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Non-small cell lung cancer (NSCLC) is one of the most common malignancies
worldwide. The development of high-throughput single-cell RNA-sequencing (RNA-
seq) technology and the advent of multi-omics have provided a solid basis for a
systematic understanding of the heterogeneity in cancers. Although numerous studies
have revealed the molecular features of NSCLC, it is important to identify and validate the
molecular biomarkers related to specific NSCLC phenotypes at single-cell resolution. In
this study, we analyzed and validated single-cell RNA-seq data by integrating multi-level
omics data to identify key metabolic features and prognostic biomarkers in NSCLC.
High-throughput single-cell RNA-seq data, including 4887 cellular gene expression
profiles from NSCLC tissues, were analyzed. After pre-processing, the cells were
clustered into 12 clusters using the t-SNE clustering algorithm, and the cell types
were defined according to the marker genes. Malignant epithelial cells exhibit individual
differences in molecular features and intra-tissue metabolic heterogeneity. We found
that oxidative phosphorylation (OXPHOS) and glycolytic pathway activity are major
contributors to intra-tissue metabolic heterogeneity of malignant epithelial cells and T
cells. Furthermore, we constructed T-cell differentiation trajectories and identified several
key genes that regulate the cellular phenotype. By screening for genes associated with
T-cell differentiation using the Lasso algorithm and Cox risk regression, we identified
four prognostic marker genes for NSCLC. In summary, our study revealed metabolic
features and prognostic markers of NSCLC at single-cell resolution, which provides
novel findings on molecular biomarkers and signatures of cancers.

Keywords: omics data integration, single cell sequencing, prognostic biomarkers, NSCLC, cellular phenotypes

INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths worldwide (Torre et al., 2015). Non-
small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are the two classic histological
subtypes of lung cancer. SCLC generally occurs in people of advanced age with a history of heavy
smoking and accounts for approximately 15% of lung cancer cases (van Meerbeeck et al., 2011).
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NSCLC represents the remaining 85% of lung cancers and
contains two main histological subtypes: lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) (Goldstraw
et al., 2011). Since NSCLC has a wide range of genomic
variation (Cancer Genome Atlas Research Network, 2014), it
can respond better to immune checkpoint blockade (Rizvi et al.,
2015), although there are exceptions (Topalian et al., 2016).
With the development of single-cell sequencing technology, there
is an increasing number of studies on identifying molecular
features in the tumor microenvironment (TME) of NSCLC (Guo
et al., 2018; Kim et al., 2020). However, there has been no
significant improvement in the treatment of NSCLC. Therefore,
it is necessary to explore the molecular features and prognostic
markers of malignant cells at single-cell resolution.

During tumor tissue deterioration, cancer cells are
reprogrammed by physiological mechanisms, including
metabolic reprogramming, to support the demand for energy,
biomass, and cellular communication (DeBerardinis and
Chandel, 2016). Cell metabolism is influenced by genetic and
environmental factors, including mutations that determine
the direction of cell evolution, nutrients, and tissue origin
(Boroughs and DeBerardinis, 2015; Pavlova and Thompson,
2016). The metabolic activity of cells is determined by
the concentration of metabolically relevant molecules and
biomolecule conversion rate, but these indicators are difficult to
measure. Therefore, it is necessary to evaluate the expression of
metabolic genes to indirectly determine the metabolic activity of
cells (Puram et al., 2017).

The tumor tissue microenvironment (TME) is composed
of malignant cells, fibroblasts, immune cells, and many other
stromal cells (Bian et al., 2019). Each cell type plays an
active role in tumor proliferation and metastasis. For example,
cancer-associated fibroblasts (CAFs) assist in the invasion of
tumor cells (Belle and DeNardo, 2019). Due to the different
functions of each cell type, they all have specific metabolic
requirements. Not only does each cell type have specific
metabolic activities, but at the cellular level, each cell also
has specific metabolic activities depending on its environment
and evolutionary direction (Sottoriva et al., 2015; Reina-
Campos et al., 2017; Reznik et al., 2018). Most conclusions
about the metabolic features of the TME are derived from
in vitro experiments (Carmona-Fontaine et al., 2017; Liu
et al., 2018) or univariate measurements of metabolic enzyme
expression (Miller et al., 2017), but these studies modify the
TME to some extent.

The lymphocyte lineage is an important component of
the TME, which has become a popular area in cancer
immunotherapy. Cancer immunotherapy shows individual
differences in the treatment of NSCLC (Topalian et al., 2012;
Hellmann et al., 2019), which depends, in part, on the amount
and properties of tumor-infiltrating lymphocytes (Rizvi et al.,
2015; Huang et al., 2017). CD8+ and CD4+ T cells, as two
subtypes of T cells, play an important role in the anti-tumor
process. Although studies have pointed out a positive correlation
between elevated CD8+ T cells and a good prognosis of
cancer (Maimela et al., 2019), the mechanism that drives T-cell
differentiation is unclear.

In this study, we explored the expression profiles of 4887 cells
from the tumor tissues of four patients with NSCLC to identify
the metabolic features of malignant cells and mechanisms that
drive T-cell differentiation at the single-cell level, as well as to
discover new therapeutic targets and prognostic markers.

MATERIALS AND METHODS

Data Collection and Pre-processing
Single-cell RNA-seq profiles for NSCLC were collected from
the Gene Expression Omnibus [GEO (Barrett et al., 2013); 1]
under accession number GSE117570. The profiles were derived
from four tumor and four paracancerous tissue samples from
four patients with NSCLC. To reveal the metabolic and immune
features of NSCLC and identify therapeutic targets, four tumor
samples containing 4,887 cells were used in this study. Fifteen
low-quality cells were filtered out through quality control, leaving
4,872 cells. A gene was selected if it was expressed in at least
3 cells. The ineligible genes were filtered out, and 10,050 genes
were retained for analysis. Considering the sequencing depth
of these tumor samples, the Scran algorithm (Lun et al., 2016)
was used to standardize the count data. The gene sets of
the metabolic pathway were downloaded from the Molecular
Signatures Database [MSigDB (Liberzon et al., 2011), 2)]. Bulk
RNA-seq profiles and clinical data of LUAD and LUSC belonging
to NSCLC were collected from The Cancer Genome Atlas
(Angelin et al., 2017) (TCGA, 3). Moreover, the microarray
sequencing data and survival data of the GSE3141 and GSE42127
datasets were obtained from the GEO database for the verification
of prognostic markers. Information on all the samples used in this
study is given in Supplementary Table 1.

Dimensionality Reduction and Clustering
of Cells
The preprocessed gene expression matrix and cell annotation
information were encapsulated using the R package Seurat
(version 3.2.2) (Satija et al., 2015). The top 3000 variant genes
calculated by the standard deviation (SD) algorithm were used
for principal component analysis (PCA). We adopt the strategy of
using the least number of principal components to explain more
data information (Butler et al., 2018). Thus, the top 16 principal
components were manually selected for cell clustering analysis
using the t-SNE algorithm. Marker genes of specific cell types in
NSCLC tissues collected from published literature (Song et al.,
2019) and CellMarker (Zhang et al., 2019b)4 database were used
to define cell clusters.

Metabolic Reprogramming Analysis of
Malignant Cells
Due to the different origins and environments of malignant
cells, specific malignant cell clusters may have unique metabolic

1https://www.ncbi.nlm.nih.gov/gds
2http://www.broadinstitute.org/msigdb
3https://portal.gdc.cancer.gov/
4http://biocc.hrbmu.edu.cn/CellMarker/
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mechanisms. The weighted relative pathway activity algorithm
(Xiao et al., 2019) was used to evaluate specific metabolic features
among specific malignant cell clusters. In this algorithm, the
relative expression level of metabolic genes in each cell cluster
was defined as the ratio of the mean expression value of cells
in a specific cluster to the mean expression value of all cells.
Furthermore, the activity score of a pathway of specific cell
types was the weighted average of the relative expression of all
genes in this pathway. Most importantly, weighting factors, the
reciprocal of the number of pathways that include a certain gene,
were used to eliminate commonalities between various metabolic
pathways. Genes with low expression levels or high deletion
rates in the pathway were also deleted to avoid the pathway
activity score being affected by these factors. Cell type labels were
randomly swapped 5000 times to construct a null distribution
of pathway activity scores, which were used to examine the
statistical significance of metabolic pathway activity scores in
each cell cluster. For each pathway score, a p-value was calculated
to assess whether the activity of the pathway was significantly
higher or lower than the average.

Evaluation of Intra-Tissue Metabolism
Heterogeneity
The SD of each metabolic gene expression in malignant
cell expression profiles, which reflects the variability of each
metabolic gene in malignant cells, was calculated. Furthermore,
genes were sorted in descending order according to their SD, and
gene set enrichment analysis (GSEA) (Subramanian et al., 2005)
was used to identify metabolic pathways enriched in metabolic
genes with the highest variability using the R package fgsea
(version 1.14.0).

Evaluation of Developmental Trajectory
of T Cells
Based on the definition of various T-cell characteristics in
previous studies (O’Shea and Paul, 2010; Michalek et al.,
2011), CD4+ (Th/Treg) T cells and CD8+ T cells were
distinguished from the original T-cell clusters. For these T-cell
types, pseudo-time developmental trajectories were constructed
by monocle (Qiu et al., 2017) (version: 2.16.0), which is an
algorithm that describes multiple fate decisions in a completely
unsupervised manner using the reverse graph embedding
method. Multiple branches and nodes were observed throughout
the developmental trajectory, and cells on the same branch were
considered to have the same state.

Construction of Transcriptional
Regulatory Network
The count of biomolecules varies during T-cell development.
Pearson correlation analysis was used to explore genes related to
the development of T cells. The correlation coefficients of genes
with the developmental processes of CD4+ and CD8+ T cells
was evaluated. Genes with Pearson’s correlation coefficient | R|
> 0.2 (Shin et al., 2015) and p-value < 0.05, were defined as genes
associated with T-cell development, including those associated
with the development of CD4+ and CD8+ T cells. To explore

the effects of these genes on the development of T cells and their
transcriptional regulatory relationships, functional enrichment
analysis was conducted, and a transcriptional regulatory network
was constructed. The R package clusterProfiler (version 3.16.1)
(Yu et al., 2012) was used to examine the enrichment of genes
positive related to T-cell development in Gene Ontology (GO)
(The Gene Ontology Consortium, 2019) function nodes and
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
et al., 2017) pathways. Human transcription factor data were
collected from the AnimalTFDB (Hu et al., 2019) 3.0 database5.
Data for the relationship between transcription factors and their
target gene regulation were collected from TRRUST (Han et al.,
2018)6 and ORTI (Vafaee et al., 2016)7 databases.

Construction of Survival Prediction
Model Based on Critical Factors
The lasso algorithm was used to screen for critical genes from the
identified T-cell development-related genes, which are associated
with the overall survival (OS) of patients with LUAD. Based
on these critical factors, a multivariate Cox regression model
was constructed, and the significance indicator for each gene
was calculated. Furthermore, to predict the OS of patients with
LUSC, the critical genes with a p-value < 0.05 were retained
to establish a risk prediction model and nomogram for survival
analysis. The reliability of this risk prediction model was depicted
by the receiver operating characteristic (ROC) curve, and the area
under the curve (AUC) was also calculated. Furthermore, the
prognostic markers and regression coefficients obtained from the
multivariate Cox regression model were used to construct a risk
score model. The samples were divided into high-risk and low-
risk groups based on the median risk score calculated by the risk
score model, and Kaplan-Meier survival analysis was performed
to study the difference in OS between these two groups using the
bilateral logarithmic rank test. These prognostic marker genes
used in the risk score model of LUAD were also connected to
other NSCLC survival data.

RESULTS

Individual Differences in Malignant
Transformation of Tumor
We used a calculational pipeline to analyze the gene expression
profile of NSCLC at the single-cell level (Figure 1A). After
quality control and normalization, gene expression profiles of
4872 cells from tumors of 4 patients with NSCLC were used
for subsequent analysis. All cells were divided into 12 clusters
according to the t-SNE clustering algorithm (Figure 1B). We
annotated the cell types of the 12 cell clusters spanning malignant
epithelial cells (0, 7, 8, and 9 clusters marked by EPCAM and
KRT18/19), macrophages (1, 3, and 4 clusters marked by MSR1,
CD68, and MARCO), T cells (2 clusters marked by CD7, BATF,
PPP1R2, and PPP2R5C), stromal cells (5 clusters marked by

5http://bioinfo.life.hust.edu.cn/AnimalTFDB/
6https://www.grnpedia.org/trrust/
7http://orti.sydney.edu.au/about.html
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FIGURE 1 | The cellular landscape of non-small cell lung cancer (NSCLC). (A) Workflow diagram representing the pipeline for scRNA-seq data analysis. (B) Tumor
cells were clustered by the t-SNE clustering algorithm into 12 clusters with a specific color marker. (C) Heatmap of differentially expressed genes in each cluster.
Expression levels of the top 30 genes (rows) that are differentially expressed in each cluster (column). Marker genes in each cluster were annotated. (D) Bar plot of
the origin of the cells in each cell type. The horizontal axis is the 12 cell types, and the vertical axis is the proportion of cells. (E) Distribution of IL7 gene expression in
all tumor cells. The higher the gene expression, the darker the color. (F) Same as in (E) but for the distribution of gene CD7.

CASP and GSTA1), B cells (6 clusters marked by IGKC, IGHA1,
IGHG1, and IGHM), endothelial cells (10 and 11 clusters marked
by IGFBP7, TCF4, KLF9, and ITGB1) (Figures 1B,C). We
found 4 clusters of malignant epithelial cells corresponding
to their tumors of origin (i.e., from which tumor the cell was
derived) and 8 clusters of other stromal cells also corresponding
to their tumors of origin, suggesting that NSCLC tissues have
obvious individual differences (Figures 1B,D). The first patient
(patient_1) had a significantly higher proportion of T and B cells

compared to the other three patients (Figure 1D), suggesting that
patient_1 may be more suitable for immune-targeted therapy.
The results of the following studies support our inference. We
found significantly high expression of IL7R and CD7 genes in
T cells (Figures 1E,F). Signaling pathways mediated by IL7R
are critical for T-cell development and homeostasis in vivo,
and aberrant IL7R activation was strongly associated with
the development of human T-cell leukemogenesis (Zenatti
et al., 2011; Yasunaga, 2020). Blocking the expression of
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CD7, an immune transmembrane protein, is beneficial in the
treatment of T-cell malignancies (Gomes-Silva et al., 2017;
Png et al., 2017). These findings suggest that individual
differences in NSCLC uncovered at single-cell resolution
are critical for the development of precision medicine.

Intra-Tissue Metabolic Heterogeneity of
Malignant Cells
During the malignant transformation of the tumor, the metabolic
processes of each cell are influenced by the microenvironment,
including nutrient concentrations and interactions with other
cells in the same space. Therefore, it is intriguing to investigate
the metabolic features of malignant cell clusters and the
microenvironmental factors that contribute to the intra-tissue
metabolic differences. For malignant epithelial cell clusters
from four patients, we re-clustered the cells according to their
metabolic gene expression profiles. The original 4 clusters of
malignant cells were re-clustered into 9 clusters (Supplementary
Figure 1) 2 clusters from patient 1, 3 clusters from patient 2,
1 cluster from patient 3, and 3 clusters from patient 4. We
also separately re-clustered epithelial cells based on the origin of
tumor tissue; the cells were clustered into 9 clusters that were
similar to the above clustering results (Figure 2A), indicating
the individual differences of malignant epithelial cells and the
stability of the subtype. Furthermore, the weighted pathway
activity score algorithm was used to measure the relative activity
of the metabolic pathways of these 9 clusters. Among the 85
metabolic pathways, 58 pathways containing at least 5 genes
had significantly upregulated activity scores (pathway activity
score >1 and permutation test p-value < 0.01) in at least
one cell cluster compared to other cell clusters (Figure 2B).
Malignant cell clusters in patient 3 (p3_0) had the highest number
of significantly upregulated metabolic pathways (36 pathways
upregulated in p3_0 compared to 30 in p4_2, 22 in p4_0, 21
in p1_0, and <10 in other clusters; Supplementary Table 2),
which included many different parts of cellular metabolism,
such as glycolysis, oxidative phosphorylation (OXPHOS), and the
pentose phosphate pathway (Figure 2B). We found significant
differences between the metabolic pathway activity scores of
malignant cell clusters in patients 1–3 (Figures 2C–E), suggesting
that the activity of metabolic pathways is determined by tumor
origin. Although patient 3, cluster 2 of patient 4, and cluster
0 of patient 1 had more upregulated metabolic pathways
compared with other clusters, their activity scores demonstrated
a poor correlation (Figure 2F), indicating specific metabolic
reprogramming between tumors.

Next, we identified the microenvironmental factors that
contribute to the intra-tissue metabolic heterogeneity. We
performed GSEA to identify metabolic pathways enriched in
genes explaining most of the variation among the malignant
cells of each tumor cluster. We found that OXPHOS was
the top-scoring pathway in most tumor clusters (Figure 2G).
Similarly, glycolysis also made a major contribution to the
metabolic heterogeneity of several tumor clusters, indicating that
energy metabolic factors (mitochondrial activity) are important
contributors to intra-tissue metabolic heterogeneity.

Metabolic Features During T-Cell
Differentiation
In the TME, immune cells that differentiate into subtypes with
distinct roles constitute an important component. Next, we used
single-cell RNA-seq profile to characterize the developmental
trajectory and metabolic features of T cells, which constitute the
major immune cell population. According to previous studies
on T cells, T cells were first separated into CD4+ and CD8+
subtypes based on the expression of the cell-surface markers CD4
and CD8A (O’Shea and Paul, 2010) (Figure 3A). CD4+ T cells
were further differentiated into regulatory T cells (Tregs) and T
helper cells (Ths) based on the expression of FOXP3 and CD25
(Michalek et al., 2011) (Figure 3A). We defined T cells with
CD8A expression less than 1 and CD4 expression more than 1
as CD4+ T cells (45 CD4+ T cells), and cells with the opposite
expression status were defined as CD8+ T cells (60 CD8+ T
cells; Figure 3B; Supplementary Figure 2). Furthermore, CD4+
T cells with a sum of FOXP3 and CD25 expression higher than
2 were identified as Tregs (7 Tregs), and those cells that did
not express FOXP3 and CD25 were defined as Ths (26 Ths;
Figure 3B; Supplementary Figure 2). The R package monocle
was then used to emulate the pseudo-developmental trajectory
of the T-cell subpopulations. Three branches (defined as “B1,”
“B2,” and “B3”) were found in the developmental trajectory of
T cells, which were divided into three states (Figure 3C). Based
on the visualization results, CD4+ T cells, including Tregs and
Ths, were mainly concentrated on state 2 and CD8+ T cells were
mainly concentrated on state 3 (Figure 3D). Based on the above
information, we concluded that the cell development from B1
through branch point 1 to state 3 correspond to the conversion
of T cells to CD4+ T cells, and the cell development from B1
through branch point 1 to state 2 correspond to the conversion of
T cells to CD8+T cells. We identified multiple branch-dependent
genes for branching point 1 (p < 0.01), which were closely
associated with T-cell differentiation (Figure 3E).

T-cell differentiation was accompanied by reprogramming
of metabolic pathways to satisfy the physiological demands
of the new cellular state (DeBerardinis and Chandel, 2016;
Xiao et al., 2019). We then performed GSEA analysis to
identify metabolic pathways enriched in highly variable genes
of each subtype. We found that OXPHOS and glycolysis had
the top normalized functional enrichment scores (NESs) in
CD4+ T and CD8+ T cells, suggesting that mitochondrial
activity is also a major contributor to metabolic heterogeneity
among T cells (Figure 3F). Glutathione metabolism and purine
metabolism were found to be important metabolic pathways
that distinguished the T-cell subtypes (Figure 3F). Interestingly,
OXPHOS and glycolysis also had the highest NES in Tregs and
Ths cells (Figure 3G). We found that the rates of glycolysis were
upregulated in Tregs compared to Ths cells (Supplementary
Figure 3), which seems to contradict previous studies showing
that Ths are more susceptible to glycolysis than Tregs derived
from healthy mice without tumors (Michalek et al., 2011). In
contrast, the preference for OXPHOS in Tregs was consistent
with previous studies (Ma et al., 2016; Angelin et al., 2017; Buck
et al., 2017), highlighting that enhanced mitochondrial oxidative
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FIGURE 2 | Metabolic features of malignant epithelial cells. (A) Four clusters of malignant epithelial cells originating from four patients with non-small cell lung cancer
(NSCLC) were individually re-clustered using t-SNE. (B) Metabolic pathway activity in each cell cluster. Values with statistically non-significant pathway activity
(random permutation test, p > 0.05) were shown as blank. (C–E) Boxplot of pathway activity scores of malignant cell clusters originating from patients 1, 2, and 4.
(F) Correlation of each malignant cell cluster in metabolic pathway activity scores. Additionally, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. (G) Enrichment results of
metabolic pathways in variant genes using gene set enrichment analysis (GSEA). The size of the bubbles represents statistical significance and the shade of the color
represents the normalized enrichment score (NES).

metabolism is a characteristic of Tregs. These results suggest that
the metabolic features of T cells in the TME differ from those
of normal tissues.

Key Factors in T-Cell Differentiation
Correlate With Tumor Metastasis and
Patient Prognosis
T cells in tumor tissues have specific metabolic and physiological
mechanisms that are influenced by the TME. To explore the
effects of genes associated with T-cell differentiation on cellular

physiological functions, Pearson correlation analysis was used to
identify genes associated with the T-cell differentiation process.
We identified 308 genes (216 positive and 92 negative related
genes) and 284 genes (187 positive and 92 negative related genes)
that were associated with T/CD4+ differentiation and T/CD8+
differentiation, respectively. The R package clusterprofiler was
used for GO functional enrichment and KEGG pathway analysis
of genes related to T-cell differentiation. We found that
genes upregulated in T/CD4+ differentiation were significantly
enriched in functional pathways associated with antigen
processing (Figure 4A and Supplementary Figure 4A) and
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FIGURE 3 | Differentiation trajectory and metabolic features of T cells. (A) The panel shows the differentiation process of T cells; T cells were divided into CD4+ T,
CD8+ T, Th, and Treg cells. (B) Expression levels of marker genes (including CD4, CD8A, FOXP3, and CD25) were used to separate T-cell subtypes in non-small cell
lung cancer (NSCLC). (C) The pseudo-time trajectory of T-cell differentiation. Each point represents a cell and is marked with the cell state (left) and pseudo-time
(right). (D) Same as in (C) but for cells marked with T-cell subtypes. (E) The heatmap shows the branch-dependent genes at branch point 1. The center of the
heatmap is branch B1, the left is B2, and the right is B3. (F) Top 10 metabolic pathways enriched in CD4+ or CD8+ T cells. Significantly enriched pathways with
gene set enrichment analysis (GSEA) p-values < 0.05 are highlighted in red (CD4) or blue (CD8). (G) Top 10 metabolic pathways enriched in Th or Treg cells.
Significantly enriched pathways with GSEA p-values < 0.05 are highlighted in red (Th) or blue (Treg).

presentation, and genes upregulated in T/CD8+ differentiation
were significantly enriched in the regulation of cell killing and the
immune functions in which neutrophils are involved (Figure 4B

and Supplementary Figure 4B). These findings are consistent
with previous studies revealing the function of CD4+ and CD8+
T cells (Imanishi and Saito, 2020), which supports the reliability
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FIGURE 4 | Transcriptional regulation of genes associated with T-cell differentiation. (A) Enrichment results of upregulated genes associated with T/CD4+
differentiation in the gene ontology (GO) term. (B) Same as in (A) but for genes associated with T/CD8+ differentiation. (C) Transcription factor (TF) lists selected from
genes positively associated with T/CD4+ differentiation and their Pearson correlation coefficients with pseudo-time. (D) Same as in (C) but for TF lists selected from
genes associated with T/CD8+ differentiation. (E) The transcriptional regulatory network of TFs and target genes in genes related to T/CD4+ differentiation. The size
of the nodes in the network represents the correlation coefficient, the circle represents the target gene, and the triangle represents the TF. (F) Same as in (E) but for
genes related to T/CD8+ differentiation. (G) Survival curves comparing disease-free survival (DFS) of patients with high and low KLF6 gene expression. (H–J) Survival
curves comparing overall survival (OS) of patients with high and low PMAIP1, PPP4C, and HSPD1 gene expression.

of cell cluster identification and T-cell differentiation trajectory
identification in this study.

Identification of key factors that promote T-cell differentiation
and the formation of specific metabolic mechanisms for

T-cell is of substantial importance for the treatment of
NSCLC. We focused on transcription factors (TFs) that
regulate the expression efficiency of target genes. Using
human TF data collected from AnimalTFDB (Hu et al.,
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2019), 13 and 9 TFs were identified from genes associated
with T/CD4+ differentiation and T/CD8+ differentiation
(Figures 4C,D). In combination with other genes associated with
T-cell differentiation, we constructed transcriptional regulatory
networks associated with T/CD4+ and T/CD8+ differentiation
(Figures 4E,F), respectively. We found that high expression
of TF KLF6 was associated with poor disease-free survival
(DFS) in patients with NSCLC and that the high expression
of its target gene, PMAIP1, was associated with poor OS
(Figures 4G,H). Previous studies have confirmed that KLF6 is
a key TF that participates in the activation of T cells (Palau
et al., 2013), suggesting that KLF6 can be used as a potential
target for regulating the differentiation of T cells and assisting
in immunotherapy. The variation in KLF6 expression was also
associated with metastatic potential and poor prognosis of
patients with NSCLC (DiFeo et al., 2009; Zhang et al., 2019a).
PPP4C is required for extracellular skeleton composition in cell
metastasis (Martin-Granados et al., 2008), which was highly
expressed in CD4+ T cells and was associated with poor OS
(Figure 4I). High expression of HSPD1 in CD8+ T cells was
strongly associated with poorer patient OS (Figure 4J). Moreover,
high expression of HSPD1 was shown to inhibit E-cadherin
expression to promote cell metastasis (Kang et al., 2019). The
HSP60 protein encoded by HSPD1 could be used for exosomal
antigen presentation to dendritic cells (DCs) to inhibit the
differentiation of CD4+ T cells (Cui et al., 2019), suggesting
that inhibiting the differentiation of CD4+ T cells by regulating
the expression of KLF6 can be used as a strategy to alleviate
immunosuppression. Additionally, we have precisely defined the
functions of target genes that are positively associated with CD4+
and CD8+ T-cell differentiation using Metascape (Zhou et al.,
2019) (Supplementary Tables 3, 4). Taken together, these results
suggest that the key genes that drive T-cell differentiation can
stimulate tumor invasion and metastasis and could be used as
potential therapeutic targets.

Identifying Prognostic Markers for
NSCLC in Combination With Public Data
The immune microenvironment of tumors is closely related
to tumor development (Lei et al., 2020). As an important
component of the immune microenvironment, the dynamics of
T cells at the molecular and cellular levels significantly affect
tumor development and metastasis. It is intriguing to identify the
markers associated with the prognosis of patients with NSCLC
from genes related to T-cell differentiation. Next, we used lasso
regression to screen for genes that are strongly associated with
patient prognosis of LUAD, and 8 genes associated with patient
prognosis were identified (Figure 5A). The multivariate Cox
regression models were used to fit these eight feature genes,
four of which, HERPUD1, MAP3K8, GAPDH, and DNAJB4,
were significantly associated with the risk of death in patients
(p < 0.05; Supplementary Figure 5). Nomograms were used
to predict the probability of death at 1, 2, and 4 years
(Figure 5B). The results of the calibration curve showed the
strong stability of the risk prediction model (Figure 5C). To
identify the best predictive time points for the risk prediction

model, we split the 4-year period into six time periods and
evaluated the prediction results using the ROC curve. We
found that the risk prediction results reached a maximum
AUC value of 0.71, in the fourth year (1460 days; Figure 5D).
Furthermore, we used regression coefficients for HERPUD1,
MAP3K8, GAPDH, and DNAJB4 to construct risk score models
as follows: risk score = −0.197∗MAP3K8 −0.261∗HERPUD1+
0.185∗GAPDH+ 0.191∗DNAJB4 and calculated the risk score
for each LUAD tumor sample. The samples were divided
into two categories (high-risk and low-risk) based on the
median of risk scores, and we found that the high-risk samples
were associated with poorer OS in LUAD (Figure 5E). The
four prognostic markers, HERPUD1, MAP3K8, GAPDH, and
DNAJB4, have also been used to predict survival in patients
with LUSC. In LUSC, the high-risk samples also showed
poorer OS (Figure 5F). Additionally, we combined the four
prognostic markers identified and samples of NSCLC obtained
from the GEO database to reconstruct the risk score model.
We found that high-risk scores were significantly associated
with poorer survival, which was similar to previous predictions
(Supplementary Figure 6). These results suggest that HERPUD1,
MAP3K8, GAPDH, and DNAJB4 can be used as prognostic
markers in NSCLC. By combining clinical information from the
LUAD sample with the risk score, we found that patients with
stage IV cancer had a significantly higher risk score (Figure 5G).
Although smoking could increase the risk of lung cancer (Bade
and Dela Cruz, 2020), the history of smoking does not show
a positive correlation with the prognostic risk (Figure 5H),
indicating that specific tobacco tolerance is caused by individual
genetic differences.

DISCUSSION

In this study, we used a computational pipeline to reveal the
biological information contained in the single-cell RNA profiles
of NSCLC. By clustering cells from the tumor tissues of four
patients, individual differences in the metabolic landscapes of
malignant epithelial cells were revealed. We characterized the
metabolic characteristics of the malignant epithelial cells. GSEA
revealed that OXPHOS and glycolysis are the major contributors
to the intra-tissue metabolic heterogeneity of malignant cells.
We constructed the differentiation trajectory of T cells using the
monocle tool and revealed that T-cell subtypes have different
metabolic features from normal tissues to adapt to the TME.
In the process of T-cell differentiation, we found that the key
genes that drive T-cell differentiation could serve as potential
therapeutic targets. Finally, we constructed a survival risk
prediction model and identified HERPUD1, MAP3K8, GAPDH,
and DNAJB4 as prognostic markers for NSCLC.

The TME includes not only the tumor cells but also the
surrounding fibroblasts, immune and inflammatory cells, glial
cells, and other cells (Arneth, 2019; Hinshaw and Shevde, 2019).
Tumor proliferation and metastasis are drove by malignant
cells and other stromal cells. Therefore, we focused on
malignant epithelial cells and T cells, which are important
components of immune cells. Although numerous studies have
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FIGURE 5 | Identification of prognostic markers in non-small cell lung cancer (NSCLC). (A) The curves reflect the relationship between the regression coefficient and
λ value. The features were selected by the lasso regression model. (B) Nomogram for survival risk prediction of 1, 2, and 4 years. The model contains four feature
genes (prognostic markers). (C) Calibration curve of the nomogram. (D) Receiver operating characteristic (ROC) plots of the outcomes predicted by the risk
regression model for seven time points. The different colored curves represent specific time points. (E) Kaplan-Meier (KM) curves for the survival time (days) of lung
adenocarcinoma (LUAD) samples in high- and low-risk categories. The log-rank test was used to calculate statistical significance. (F) Same as in (E) but for the
survival of lung squamous cell carcinoma (LUSC) samples. (G) Box plots of risk scores for different tumor stage samples. The rank-sum test was used to statistically
measure differences between groups. (H) Same as in (G) but for samples with different smoking histories.
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explored the features of immune cells and signaling pathways
in the NSCLC microenvironment at a single-cell resolution
(Guo et al., 2018; Clarke et al., 2019; Maynard et al., 2020),
few studies have delved into the metabolic programming
of malignant cells and the driving mechanism of T-cell
differentiation (Kim et al., 2020). In this study, we characterized
the metabolic characteristics of malignant cells and T-cell
subtypes. Considering that numerous genes appear repeatedly
in multiple metabolic pathways, we did not use traditional
gene set variation analysis (GAVA) (Hanzelmann et al., 2013)
to calculate metabolic pathway activity. The weighted relative
pathway activity algorithm can highlight the activity features of
each pathway to avoid the effect of under- and over-expression of
overlapping genes in multiple pathways.

Tumors are formed when normal cells continue to proliferate
in an uncontrolled manner due to the loss of cell cycle control
(Radomska et al., 2019). Tumors develop different directions
of mutations and malignant evolution due to different cancer-
causing agents. Therefore, we aimed to identify the individual
differences in the metabolic activity of malignant epithelial cells.
Malignant cells are influenced by their tissue environment and
show significant heterogeneity in mitochondrial activity. The
differentiation process of T cells is accompanied by metabolic
reprogramming. We found that Tregs have higher glycolytic
activity than Ths cells in tumor tissues, which is opposite to
that in normal tissues. Tregs play a crucial role in maintaining
immune tolerance, and their abnormal expression can lead to
autoimmune diseases (Barbi et al., 2014). The reprogramming
of energy metabolism in Treg cells may be an important
contributor to immune dysfunction in tumor tissues. We found
that genes related to T-cell differentiation can serve as prognostic
markers for patients with NSCLC, which may be due to the
remodeling of T-cell molecular mechanisms that affect tumor
proliferation and metastasis.

In conclusion, this study describes the metabolic and immune
landscapes of NSCLC at the single-cell level. Marker genes
associated with patient prognosis were identified through
the construction of survival risk models. Although we have
only analyzed NSCLC in terms of metabolic pathways and

T-cell differentiation, this study provides insights into tumor
proliferation and prognosis of patients with NSCLC. The findings
of this study may provide theoretical guidance for the diagnosis
and treatment of NSCLC.
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