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ABSTRACT

The SuperPred web server connects chemical sim-
ilarity of drug-like compounds with molecular tar-
gets and the therapeutic approach based on the sim-
ilar property principle. Since the first release of this
server, the number of known compound–target inter-
actions has increased from 7000 to 665 000, which
allows not only a better prediction quality but also
the estimation of a confidence. Apart from the ad-
dition of quantitative binding data and the statisti-
cal consideration of the similarity distribution in all
drug classes, new approaches were implemented to
improve the target prediction. The 3D similarity as
well as the occurrence of fragments and the concor-
dance of physico-chemical properties is also taken
into account. In addition, the effect of different fin-
gerprints on the prediction was examined. The ret-
rospective prediction of a drug class (ATC code of
the WHO) allows the evaluation of methods and de-
scriptors for a well-characterized set of approved
drugs. The prediction is improved by 7.5% to a to-
tal accuracy of 75.1%. For query compounds with
sufficient structural similarity, the web server allows
prognoses about the medical indication area of novel
compounds and to find new leads for known targets.
SuperPred is publicly available without registration
at: http://prediction.charite.de.

INTRODUCTION

The Anatomical Therapeutic Chemical (ATC) classification
system of the World Health Organization (WHO) is cur-
rently the most prevalent system to characterize drugs. This
system is divided into several hierarchical categories differ-

entiating between anatomical, therapeutic, pharmacologi-
cal and chemical properties (1). Drug utilization can be in-
vestigated using the ATC classification system. Therefore,
comparing the drugs’ structural and physico-chemical fea-
tures by means of ATC codes offers a possibility to gain
knowledge for drug repositioning and predicting new med-
ical indications as well as classifying yet unclassified com-
pounds. The established ‘similarity property principle’ (2) is
based on the assumption that structurally similar molecules
exhibit similar biological activity (3). Various 2D methods
have been developed to search for similarity between com-
pounds (4). Among others, topological descriptors like 2D
fingerprints (5) or BCUT descriptors (6) are often applied
in similarity searching. Although 2D fingerprints are widely
used for various applications like virtual screening, simi-
larity searching and clustering, several problems can occur.
For instance, the molecular size of a compound can affect
the similarity calculations as well as a folding of fixed-length
bit strings which can result in the negligence of functional
and structural features. To overcome these interferences, the
SuperPred update (SuperPred II) does not only consider
2D similarity methods but also fragment and 3D similarity
searching. Recently, some attempts have been undertaken to
address the ATC prediction problem. Gurulingappa et al.
used a combination of information extraction and ma-
chine learning techniques for classifying yet unclassified
drugs into ATC classes (7). To verify their method, they
used classified drugs with an indication on the cardiovas-
cular system (ATC class ‘C’). Another approach by Chen
et al. joins chemical–chemical interaction with chemical–
chemical similarity information (8) to classify drugs. Us-
ing this approach, the authors analyzed the identification of
drugs among the 14 main ATC classes. Furthermore, Wang
et al. presented NetPredATC, a drug–target network based
on support vector machines for predicting the ATC class of
a compound (9). They assume that drugs with similar chem-
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ical structures or target proteins share common ATC codes.
Based on their assumption, they integrated the compounds
chemical similarity with target information and used a sup-
port vector machine approach for the ATC code prediction.
The method validation was carried out using four differ-
ent drug datasets which include enzymes, ion channels (IC),
G-protein coupled receptors (GPCR) and nuclear receptors
(NR) as target proteins.

Recently, drug promiscuity has become an important is-
sue in drug discovery. It was observed that drugs show a
more promiscuous way of binding than it was assumed in
the past (10). Due to the more complex nature of drug bind-
ing, the view of drugs as specific ligands to targets had to
be reconsidered. Drug promiscuity, which entails unwanted
side effects due to binding to off-targets (11), is consid-
ered as one of the main reasons for failure and withdrawal
of marketed drugs. A case example represents the with-
drawal of the drug combination fenfluramine/phentermine
(fen–phen) because of inducing valvular heart diseases (12).
Predicting targets as well as off-targets for drugs or drug
candidates might help avoiding unwanted side effects as
well as facilitating drug-repositioning. Several approaches
have been introduced for predicting drug–target interac-
tions. Network-based methods have been proposed to iden-
tify protein targets for drugs (13–15). Moreover, the similar-
ity ensemble approach (16) has been proposed. The method
is based on the stochastic analysis of the 2D similarity be-
tween ligands that bind to the same target and predicts
ligand–target interactions adapting concepts of the basic
local alignment search tool (BLAST) algorithm (17). An-
other method for predicting compound–target interactions
is SPiDER (18). It addresses the issue of predicting targets
for de novo designed molecules and drugs using two self-
organizing maps (SOM) differing in the molecular repre-
sentations for the SOM projections. The resulting two con-
fidence scores are converted into a consensus score and con-
templated in a statistical analysis to indicate the significance
of the prediction.

The SuperPred web server comprises two methods, one
for drug classification based on approved drugs classi-
fied by WHO (1) and one for target prediction based on
compound–target interaction data. The drug classification
method takes into account 2D- and fragment-similarity,
and a method for 3D superposition of small molecules. The
method for target prediction uses the similarity distribution
among ligands for estimating the targets’ individual thresh-
olds and probabilities to avoid false positive predictions.

MATERIALS AND METHODS

Data set for drug classification

For drug classification, a dataset containing 2650 drugs is
taken from Transformer (19). To ensure comparability be-
tween SuperPred I (20) and SuperPred II, the dataset (1035
drugs) described in SuperPred I was used for evaluation of
the drug classification method.

Based on the actual drugs classified by WHO, an external
dataset containing 190 novel drugs was created for valida-
tion of the drug classification method.

Data set for the target prediction

The dataset for target prediction was created by extract-
ing compound–target interaction data from SuperTarget,
ChEMBL and BindingDB (21–23). Those databases offer a
huge amount on publicly available ligand–target interaction
data. To integrate the extracted data into one consistent set,
several normalization steps were accomplished concerning
compound and target entities and interaction data.

First, compound structures were normalized using
JChem (Instant JChem 6.2.0 (January 2014), ChemAxon
(http://www.chemaxon.com)). Normalization steps in-
volved isolation of the largest fragment in the structure,
removal of salts and explicit hydrogens and the standard-
ization of stereochemical and charge information using
the JChem standardization protocol. Furthermore, the
structures were aromatized and formal charges were re-
moved. For compound unification, International Chemical
Identifiers (InChI) were calculated using Open Babel
(http://openbabel.org/) and compounds having identical
InChI were merged. Second, non-molecular target types
(ChEMBL) like cell-lines, tissues and organisms and
molecular target types like deoxyribonucleic acid as well
as non-mammal enzymes and proteins were removed,
yielding a target dataset of mammal proteins only. The
remaining targets were unified using the Entrez Gene
Index from NCBI (National Center for Biotechnology
Information) (24) and those mapping to the same gene
were merged. Third, the interaction data was filtered for
certain binding types (e.g. IC50, Ki and KD), resulting in
1 900 000 interactions. Additionally, interactions described
by binding affinities weaker than 10 000 nm were removed.
Finally, targets having interaction data for less than five
compounds were removed, resulting in a dataset consisting
of ∼341 000 compounds, ∼1800 targets and ∼665 000
compound–target interactions.

For the evaluation of the target prediction, the dataset
was restricted to ‘successful targets’ from the Therapeutic
Target Database (TTD) (25) narrowing the set to 221 tar-
gets, 95 000 compounds and 174 000 compound–target in-
teractions.

Drug classification pipeline

The drug classification pipeline is a combination of three
different structure based methods, considering 2D, frag-
ment and 3D similarity, described in detail below. This com-
bination ensures an optimal coverage of the structural fea-
tures represented by a final score. The consensus of these
methods is taken into account. If at least two methods pre-
dict the same ATC class, that class is considered as final
prediction. If three different ATC classes are predicted, a
threshold for every method is used to decide for the most
probable ATC class (Figure 1: left).

2D similarity searching

In order to select the optimal fingerprint for the 2D simi-
larity comparison, several fingerprints have been compared
(Table 1). The extended-connectivity fingerprints (ECFP)
(26) exhibit the best performance for our dataset and hence,
have been used in the prediction pipeline. The fingerprints
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Figure 1. This diagram illustrates the drug classification pipeline (left) and
target prediction pipeline (right). The drug classification is carried out in
three steps. In the first step the input compound is compared with the ATC
dataset by the following methods namely 2D, fragment and 3D similarity
searching. In the second step the ATC-class and the corresponding score
is calculated for each method. The last step ensembles the predicted ATC-
classes according to the score and predict the final ATC-class. Similarly,
the target prediction is also carried out in three main steps. In the first
step, the input compound is compared based on structural similarity (2D).
The second step analyzed the statistical significance of the similarity score
in comparison with precalculated statistics of the dataset. The last step
computes the raw score for each target and finally the target is predicted
with consideration of the weighted Z-score and E-value threshold.

Table 1. Comparison of fingerprints and their attained prediction rate for
the evaluation dataset of 1035 compounds

Fingerprint 2D prediction rate

FP24 62.6
MDL(166) 72.3
ECFP4 74.1

belong to the class of radial fingerprints and are generated
by a modified version of the Morgan Algorithm (27). The
calculated fingerprints were subsequently compared by the
Tanimoto similarity measure for bit strings (28).

Fragment similarity searching

All 2650 drugs from the prediction dataset have been frag-
mented according to the linker rule (29). This method pref-
erentially generates cyclic fragments by removing the linker
atoms between ring structures. All non-redundant frag-
ments which were produced by the fragmentation method
are considered for comparison. While comparing the frag-
ments of two small molecules (A and B) having n and m
fragments, a similarity matrix with n × m fields is con-
structed. Each field contains the Tanimoto coefficient of the
particular fragment comparison. The matrix is used to cal-
culate

( n
m

)
possible fragment combinations. For each com-

bination, a final Tanimoto score is calculated by summing
up its Tanimoto coefficients from the matrix. The final simi-
larity score is further divided by the smaller number of frag-
ments belonging to one of the molecules.

3D similarity searching

The superimposition of one molecule to a reference
molecule structure is done by mapping atoms with optimal
distances. In order to reduce time complexity, only 100 low-
energy conformations are generated for the two molecules
to be compared and pairwise comparisons of all possible
conformations are performed. Hence, given a molecule pair,
a maximum of 10 000 comparisons take place (30). The first
step of the algorithm normalizes the set of atoms into a
new coordinate system. Based on these coordinates, the cen-
ters of mass for both conformers are calculated and super-
imposed. Then, the principal axes of inertia are estimated
and aligned. Thereby, the possible rotations are strongly re-
duced and only four orientations have to be considered. For
every orientation, a mapping of atom pairs is performed
whereupon atoms are fitted to each other with the small-
est possible distance. A maximal distance threshold is ap-
plied for atom pair assignment, therefore not every atom is
assigned. The rotation matrix with the highest amount of
mapped pairs was used for further calculations. The nor-
malized variant with the minimal distance is chosen if more
than one rotation with the same amount of mapped atom
pairs exists. For this mapping a root-mean-square-deviation
(rmsd) was calculated. To find the best superposition of two
molecules, the number of superposed atoms and the corre-
sponding rmsd value are taken into account by the follow-
ing formula:

3D-score = NS

max(NA × NB)
exp(−rmsd)

where NS is the number of superposed atoms, NA the num-
ber of atoms of molecule A and NB the number of atoms of
molecule B.

Target prediction method

The method for the drug–target prediction takes into con-
sideration the 2D similarity between the query compound
and the ligands associated to their respective targets (target
sets). For each target set, the summation of all Tanimoto
coefficients above a threshold of 0.45 is considered as raw
score. To achieve comparability between raw scores of small
and large target sets, the raw scores are normalized by di-
viding them by the number of ligands of the corresponding
target. To further evaluate the specificity of a prediction, Z-
scores and E-values are computed. The Z-score is calculated
by the formula:

ZA =
(

(raw scoreA)
NA

− μ
)

exp(0.335 ln(NA))

σ

where A is a target set and NA represents the number of
ligands of target set A. Similar to BLAST (17) μ and σ de-
scribe the random background noise of the database.

The E-value describes the number of predicted targets
one can expect to see by chance, thereby it depends on the
size of the dataset. The E-value decreases exponentially as
the Z-score of the prediction increases. The lower the E-
value, the more significant is the prediction (17). (For fur-
ther details and formulas please see the FAQ section on our
SuperPred website).
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For diverse target sets, Z-scores tend to behave like high
random scores. Therefore, a weighting factor λA is intro-
duced which indicates the average similarity between the lig-
ands within each target set:

λA = exp
(

0.335 ln
(

raw scoreAA

NAA

))

The weighting factor ranges between almost one for very
uniform target sets to more than ten for very diverse target
sets. The target prediction results are ranked according to
the weighted Z-scores (Figure 1: right).

Input and output options

There are four input options available for drug classifi-
cation and target prediction. First, via the ChemDoodle
tool (http://www.chemdoodle.com/), an upload function for
MOL files is provided. Second, it is possible to draw a struc-
ture using the ChemDoodle editor. Third, a PubChem (31)
name search option is provided and fourth, a molecule can
be searched by its Simplified Molecular Input Line Entry
Specification (SMILES) (http://daylight.com/smiles/).

The output for the ‘Drug Classification’ and the ‘Target-
Prediction’ displays the input compound’s properties and
its molecular structure. In case of the ‘Drug Classification’
result site the prediction accuracy, the ATC-class and in-
formation about similar drugs, that have ATC-codes as-
signed, is given. Furthermore, Lipinski-rule of five prop-
erties (32) for the uploaded compound are also shown. In
addition, the statistics for physico-chemical properties for
the predicted ATC class are presented. Moreover, a but-
ton is provided to start the target prediction for the input
compound likewise the ‘Target-Prediction’ result site offers
a button for starting the drug classification. Furthermore,
it displays known and predicted targets for the input com-
pound and provides detailed information about the targets.
Links to other databases as well as available PDB structures
are given.

RESULTS AND DISCUSSION

Drug classification

The implementation of the new prediction pipeline (Fig-
ure 1: left) consisting of 2D, fragment and 3D similarity
searching methods results in a higher prediction rate for
ATC classes compared to SuperPred I based on the eval-
uation dataset from SuperPred I. In SuperPred II, the pre-
diction accuracy has increased to 75.1% for the validation
set (Table 2). SuperPred I, taking only into account the 2D
similarity of compounds, showed a prediction accuracy of
67.6%. The prediction rates’ distribution values of the cor-
rectly predicted ATC codes are shown in Table 3. For a con-
sensus score range between 0.8 and 0.9, a prediction rate of
88.9% is achieved. Furthermore, a cumulative recall graph is
shown in Figure 2 representing the fraction of correct ATC
class predictions in dependency of the quantity of retrieved
molecules. By taking into account the three most similar
structures, a prediction rate of 80.3% is reached whereas a
recall of maximal 88% is reached by taking at least 16 simi-
lar compounds into consideration. For further validation of

Figure 2. Cumulative recall graph for ATC-prediction relative to the rank
of retrieved compounds.

Table 2. Prediction accuracy overview of the individual drug classification
methods (2D, fragment, 3D similarity methods) as well as for the combined
pipeline (consensus) for the evaluation dataset

Method Prediction accuracy (%)

2D 74.1
Fragment 69.4
3D 67.7
Consensus 75.1

Table 3. Prediction rate distribution for correctly predicted ATC codes

Range of consensus
score

Number of
hits/misses Prediction rate (%)

0.0–0.1 0/0 0
0.1–0.2 2/4 33.3
0.2–0.3 6/40 13.0
0.3–0.4 14/22 38.9
0.4–0.5 20/43 31.8
0.5–0.6 50/32 61.0
0.6–0.7 88/24 78.6
0.7–0.8 164/36 82.0
0.8–0.9 233/29 88.9
0.9–1.0 199/27 88.1

The distribution is based on the evaluation dataset, which contains 1035
drugs. This table shows the number of right (hits) and wrong (misses) pre-
dictions for a specific consensus score range.

the prediction pipeline, we utilized the 190 new drugs con-
tained in the evaluation dataset. The prediction accuracy
for this dataset is 72.1% .

Comparison to other drug classification methods

In comparison to other drug classification methods, Super-
Pred II yields the best prediction rate (Table 4). Chen et al.
have analyzed their prediction performance of the first level
of ATC codes (13). They have combined chemical–chemical
interaction with chemical–chemical similarity information.
Based on this, their method reaches a prediction rate of
73.25% for prediction of the 14 main ATC classes. To make
our method comparable, we modified our prediction to the
first level ATC class. This resulted in a prediction rate of
80.9% for identifying the right ATC classes among the 14
main classes.

http://www.chemdoodle.com/
http://daylight.com/smiles/
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Table 4. Comparison of the SuperPred update with other ATC prediction
methods

Total accuracy [%] Comment

SuperPred (2008) 67.6 Overall prediction
NetPredATC (2013) 74.0 GPCR
Chen et. Al (2012) 73.25 Main ATC classes
SuperPred (2014) 75.1 Overall prediction

The comment column indicates how the prediction accuracy was achieved.

Furthermore, we compared our method with NetPre-
dATC from Wang et al. The accuracy of NetPredATC lies
between 74 and 76.5% according to the previously men-
tioned subsets belonging to single target classes like GPCR,
NR, IC and enzymes.

Target prediction

The target prediction method, results in a prediction ac-
curacy of 91.2% without the use of the weight function
(λ). Considering the weight function, the prediction rate
increases to 92.8%. Additionally, the E-value is used as
a threshold: an E-value above 1 is an indication of ran-
dom prediction. Considering this threshold, it was observed
that the prediction rate further increases to 94.1%. How-
ever, about 9400 compounds were not considered for pre-
diction because they were above the E-value threshold. It
was also observed that the target groups which have more
diverse compounds show lower prediction rates. This could
be caused by multiple binding sites on the target or by tar-
gets with different domains that have different properties
and bind different types of ligands, resulting in subsets of
related compounds inside its target set.

CONCLUSION

In comparison to the ATC prediction method described
by Chen et al., the SuperPred II method is able to pro-
duce a higher prediction accuracy of ∼8%. Wang et al. per-
form their prediction on four relatively small benchmark
datasets whereas SuperPred II considers a wide range of tar-
get classes and produces a comparable prediction accuracy.
For further improvement of the drug classification method
an integration of drug-protein networks could increase the
prediction accuracy as drug pairs having the same ATC
code may bind to the same targets (33).

To improve the target prediction method, target groups
with diverse compounds due to multiple binding sites or dif-
ferent domains will be considered as independent target sets
as agonists and antagonists bind to different binding sites or
domains and cause different pharmacological effects.
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