate the neural

emotional changes in UC patients in remission versus healthy

controls. They found that patients with UC manifest a decrease

in sensitivity to positive emotions of joy and well-being.

Because all patients enrolled in their study were in remission,

the emotional dysfunction was not strictly associated with

current inflammatory activity. Nevertheless, their findings

represent a preliminary but interesting result that might

reveal novel avenues for the study of the brain–gut axis and

for understanding the relationship between mood and

intestinal chronic inflammation (166). More recently,

research has found that changes in gray matter volume

(GMV) in regions, such as the insula, pregenual anterior

cingulated cortex, thalamus, amygdala, supplementary motor

area, periaqueductal gray, hypothalamus, and precentral gyrus,

which were involved in visceral sensory pathways, were more

commonly observed in UC patients using structural MRI than

in healthy controls. Meanwhile, compared to patients with UC

in remission, those in the active phase have a much greater

chance of developing GMV changes, thus, the researchers

claimed that changes in the brain could be partially

connected with the clinical stage in patients with UC (167).

Interestingly, multimodal brain MRI analysis has shown that

behavioral symptoms are strongly associated with structural

and functional changes in deep gray matter that modulate

emotional, cognitive, and stress responses in IBD patients.

Compared to healthy controls, the patients with UC or CD

exhibi ted the increased volumes of amygdale and

hypothalamus, the neurodegeneration of putamen and

pallidum, and significantly increased activity and functional

connectivity (FC) in cognitive and emotional processing brain

regions, including the hypothalamus, basal ganglia, and limbic

system. Particularly, an increase in the volume of the thalamus

can reflect an exacerbated inflammatory state in the brain.

Meanwhile, the researchers also found that the hippocampal

nerve activity is increased with IBD in the active phase

compared with those in remission (168). Additionally, a

dynamic brain functional connectome analysis using fMRI

has revealed medial prefrontal cortex dysfunction, which is

involved in the deterioration of depression and anxiety in

patients with UC (169). Those studies provide a promising

perspective and convincing neuroimaging evidence of potential

neuromechanisms of UC.

fMRI can also be used to provide additional information

about changes in the brain structure of CD patients. CD patients

display altered grey matter structures and grey matter structural

connectome, which just to a certain extent gives the reason why

these patients showed higher levels of anxiety and depression

(163, 170). Stress-induced hyperactivity has been found in

particular brain regions of CD patients, including the

amygdala and midcingulate cortex (171, 172). These

alterations might represent a disruption of the brain–gut axis

connection that could predispose IBD patients to psychological
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comorbidities and need to be considered during treatment. It is

worthnoting that recent studies have focused on brain functional

alterations in CD patients during the resting-state (173–177).

Compared to healthy controls, fMRI analysis demonstrated that

the CD patients during the resting-state of brain show the altered

FC of pre-frontal cortex by increasing FC between the cognitive

control and salience network and decreasing within the default

mode network (174). The findings of another fMRI analysis

explored the aberrant FC of the amygdala with the multiple

regions, including and insula, parahippocampus, as well as

anterior middle cingulate cortex/dorsal anterior cingulate

cortex (173). Additonally, a recent meta-analysis study for the

existing neuroimaging data indicated that, compared to healthy

controls, patients with CD during the resting-state of brain had

decreased FC in the paracentral lobule and cingulated gyrus as

well as reduced GMV in the medial frontal gyrus (175). These

brain functional alterations suggested that the aberrant FC may

be associated with high sensitivity in negative emotion and

reduced inhibition on processing of visceral pain and

sensation in CD patients during the resting-state of brain.

Excitingly, it has indicated that the improved cognitive deficits

in major depressive disorder were linked to alterations in limbic

(amygdala) function following anti-TNF-a treatment (178).

Thus, the urgent issues should investigate not only potential

network alterations during different CD states especially the

period of active disease and even after treatment but also

combine various neuroimaging and psychometric approaches

to clarify how these respective alterations are related to

each other.

Although a growing number of neuroimaging studies have

shown significant neurological changes in IBD, small sample

sizes and cross-sectional studies might undermine the credibility

of these results. Furthermore, since UC and CD respectively

share distinct pathological features, it is unclear whether such

distinct pathological features lead to different neuroanatomical

changes. Therefore, future studies should examine more patients

with CD and UC to determine whether there are significant

neurological differences between the two specific diseases.

Additionally, to determine whether brain structural alterations

correlate with disease activity, researchers should include

patients with different disease states to investigate separately in

a longitudinal design.
Psychotherapy and antidepressants
for patients with IBD

Recent research findings have suggested that psychological

interventions can improve the treatment effect of gastrointestinal

diseases, which will improve the QoL of patients (179–184).

Among a variety of psychological interventions, cognitive

behavioral therapy (CBT) is recognized as the most effective
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psychotherapy for managing IBD, which can reduce the rate of

psychological disorder and improve QoL in IBD patients (185–

189). Furthermore, in a benchmarking study, CBT not only

significantly reduced scores of anxiety and low mood and

significantly increased sores of QoL but also decreased disease

activity in the specific group of IBD patients who also had

anxiety and low mood (186). Similarly, treatment with CBT has

been associated with a significantly greater improvement in the

depressive severity in the overall sample of young people with

depression and CD and correlated with a significantly greater

improvement in the pediatric CD activity in the subset with

active IBD (190). Additionally, a randomized trial indicated that

multicomponent CBT (MCBT) is highly effective in alleviating

low mood and improving QoL in stress-prone IBD patients.

Noticeably, this program could effectively reduce the relapse rate

of patients; however, no differences in disease activity indexes

were found (191). As far as the current study is concerned, a

recent systematic review has claimed that the positive effects of

CBT on improving the psychological status of IBD patients are

not long-lasting, and there is insufficient evidence that CBT

improves disease activity or reduces inflammation levels (192).

Mindfulness-based interventions (MBIs), which primarily

manifest as attention to one’s physical sensations, thoughts, and

emotions, have also been shown to have a positive impact on

relieving stress levels and improving QoL in IBD patients (193–

196). For example, patients with inactive UC demonstrated

significantly lower stress and higher QoL after mindfulness-

based stress reduction treatment (197). Recently, a randomized

controlled trial has also demonstrated that MBIs had a positive

impact on alleviating psychological disorders, fatigue, and

improving the QoL of patients with CD. Particularly, CD

patients with severe baseline psychological symptoms were the

greatest beneficiaries of MBIs (198). Additionally, some studies

have indicated that MBIs likely represented a promising

intervention to reduce inflammation in IBD patients because

MBIs could effectively decrease the levels of mucosal

inflammatory biomarkers, including IL-6, fecal calprotectin,

and CRP levels (194, 196, 198). Thus far, limited support is

available for the effects of MBI on disease-related and

physiologic outcomes. Therefore, future studies should pay

more attention to the clarification of the physiological effects

of MBIs on IBD, and find reliable physiological indicators to

evaluate its effects.

Currently, various types of psychotherapy interventions–,

such as gut-directed hypnotherapy, participation in the breath-

body-mind workshop, advanced combination treatment,

specialized educational and psychological counseling, and

acceptance and commitment therapy–, are available (184, 199–

202). The effectiveness of these psychological interventions for

managing IBD is also being studied; however, there is still a

paucity of trial evidence of efficacy for most of them. For

example, it is not certain that hypnotherapy can relieve IBD
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symptoms and prolong the remission period during UC (203,

204). Although the effect of psychological therapy on IBD is

controversial, 30%–50% of- IBD patients with reduced QoL are

expected to receive complementary psychological interventions

(205, 206). Additionally, it has been demonstrated that patients

with active disease, especially during a flare, have higher anxiety/

depression and lower QoL scores and appear to benefit more

from psychotherapy than those in remission (207, 208).

Therefore, more high-quality studies are needed to design

personalized psychotherapy whose early intervention would

improve coping strategies and QoL scores for IBD patients in

the future.

Accompanied by psychotherapy, antidepressants have been

considered as potential adjunctive treatments for IBD with

psychological comorbidities. Firstly, some studies have

indicated that antidepressants such as Tianeptine and

Duloxetine have positive influence on the improvement of

severity of psychological and physical symptoms of patients

wi th IBD (209) . Fur thermore , i t has shown that

antidepressants can help mitigate coexisting functional

gastrointestinal symptoms in IBD. Some studies have

demonstrated that Tricyclic antidepressants (TCAs) have

efficacy in treating residual gastrointestinal symptoms and

slowing colonic transit in IBD patients (210, 211). Excitingly,

antidepressants may also have a positive effect on the

inflammatory state of IBD. In animal models of IBD, both

desipramine and fluoxetine significantly attenuated colonic

pathological damage and lowered serum concentrations of

TNF-a and IL-1b (212, 213). Several human trials have

observed that antidepressant fluoxetine show modest effects on

immune functions (214), and antidepressants tianeptine and

duloxetine can significantly improve the disease activity (209).

Additionally, antidepressants might relieve chronic pain during

remission and improve impaired sleep quality in patients with

IBD (215, 216).

Antidepressants may be beneficial in the treatment of IBD,

however, the evidence supporting this conclusion is insufficient, the

quality of the evidence is very low to moderate and requires further

investigation. Limited preliminary studies has shown the potential

of antidepressants for IBD, which needs to be validated by a large

number of well-designed clinical randomizedcontrolledtrial (RCT)

trials with a longer follow-up in the future. Although no major

adverse events have been reported with antidepressants for IBD,

there is a potential risk of gastrointestinal-specific adverse effects,

especially when more than one antidepressant is used (214, 217). At

present, it is not clear which class or specific drug might be the most

effective for patients with IBD alone or for those with psychological

comorbidities (218). Despite the studies in this area is still deficient,

accumulating evidence suggests that antidepressant treatments have

the potential to mitigate the risk of IBD, ameliorate mental health

and QoL in some IBD patients, and alter the natural history of the

disease (219–221).
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Conclusion

Chronic psychological stress accelerates IBD progression by

affecting the neuroendocrine-immune regulatory network and

disturbing intestinal mucosal immunity and microbiome

homeostasis. Of note, IBD might also lead to anxiety- and

depression-like behavioral comorbidities by over-activating

brain immune regulation. Thus, there is clear bidirectionality

of the brain–gut axis in IBD and psychological stress. Brain–gut

interactions could explain the increased prevalence of

psychological disorders in IBD patients; however, the

pathological changes in the cerebral structures in IBD patients

cannot be ignored. Functional brain imaging is a valuable

method of investigating the possible neuromechanisms of IBD

underlying visceral disturbances. Current findings have

suggested that IBD might have a negative impact on cerebral

structure networks that manifest as widespread neuroanatomical

changes associated with stress. A deeper study of brain structural

networks in IBD patients will help us develop adjuvant therapies

to treat extraintestinal comorbid conditions, such as depression

or anxiety.

Although we are now starting to understand the

underlying mechanism of the link between psychological

stress and IBD, we do not know how often psychological

disorders co-occur with IBD, nor do we know the causal

relationship between them. Despite the current study is

limited, fortunately microbiome manipulations by using

fecal microbiota transplantation or administration of

microbial metabolites or probiotics can target specific

pathways in IBD pathogenesis and promise to play a crucial

role in the treatment of IBD and its concomitant psychiatric

disorders. The development of microbiota-targeted treatment

strategies will change the disease course and improve the

mental health and QoL of patients with IBD (133, 134, 136,

138 , 222 , 223 ) . Fu the rmore , p sycho the rapy and

antidepressants have also become promising areas. Until

now there i s not enough ev idence to prove tha t

psychotherapy and antidepressants are effective, however,

the early intervention of the designed personalized

psychotherapy and appropriate use of antidepressants will

be expected to improve coping strategies and QoL scores for

IBD patients in the future. Additonally, current studies have

also largely relied on murine models, and validation using

other advanced preclinical IBD models and IBD patients is

needed. Comprehensive clinical studies with large sample sizes

combined with more high-quality research are needed to

create personalized treatment strategies for IBD patients. In

conclusion, there is increasing evidence that the brain–gut axis

regulates disease progression.Translating these discoveries

into psychoneuroimmunology will be essential for clarifying

the pathological mechanism of IBD with psychological

comorbidities and designing clinical treatment protocols.
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