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Abstract: With the increase in soybean trade between countries, the intentional mislabeling of the
origin of soybeans has become a serious problem worldwide. In this study, metabolic profiling of
soybeans from the Republic of Korea and China was performed by nuclear magnetic resonance
(NMR) spectroscopy coupled with multivariate statistical analysis to predict the geographical origin
of soybeans. The optimal orthogonal partial least squares-discriminant analysis (OPLS-DA) model
was obtained using total area normalization and unit variance (UV) scaling, without applying the
variable influences on projection (VIP) cut-off value, resulting in 96.9% sensitivity, 94.4% specificity,
and 95.6% accuracy in the leave-one-out cross validation (LOO-CV) test for discriminating between
Korean and Chinese soybeans. Soybeans from the northeastern, middle, and southern regions of
China were successfully differentiated by standardized area normalization and UV scaling with a VIP
cut-off value of 1.0, resulting in 100% sensitivity, 91.7%–100% specificity, and 94.4%–100% accuracy
in a LOO-CV test. The methods employed in this study can be used to obtain essential information
for the authentication of soybean samples from diverse geographical locations in future studies.

Keywords: metabolic profiling; Glycine max; NMR; geographical location; prediction

1. Introduction

Soybean (Glycine max L. Merr.) is an important legume for food, animal feed, and
biofuels [1]. Soybean contains 40% protein; therefore, it is a common, rich and easily
accessible protein source. It is also rich in soluble sugars/dietary fiber (35%) and oil (20%),
85% of which is cholesterol-free, and contains both monounsaturated and polyunsaturated
fatty acids [2]. Soybean metabolites exhibit a wide range of pharmacologically beneficial
effects, including antioxidant, hypo-cholesterolemic, anticarcinogenic, immunostimulatory,
antidiabetic activities, and reduction of osteoporosis risk [2,3].

With the increase in international agricultural trade and consumer demand for safe
and high-quality food, identifying the geographical origin of agricultural products has
increased in importance. Soybeans are one of the most traded agricultural products world-
wide. As soybean trade between countries increases, some soybean distributors and
processing companies mix relatively inexpensive imported soybeans with domestic soy-
beans and sell them without revealing the exact source of origin information. Identifying
the geographical origin of soybeans is important from several perspectives. First, the safety
issues of genetically modified (GM) soybeans and low-quality imported soybeans should
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be considered. More than half of the soybeans produced worldwide are GM soybeans; this
has raised consumer concerns regarding allergy risks [4,5]. In addition, there are quality
degradation issues, such as microbial contamination and pesticide detection, during the
storage and distribution of imported soybeans. Second, regarding the nutritional properties
of soybeans, previous studies have shown that the levels of primary and secondary metabo-
lites such as soybean sugars, proteins, fatty acids, and phytochemicals differ depending on
the geographical origin [6,7]. Third, different soybean processing technologies are required
depending on the soybean origin because the content of useful nutrients or anti-nutritional
factors (trypsin inhibitors) varies. Processing technologies that can minimize the destruc-
tion of beneficial nutrients while removing unnecessary nutrients from the soybeans must
be developed and applied appropriately depending on the origin [8]. Therefore, it is nec-
essary to develop a method for determining the geographical origin of soybeans that can
solve the problem of intentionally mislabeling the origin of soybeans, which has disrupted
the soybean distribution system and created confusion among consumers.

Metabolomics has been widely used in previous studies to observe the changes
in metabolites of agricultural products from different geographical origins using high-
performance liquid chromatography (HPLC), gas chromatography (GC), capillary
electrophoresis-time-of-flight (CE-TOF) combined with mass spectrometry (MS), nuclear
magnetic resonance (NMR) spectroscopy, and Fourier-transform infrared (FT-IR) spec-
troscopy [9–13]. Among various analytical platforms, NMR spectroscopy has been widely
used to characterize food resources because of its simultaneous detection of diverse com-
pounds within a complex mixture, high reproducibility, and noninvasive nature [14,15].
Several studies have analyzed different soybean varieties using NMR, GC-MS, and ultra-
performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS) analy-
ses [16,17]. The profiling of isoflavones and anthocyanins in black soybeans from differ-
ent geographical locations in southwest China has been performed using HPLC-MS [7].
Metabolite fingerprinting has been widely used as an important tool for authentication of
food and agricultural products [18]. This allows the determination of exact geographical
origin and the detection of any unusual quality of raw materials in both unprocessed and
processed products [18,19]. However, comparative and comprehensive metabolic profil-
ing using NMR spectroscopy has rarely been applied to soybean samples from different
geographical regions.

Accordingly, in the present study, soybean samples obtained from major soybean-
producing areas and their local markets were used to establish a representative prediction
model for discriminating the geographical origin of soybeans from Korea and China. NMR-
based metabolic profiling coupled with multivariate statistical analysis was employed to
determine the geographical origin of soybeans from Korea and China.

2. Materials and Methods
2.1. Soybean Samples

Authentic Korean soybeans from eight regions harvested in 2016 were provided
from the National Agricultural Products Quality Management Service of the Repub-
lic of Korea. These were obtained from Gyeonggi-do Anseong, Gangwon-do Yeong-
wol, Chungcheongbuk-do Eumseong, Chungcheongnam-do Cheonan, Jeollabuk-do Im-
sil, Jeollanam-do Yeonggwang, Gyeongsangbuk-do Uiseong, and Gyeongsangnam-do
Geochang, 500 g to 2 kg from each region. Chinese soybeans were purchased from online
suppliers in October 2016. Nine Chinese samples were obtained from the three major and
largest soybean producing regions including northeastern (Heilongjiang, Jilin, Liaoning),
middle (Hebei, Shandong, and Hubei), and southern (Zhejiang, Guangdong, and Guangxi)
regions, 500 g from each region, and the products and suppliers’ information of these
soybean products are listed in Table S1. Geographical information on Korean and Chinese
soybean samples is presented in Figure S1. Four replicates from each pool were collected
for each region, ground in liquid nitrogen using a blender, freeze-dried, and then stored at
−80 ◦C until NMR analysis. For measurement of size, 10 grains of soybean samples from
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each region were randomly selected and measured. The length along the hypocotyls was
measured as soybean size using a digimatic caliper (0–150 mm, S. Tools, Wuxi, China).

2.2. Chemicals and Reagents

Methanol-d4 (MeOD, 99.8% atom D) and sodium deuteroxide (NaOD, 99.5% atom D;
40% in D2O) were obtained from Cambridge Isotope Laboratories, Inc. (Andover, MA, USA).
Deuterium oxide (D2O, 99.9% atom D) including 0.05% 3-(trimethylsilyl) propionic-2, 2,
3, 3-d4 acid sodium salt (TSP) and potassium phosphate (KH2PO4) was purchased from
Sigma-Aldrich (St. Louis, MO, USA).

2.3. Climate Data for Soybean Cultivation Regions in Korea and China

The monthly average temperature (◦C) and total precipitation (mm) data for soybean
cultivation regions in Korea and China in 2016 were obtained from the Korea Meteorologi-
cal Administration (https://data.kma.go.kr) (accessed on 12 November 2020) and China
Meteorological Administration (https://data.cma.cn/en) (accessed on 12 November 2020),
respectively. The average annual temperature and precipitation were calculated by averag-
ing monthly climate data for one year (January to December 2016).

2.4. NMR Measurement and Peak Assignment

To extract various groups of metabolites in soybeans, aqueous methanol (50% D2O-
MeOD mixture) was used as an extraction solvent in this study [20,21]. Fifty milligrams of
soybean powder and 1.5 mL of 50% D2O-methanol mixture (D2O was titrated to pH 6 using
NaOD) were transferred into a 2-mL centrifuge tube, and then vortexed and sonicated for
1 min and 15 min, respectively. Thereafter, the material was centrifuged at 17,000× g, 4 ◦C
for 10 min. Buffer solution of 0.1 M KH2PO4 was prepared from D2O and NaOD was used
to adjust pH to 6. The clear supernatant was filtered with a 0.45-µm Whatman filter (PTFE,
Sigma-Aldrich), and 600 µL of the sample was transferred into 5-mm NMR tube (Norell,
Landisville, NJ, USA).

A 600-MHz Bruker Avance spectrometer (Bruker, Germany) was employed to analyze
soybean samples at a temperature of ~25 ◦C to record all NMR spectra. For 1H-NMR
spectra, 64 K data points were obtained with a relaxation delay of 2.0 s and a spectral
width of 12626.3 Hz. A scan number of 128 and an acquisition time of 2.6 s were used.
Water suppression was conducted to exclude the region between δ = 4.7 to 5.0. For two-
dimensional NMR spectra, 1H-1H correlation spectroscopy (COSY) spectra were acquired
under the following conditions: 32 scans, relaxation delay of 2.0 s, and 7812.5 Hz spectral
width. 1H-13C heteronuclear single quantum correlation (HSQC) spectra were obtained
with 32 scans, 2.0 s relaxation delay, and 6631.3 Hz spectral width. The following pulse
sequence described by Suh et al. [22] was used to collect 1H-NMR spectra: relaxation delay
–90◦–t1–180◦–t1–acquire for time t2. The relaxation delay of t1 was incremented together
with the increasing delay, and the relaxation delay was 2.0 s for time t2. Baseline correction
and assignments of all 1H-NMR spectra were performed by using Chenomx NMR suite
software (version 8.2, Chenomx, Edmonton, AB, Canada) and further identification of
metabolites was performed based on the HMDB database (HMDB, http://www.hmdb.ca/)
(accessed on 18 January 2020). Non-overlapping peaks were used for the peak assignment.
MestReNova (version 6.0.4, Mestrelab Research, Santiago de Compostela, Spain) was
employed to measure the J value of the peaks, and to identify the peaks of 1H-1H COSY
and 1H-13C HSQC spectra.

2.5. Data Processing and Statistical Analyses

Binning and normalization of 1H-NMR spectral data were performed using Chenomx
NMR suit software. Baseline corrected NMR spectral data ranging from 0.08 to 10.00 ppm
were segmented into a series of small bins (total 245) with widths of 0.04 ppm while ex-
cluding the water suppression region (4.70–4.86 ppm). Then the spectra were normalized
into total area normalization and standardized area normalization. Intensities in each

https://data.kma.go.kr
https://data.cma.cn/en
http://www.hmdb.ca/


Foods 2021, 10, 435 4 of 16

binned spectral data acquired from total area normalization and standardized area nor-
malization were calculated by relative intensities to the total area of all bins and area of
reference peak, respectively. Results of the binned datasets were converted to Microsoft
Office Excel (version 2007, Microsoft, Redmond, WA, USA) compatible format to mea-
sure each compound by its loading value. Binning values of compounds having multiple
non-overlapping peaks were summed. Then, the data was imported into SIMCA (version
15.0, Umetrics, Umeå, Sweden) for (orthogonal) partial least squares-discriminant analysis
((O)PLS-DA) of soybean samples (n = 68). Optimal (O)PLS-DA models were determined by
good-fit parameter; R2Y and predictability parameter; Q2Y, as well as R2Y-intercept values
and Q2Y-intercept values, which were obtained by permutation tests. When establishing
the OPLS-DA model, two scaling methods, unit variance (UV) and Pareto, were applied
and the results compared to identify the most optimal scaling method. UV scaling and
Pareto scaling are methods of dividing each variable by a scaling factor as the standard
deviation and square root of standard deviation of the intensity of each metabolite in all
samples, respectively. Leave-one-out cross-validation (LOO-CV) was performed to detect
and prevent overfitting of the models. LOO-CV leaves out one of the data and the model is
built on the remaining data. Then the left out data are predicted repeatedly from the new
model until the entire data have been predicted at least once [23].

Sensitivity, specificity, and accuracy were calculated to evaluate the classification
performance of the model based on the class prediction value of the sample obtained
from the LOO-CV (Y-predcv) by using SIMCA software. Sensitivity is the parameter that
measure the classification ability of the model for correct class of cases, whereas specificity
measures the prediction ability of the model for correct class of controls [24]. Accuracy
means the total proportion of correct class in both cases and controls, which measures the
veracity of the model [25]. Receiver operating characteristics (ROC) curve analysis was
performed using SIMCA software.

3. Results & Discussion
3.1. Size Measurement of Soybean Samples

The geographical distribution of the collected Korean and Chinese soybean samples is
shown in Figure S1. Soybean samples from each region were photographed (Figure S2),
and their sizes were measured. To obtain a representative sample and verify its practical
significance, soybeans obtained from local markets were used in the experiments. The
average size of Korean soybeans was 8.38 mm, which was significantly larger than that
of Chinese soybeans (7.60 mm), as shown in Figure S3A. The size of Chinese soybeans
differed widely from region to region, and even from province to province within the same
region, whereas the size of Korean soybeans showed no significant regional differences
as shown in Figures S2 and S3B. The yield of soybeans was influenced by various factors
such as climate, adopted cultural practice, cultivars, and soil conditions [26]. For example,
under soil moisture or phosphorous deficiency conditions, the size and number of soybean
seeds were markedly decreased, which was a major cause of low soybean yields [27,28].
Therefore, the difference in the size of soybeans between Korea and China or among
Chinese regions (and between province and province in the same region) might be affected
by differences in the cultivars or environmental factors, such as temperature, precipitation,
and soil conditions. As shown in the climate data (Figure S4), there was no significant
difference in the average annual temperature and precipitation between Korea and China.
However, in China, the average annual temperature and precipitation were significantly
different among the three regions. When comparing the climate data of each province in
China, the average annual precipitation was significantly different by province only for
the middle region; however, the average annual temperature was not different among
provinces in all respective regions.

The large-seeded species might have an advantage during seedling establishment,
whereas the small-seeded species might have an advantage during seed production under
various environmental conditions [29]. Although cultivar information in both countries
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could not be obtained for the present study, the selection of larger soybean varieties might
have occurred since ancient times in Korea [30]. Hence, it is assumed that this tendency
has been ongoing and has resulted in a larger size of representative soybean cultivars in
Korea than in China.

3.2. Identification of Soybean Metabolites Using NMR Spectroscopy

Representative 1H-NMR spectra of Korean and Chinese soybeans are shown in
Figure S5. We obtained 68 1H-NMR spectra using four experimental replications from
eight and nine soybean samples from Korea and China, respectively. A total of 25 metabo-
lites were identified, as listed in Table 1. These included ten amino acids (alanine, as-
paragine, aspartate, choline, galactarate, glutamate, isoleucine, leucine, tryptophan, and
valine), three carbohydrates (glucose, raffinose/stachyose, and sucrose), nine organic acids
(2-oxoglutarate, acetate, acetoacetate, citrate, formate, fumarate, malonate, succinate,
and tartarate), one fatty acid (2-hydroxyisobutyrate), and others (hypoxanthine and oxy-
purinol). Using 1H-1H COSY and 1H-13C HSQC spectral data, 16 and 23 metabolites were
confirmed, respectively (Figure S6).

Table 1. Assignment of 1H-NMR (nuclear magnetic resonance) spectral peaks of soybean samples.

No. Compounds Chemical
Shift

Multiplicity; J
Value Assignment Assignment Method

1 2-hydroxyisobutyrate 1.34 s H-3, H-4
One-dimensional proton NMR

(1D)/heteronuclear single quantum
correlation (HSQC)

2 2-oxoglutarate 2.44 t; J = 6.92 H-5 1D/correlation spectroscopy
(COSY)/HSQC2.99 t; J = 6.92 H-4

3 Acetate 1.91 s H-2 1D/HSQC
4 Acetoacetate 2.28 s H-4 1D/HSQC

5 Alanine
1.47 d; J = 7.19 H-3

1D/COSY/HSQC3.78 q; J = 7.19 H-2

6 Asparagine
2.82–2.88 m H-2

1D/COSY/HSQC2.90–2.98 m H-2
4.01 q; J = 4.26 H-3

7 Aspartate
2.62 dd; J = 8.7, 14.43 H-2

1D/COSY/HSQC2.79 dd; J = 3.78, 13.68 H-2
3.91 dd; J = 3.75, 4.92 H-3

8 Choline
3.20 s H-3, H-4, H-5

1D/COSY/HSQC3.48–3.53 m H-2
4.03–4.09 m H-1

9 Citrate
2.54 d; J = 15.36 2Ha, 4Ha

1D/COSY/HSQC2.68 d; J = 15.36 2Hb, 4Hb
10 Formate 8.46 s H-1 1D
11 Fumarate 6.52 s H-2, H-3 1D

12 Galactarate
3.94 s H-3, H-4

1D/COSY/HSQC4.26 s H-2, H-5

13 Glucose

3.22 dd; J = 1.44, 7.95 H-2

1D/COSY/HSQC

3.38–3.43 m H-4
3.48–3.54 m H-5

3.52 dd; J = 3.7, 9.82 H-2
3.72–3.78 m H-3, H-6
3.80–3.85 m H-5, H-6

4.62 d, J = 7.92 H-1
5.22 d; J = 3.72 H-1
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Table 1. Cont.

No. Compounds Chemical
Shift

Multiplicity; J
Value Assignment Assignment Method

14 Glutamate

2.00–2.08 m H-3

1D/COSY/HSQC
2.10–2.18 m H-3
2.28–2.40 m H-4

3.75 dd; J = 4.8, 2.4 H-2

15 Hypoxanthine 8.17 s H-2
1D/COSY/HSQC8.20 s H-8

16 Isoleucine

0.93 t; J = 7.15 H-5

1D/COSY/HSQC
1.00 d; J = 7.15 CH3

1.41–1.49 m H-4
1.92–2.01 m H-3

3.66 d; J = 4.08 H-2

17 Leucine
0.94 t; J = 6.06 H-5, CH3

1D/COSY/HSQC1.64–1.78 m H-3, H-4
3.69–3.76 m H-2

18 Malonate 3.13 s H-2 1D/HSQC
19 Oxypurinol 8.27 s H-7 1D/HSQC

20 Raffinose/Stachyose

3.52 t; J = 4.5 H-4′

1D/COSY/HSQC
3.69 br. s H-6
3.95 t; J = 6.36 H-5”
4.95 dd; J = 2.7, 4.1 H-1”
5.41 d; J = 4.5 H-1

21 Succinate 2.42 s H-2, H-3 1D/HSQC

22 Sucrose

3.55 dd; J = 3.84, 6.12 H-1′

1D/COSY/HSQC

3.66 s H-1
3.75 t; J = 9.05 H-3

3.76–3.84 m H-6
4.04 t; J = 9.05 H-4′

5.39 d; J = 3.84 H-1
23 Tartarate 4.34 s H-2, H-3 1D/HSQC

24 Tryptophan

7.20–7.24 m H-8

1D/COSY/HSQC
7.18–7.28 m H-9

7.32 s H-2
7.71 d; J = 7.92 H-7

25 Valine

0.98 d; J = 7.02 CH3

1D/COSY/HSQC
1.05 d; J = 7.14 H-4

2.20–2.32 m H-3
3.61 d; J = 4.33 H-2

s, singlet; d, doublet; dd, doublet of doublet; t, triplet; q, quartet; m, multiplet; br, broad.

3.3. Discrimination and Prediction of Korean and Chinese Soybean Samples

The selection of the most appropriate normalization and scaling methods is an impor-
tant step for improving the biological information of metabolomics data as it decreases
any unwanted biases originating from biological and technical variance and adjusts differ-
ent ranges between samples or variables for comparison [31,32]. Normalization is a row
operation that reduces the significant intensity variation of metabolites between samples
(sample-to-sample variation); therefore, all samples can be compared with each other.
Scaling is a column operation that adjusts the intensity variance between metabolites
(metabolite-to-metabolite), and thus, all metabolites can be compared with each other [33].

OPLS-DA and permutation tests were performed to determine the optimal normaliza-
tion (standardized area normalization versus total area normalization) and scaling methods
(UV versus Pareto) to discriminate between Korean and Chinese soybeans. The number
of components was selected using the autofit function in SIMCA software, which extracts
a significant number of principal components from the models. The optimal model was
determined by a good-fit parameter, R2Y, and a predictability parameter, Q2Y, with values
close to 1, which indicate good fitness and prediction of the experiment, respectively.
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The R2Y- and Q2Y-intercept values from permutation tests should be below 0.40 and
0.05, respectively, in a statistically valid OPLS-DA model [34]. As listed in Table 2, the
highest R2Y value of 0.882 and Q2Y value of 0.783 were obtained by applying the total area
normalization, UV scaling, and five OPLS components (1+4) with satisfactory R2Y- and
Q2Y- intercept values of 0.254 and –0.487, respectively. The R2Y-intercept value of 0.254 and
Q2Y-intercept value of –0.487 from the permutation test proved the statistical validity of
the model without overfitting of the data. The total area normalization used in the model
for discriminating between Korean and Chinese soybeans divided each metabolite peak
area by the total peak area; therefore, each sample had the same total peak area unit of 1.
This is one of the most commonly used normalization methods in NMR metabolomics.
Thus, each peak intensity can be expressed as a fraction of the total peak intensity (as a
percentage), making it possible to compare each metabolite level between samples in the
same unit [33]. The UV scaling method is one of the easiest ways to adjust the metabolic
variations by giving each metabolite the same importance, making the standard deviation
equal to 1 for all metabolites [35,36].

Table 2. Parameters of orthogonal partial least squares-discriminant analysis (OPLS-DA) models
based on various normalization and scaling methods to discriminate between Korean and Chinese
soybean samples.

Group
No.

Normalization
Method

Scaling
Method

Number
of Com-
ponent

R2Y Q2Y R2Y
Intercept

Q2Y
Intercept

1
Standard

UV 4 0.844 0.762 0.218 −0.430
2 Par 7 0.861 0.779 0.197 −0.417
3

Total
UV 5 0.882 0.783 0.254 −0.487

4 Par 6 0.862 0.798 0.165 −0.385
Number of components obtained from autofit function in SIMCA software; OPLS-DA, orthogonal partial least
squares discriminant analysis; Standard, standardized area normalization; Total, total area normalization; UV,
unit variance; Par, Pareto; The bold characters indicate the selected optimal model parameters.

Based on the selected total area normalization and UV scaling methods, various
variable influences on projection (VIP) values were applied to select the optimal OPLS-DA
model. The VIP values from the 25 metabolites are listed in Table S2. As listed in Table S3,
the best OPLS-DA model (R2Y 0.882 and Q2Y 0.783) for discriminating between Korean
and Chinese soybean samples was constructed without applying the VIP cut-off value.

OPLS-DA-derived score plots (Figure 1A) showed clear discrimination between Ko-
rean and Chinese soybean samples. Y prediction plots using the LOO-CV are shown in
Figure 1B. These were used to evaluate the ability of the OPLS-DA model to determine
the origin of soybean samples (i.e., Korea or China). A threshold value of 0.5 was adopted
to classify the origin of the soybean samples. Except for one Korean sample (Kangwon-
Yeongwol) and two Chinese samples (Heilongjiang and Guangdong provinces), most of the
samples were classified correctly, showing 96.9% sensitivity, 94.4% specificity, and 95.6%
accuracy (Table 3). ROC curve analysis showed the area under the curve (AUC) value
of 1.0 for predicting the geographical origin of soybean samples from Korea and China
(Figure S7A). This identified 25 metabolites which could be used as potential biomarkers
differentiating the geographical origin of soybean sample from Korea and China. Thus, the
OPLS-DA model obtained in the present study is useful for discriminating and predicting
Korean and Chinese soybean samples.
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Table 3. Classification performance parameters (sensitivity, specificity and accuracy) of OPLS-DA
model to discriminate between Korean and Chinese soybeans, and partial least squares-discriminant
analysis (PLS-DA) models for discriminating between three regions for Chinese soybeans using
leave-one-out cross-validation.

Class Sensitivity % Specificity % Accuracy %

Korea vs. China 96.9 94.4 95.6

China
NR vs. MR&SR 100.0 100.0 100.0
MR vs. NR&SR 100.0 91.7 94.4
SR vs. NR&MR 100.0 100.0 100.0

NR: northeastern region, MR: middle region (Huang-Huai-Hai and Yangtze River region), SR: southern region.

The relative levels of metabolites in the soybean samples from Korea and China are
listed in Table S4. Among the 25 total metabolites, nine showed significantly different
relative levels when comparing Korean and Chinese soybean samples. Relative levels
of alanine, citrate, isoleucine, tartarate, and valine were significantly higher (p < 0.05) in
Korean soybeans than Chinese soybeans, whereas those of asparagine, choline, galactarate,
and tryptophan were significantly higher in Chinese soybeans than Korean soybeans.
These nine metabolites (VIP value over 0.87) were suggested as influential contributors to
the differentiation between Korean and Chinese soybean samples (Table S2).

Furthermore, this study investigated the possibility of a discriminant model for soy-
bean samples from Korea and northeastern China. In geographic coordinates, these two
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sites are located relatively close along the latitudinal and longitudinal axis (38◦ N, 127◦ E
in Korea, 41–48◦ N, 122–129◦ E in northeastern China). As shown in Figure S8A,B, soybean
samples from Korea and northeastern China were well discriminated. The LOO-CV test
showed an accuracy of 100% for predicting origin (Figure S8C). Accordingly, soybean
samples from Korea and northeastern China could also be differentiated by NMR-based
metabolic profiling, even though the geographical locations of Korea and northeastern
China are relatively close.

Differences in the metabolic profile levels of seed plants including soybeans are
influenced by genetic factors, such as cultivar; however, they are also influenced by envi-
ronmental factors [37,38]. Based on thousands of years of the rich planting experience of
breeders and on specific environmental conditions, many scientists and breeders in each
region have developed their own environmentally compatible soybean varieties, such as
drought-, cold-, disease-, and insect-resistant varieties, to accommodate environmental
conditions in soybean breeding programs or using historical landraces maintained by
farmers for their seed lots. Therefore, the influence of the variety and environmental back-
ground factors on differences in metabolites between Korean and Chinese soybean samples
could be considered. Korea and China are the main countries that have a long cultivation
history and broad genetic diversity of soybean, and soybean genotypes collected from
these countries are known to be different [39–42]. The history of soybean cultivation in
Korea began 2500 years ago, and different cultivars with various forms and agronomic
characteristics were formed over the years, which were utilized as genetic resources for the
improvement of modern varieties. However, these native soybeans were quickly replaced
by newly developed varieties, which lowered the genetic diversity of Korean soybean
varieties [43]. The history of soybean cultivation in China began 3000 years ago, and the
northern, Huang Huai (area between Yellow River–Huai Rivers) and southern regions are
the major cultivation areas [44]. China has a diverse climate with varying soil character-
istics and rainfall patterns. Over 1400 soybean cultivars have been developed in China
between 1923 and 2013 [45] through a scientific breeding program; therefore, the parents of
the cultivars were landraces, cultivars, breeding lines, and exotic introductions. During the
past 20 to 40 years, the yield level of soybean cultivars has increased from 750 kg/hm2 to
2000 kg/hm2 in China [46].

Although we could not obtain cultivar information for soybeans, the significantly
different relative levels of various metabolites between Korean and Chinese soybeans
might be due to different environmental conditions, such as temperature, precipitation,
and soil conditions (type, particle size, and nutrient content), which are closely related
to metabolic expression. The growth and metabolic characteristics of the same cultivar
varied depending on the environmental conditions of the growing region, which caused
differences in its cellular metabolism [47].

There are several studies reporting the effect of various soil conditions on the yield
and quality characteristics of soybean seeds. Higher soybean seed yield was observed
in soil with low phosphorous and potassium content, and the yield was also improved
under the physical properties of soil with a higher clay content, which was due to the high
plant-available water in that type of soil during the growing season [48]. Soybean seed
composition varied depending on the soil nutrient content. In the correlation analysis
of soil nutrients and seed composition, low contents of soil organic matter and elements
such as N, C, K, B, and Zn were related to the lower content of soybean protein and oleic
acid [49]. Similarly, amino acid content in soybean was positively correlated with the
contents of soil elements such as B, Mo, Se, K and N [50]. Soil moisture stress is also an
important abiotic factor for modulating the soybean yield and quality. Under a deficient
soil moisture condition, soybean seed yield was reduced and the contents of total protein,
palmitic acid, linoleic acid, sucrose, raffinose, stachyose, N, P, K and Ca were markedly
decreased, whereas those of total oil, stearic acid, oleic acid, linolenic acid, Fe, Mg, Zn, Cu
and B were increased [51]. Therefore, it is suggested that the contents of soil nutrients or
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moisture during the soybean reproductive periods could be critical factors for influencing
the yield and nutrient value (various metabolites) in soybean seeds.

In our study, there was no significant difference in the average annual temperature
and precipitation of Korea and China (Figure S4), so it is assumed that the soil moisture or
nutrient contents might be different depending on the soil conditions in each country. Even
with the same precipitation environment, soil moisture content could be different according
to various types, textures, and particle size of soils in each region or country, because the
moisture-holding capacity could differ depending on the soil condition. Therefore, other
environmental factors, such as soil conditions, rather than temperature and precipitation,
and diverse soybean cultivars improved over centuries to adapt to the particular envi-
ronmental conditions of each region, might be important factors influencing the different
levels of metabolites in Korean and Chinese soybeans.

3.4. Discrimination and Prediction of Domestic Chinese Soybean Samples

Korean soybeans could not be categorized (data not shown) according to various
provinces, possibly because most of the provinces in Korea have similar climatic, soil, and
rainfall conditions as well as soybean varieties grown on a small land scale. Therefore, we
focused on the differentiation in domestic Chinese soybean samples.

Various normalization and scaling methods were tested to determine the optimal PLS-
DA model to differentiate domestic Chinese soybean samples. The highest R2Y value of
0.898 and Q2Y value of 0.651 were obtained by applying standardized area normalization,
UV scaling, and six PLS components satisfying R2Y and Q2Y intercept values in the PLS-DA
model (Table 4). Standardized area normalization divides the intensity of each metabolite
by a constant concentration of the internal standard compound, allowing the measurement
of the contribution of each metabolite to the spectrum [52]. Because internal standards
added prior to extraction can monitor and correct the intensity drift that might occur
during extraction and instrument analysis, standardized area normalization can reduce the
difference in extraction efficiency between samples [53,54]. Meanwhile, the Pareto scaling
method emphasizes weak peaks with high biological relevance and reduces the effect of
intense peaks, thereby reducing the effect of noise variables more than the UV scaling
method [55].

Table 4. Parameters of PLS-DA models based on various normalization and scaling methods to
discriminate between the different origins of Chinese soybean samples.

Group
No.

Normalization
Method

Scaling
Method

Number
of Com-
ponent

R2Y Q2Y R2Y
Intercept

Q2Y
Intercept

1
Standard

UV 6 0.898 0.651 0.348 −0.821
2 Par 2 0.492 0.348 0.082 −0.189
3

Total
UV 3 0.731 0.622 0.197 −0.345

4 Par 4 0.713 0.566 0.142 −0.468
Number of components obtained from autofit function in SIMCA software; PLS-DA, partial least squares
discriminant analysis; Standard, standardized area normalization; Total, total area normalization; UV, unit
variance; Par, Pareto; The bold characters indicate the selected optimal model parameters.

Based on the selected standardized area normalization and UV scaling methods,
various VIP cut-off values were applied to select the optimal OPLS-DA model. The VIP
values of the 25 metabolites are listed in Table S5. When a VIP cut-off value of 1.0 was
applied, the best PLS-DA model was obtained with 11 metabolites showing the highest
R2Y value of 0.887, Q2Y value of 0.789, R2Y intercept value of 0.151, and Q2Y intercept
value of –0.480 (Table S6).

Chinese soybean samples from the northeastern region (NR), middle region (MR), and
southern region (SR) were successfully differentiated by NMR-based metabolic profiling
(Figure 2A). In the development of the PLS-DA model for discriminating between more
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than two groups, cross-validation could be conducted in three groups that were binary
coded with the three dummy Y variables, (0 1 1) for samples in class 1, (1 0 1) for samples
in class 2, and (1 1 0) for samples in class 3, where 0 and 1 indicate the control and case,
respectively [56]. Therefore, three independent class approaches were employed in our
study. Y prediction plots after performing the LOO-CV are shown in Figure 2B–D. When
designating control groups as both NR and SR independently, Ypredcv values (predicted Y
values of each left-out sample calculated after performing cross-validation) of each control
and case groups were correctly classified with a threshold value of 0.5 (Figure 2B,D). Only
two misclassified samples were detected in the model designating the MR to the control
group (Figure 2C). In summary, 100% sensitivity, specificity, and accuracy were obtained
in the model designating the NR and SR to the control group, and 100% sensitivity, 91.7%
specificity, and 94.4% accuracy were obtained in the model designating the MR to the
control group (Table 3).
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Figure 2. PLS-DA score plots (A) derived from the 1H-NMR spectra of soybean samples for discriminating the geographical
origin of three regions of China. Leave-one-out cross-validated score plots for NR vs. MR/SR comparative group (B), MR
vs. NR/SR comparative group (C), and SR vs. NR/MR comparative group (D) showing control sample (one region, above
dashed line) and case sample (two regions, below dashed line) with threshold value of 0.5 (dashed line) for all samples.
In case of misclassified samples, the Ypredcv values were marked with red circles. NR: northeastern region, MR: middle
region (Huang-Huai-Hai and Yangtze River region), SR: southern region.

In ROC curve analysis, all AUC values for predicting the origin of soybean samples
from three Chinese regions were 1.0 (Figure S7B–D). It was confirmed that the selected
11 metabolites could be used as potential biomarkers for the differentiation of geographical
origin of soybean samples from three Chinese regions.

Seventeen metabolites showed significantly different levels among soybeans from the
three regions of China analyzed in our study (Table S7). Among these 17 metabolites, four
metabolites (glucose, hypoxanthine, leucine, and tartarate) showed significantly higher
levels in the NR, and SR was characterized by significantly higher levels of malonate alone.
However, in the MR, no particular metabolite showed a relatively higher level than the
other regions.

The present study assumed that the differences in soybean metabolites among Chinese
regions might be affected by different environmental conditions including temperature,
precipitation, and soil as well as cultivar differences. Based on China’s regional climate
statistics, there were significant differences in the average annual temperature and total
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precipitation among the three Chinese regions in 2016 (Figure S4). The average annual
temperature in the NR of China was the lowest compared to the other regions, and there
was no significant difference in temperature between the MR and SR. The average annual
precipitation was the highest in the SR of China compared to the other regions, whereas
no significant difference was found in the average annual precipitation between the NR
and MR. Sugar accumulation has been observed in soybeans obtained from the cold north-
eastern region of China, whereas amino acid and total protein content was abundant in
soybeans sourced from the warm southern region in China [38]. North-to-south latitudinal
gradients in China have a greater influence on metabolite profile changes in soybeans
than east-to-west longitudinal gradients [38]. This is consistent with our study results
showing the lowest temperature and highest soybean glucose level, which are character-
istic features of soybeans from northeastern China. Plants exposed to low temperatures
accumulate starch-derived sugars to adapt to cold stress and use sugars as an energy source
or cryoprotectant [57].

Previous studies have reported that the accumulation of alanine and gamma-aminobutyric
acid (GABA) in soybean roots is the most characteristic response to flood stress [58]. This is
consistent with our findings that soybean alanine levels were the highest in the SR of China,
which had relatively higher precipitation than the other regions. The accumulation of
amino acids such as alanine and GABA is an important adaptation mechanism for storing
insufficient carbon and nitrogen in an oxygen-deficient environment [58]. Therefore, flood-
stressed plant cells maintain intracellular osmotic pressure by accumulating amino acids to
compensate for the reduced soluble carbohydrate level [58].

In the present study, Chinese soybeans could be differentiated based on their cultiva-
tion locations (i.e., northeastern, middle, and southern regions), suggesting that regionally
adapted varieties were characterized in each region of China under their own inherent
growing environments. We previously reported the classification of soybeans from Korea
and China using FT-IR spectroscopy [59]. The NMR-based differentiation and prediction
methods for identifying the geographical origin of soybeans in the present study could be
used as a complementary method to the FT-IR-based technology to provide orthogonal
criteria for more precisely discriminating soybean samples.

4. Conclusions

In the present study, NMR spectroscopy coupled with multivariate statistical anal-
ysis was employed to differentiate the geographical origin of soybeans. We succeeded
in discriminating and predicting the origin of Korean and Chinese soybeans using the
OPLS-DA model with LOO-CV. In addition, soybeans from the northeastern, middle,
and southern regions of China were differentiated using PLS-DA models. Based on the
requirements of growers and consumers, various soybean varieties have been planted
and grown worldwide. These soybean varieties have been utilized in soybean products
such as soy oil, soy sauce, tofu, and soymilk, and the market life of soybean varieties is
short. Hence, prediction models and databases for investigating the geographical origin of
soybeans should be regularly updated (at least every 2–3 years). As an investigative work,
we established a simple, efficient, and convenient method for discriminating the precise
geographical origin of soybeans in the present study. This method could be widely used
for the detection of soybean samples with intentionally mislabeled geographical origin. In
future studies, soybean samples from diverse geographical locations worldwide that have
been harvested in different years will be investigated using the methods developed in the
present study.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2304-815
8/10/2/435/s1, Figure S1: Geographical distribution of Korean and Chinese soybean samples. Map
of Korea with 8 provinces of soybean samples (A), Map of China with 3 divided regions of soybean
samples consisting 9 provinces (B). Figure S2: Representative pictures of soybean samples from
Korea and China. Figure S3: Average size of soybean samples from Korea and China. Comparison of
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and province in Korea and China (B). Figure S4: Climate data for soybean cultivation regions in Korea
and China in 2016. The average value of monthly mean temperature (A) and total precipitation (B)
from January to December. Figure S5: Representative 600 MHz 1H-NMR spectra of Korean (A) and
Chinese (B) soybean samples. Figure S6: 1H-1H correlation spectroscopy (COSY, (A)) and 1H–13C
heteronuclear single quantum correlation (HSQC, (B)) spectra of soybean sample. Figure S7: Receiver
operating characteristics (ROC) curves and area under the curve (AUC) values for distinguishing
geographical origin of soybeans. AUC value of 25 metabolites discriminating soybean samples
from Korea and China (A). AUC value 11 metabolites discriminating Chinses soybean samples
from NR and MR/SR (B), MR and NR/SR (C), and SR and NR/MR (D). Figure S8: Discrimination
model for soybean samples from Korea and northeastern China. OPLS-DA score plots (A) derived
from the 1H-NMR spectra of soybean samples for discriminating the geographical origin of Korea
and northeastern China. Permutation test plots (B) with 100 permutations of OPLS-DA model.
Leave-one-out cross-validated score plots (C). Table S1: Products and suppliers’ information of
Chinese soybean samples. Table S2: Variable importance projection (VIP) values of metabolites for
discriminating Korean and Chinese soybean samples. Table S3: Parameters of OPLS-DA models
based on various VIP cut-off values for discriminating Korean and Chinese soybean samples based
on total area normalization and UV scaling methods. Table S4: Relative levels of metabolites in
Korean and Chinese soybean samples. Table S5: Variable importance projection (VIP) values of
metabolites for discriminating different origins of the Chinese soybean samples. Table S6: Parameters
of PLS-DA models based on various VIP cut-off values for discriminating different origins of the
Chinese soybean samples based on standardized area normalization and UV scaling methods. Table
S7: Relative levels of metabolites in Chinese soybean samples.
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