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Quantum Chemistry Dataset 
with Ground- and Excited-state 
Properties of 450 Kilo Molecules
Yifei Zhu  1,2, Mengge Li2, Chao Xu1,2 & Zhenggang Lan1,2 ✉

Due to rapid advancements in deep learning techniques, the demand for large-volume high-quality 
datasets grows significantly in chemical research. We developed a quantum-chemistry database that 
includes 443,106 small organic molecules with sizes up to 10 heavy atoms including C, N, O, and F. 
Ground-state geometry optimizations and frequency calculations of all compounds were performed 
at the B3LYP/6-31G* level with the BJD3 dispersion correction, while the excited-state single-point 
calculations were conducted at the ωB97X-D/6-31G* level. Totally twenty-seven molecular properties, 
such as geometric, thermodynamic, electronic and energetic properties, were gathered from these 
calculations. Meanwhile, we also established a comprehensive protocol for the construction of a 
high-volume quantum-chemistry dataset. Our QCDGE (Quantum Chemistry Dataset with Ground- 
and Excited-State Properties) dataset contains a substantial volume of data, exhibits high chemical 
diversity, and most importantly includes excited-state information. This dataset, along with its 
construction protocol, is expected to have a significant impact on the broad applications of machine 
learning studies across different fields of chemistry, especially in the area of excited-state research.

Background & Summary
In recent decades, the introduction of artificial intelligence (AI) and machine learning (ML) into chemistry 
research dramatically altered the paradigm of scientific discoveries. With the development of computer science 
and technology, data played a more and more important role in several areas of chemical research. Several 
chemical datasets were created from the perspective of cheminformatics, such as PubChem1, GDB2–5, ZINC6,7, 
ChEMBL8,9 and so on10,11. These datasets were widely used in various areas of chemistry, which often serve as 
crucial data sources for in silico drug discovery12–14, novel material development15–21, etc.

Recently, the development of molecular datasets from first-principles quantum chemistry calculations 
attracted great attention. The incorporation of these electronic-structure calculations largely improves the data 
consistency in the dataset, eliminates inherent distribution errors, and provides molecular properties based 
on underlining atomic-level physical insights. Therefore, this types of quantum-chemistry dataset shows 
the high transferable ability and the unified performance across various applications. Currently, available 
quantum-chemical datasets can be roughly categorized into two main types: those that focuses the chemical 
and physical properties of different compounds with high diversities22–33, and those that aim at exploring the 
non-equilibrium structures in the conformational space of specific molecules.

In recent years, the emergence of deep learning algorithms dramatically speed up the growth of the demand 
for a large-volume, high-quality dataset. In this new era of big data-driven chemical researches, two major limi-
tations of existing molecular-property datasets need to be addressed.

Firstly, the datasets providing information on molecular excited states are very rare24,29,33–37, although the 
excited-state properties are immensely valuable in practical applications, ranging from photovoltaic devices, 
organic light-emitting diodes, laser technologies, and photobiological processes. Therefore, there is an urgent 
need to develop the high-volume datasets that contains high-quality excited-state data of molecules with large 
chemical diversities.
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Secondly, with the development of the deep learning technologies, the quality and quantity of data becomes 
a new bottleneck. On the one hand, it is well known that very large data volumes can guarantee the correct 
interpolation ability and enhance the transferable abilities of ML models. Although the simple combination of 
different datasets seems to be a straightforward solution given their small overlap in chemical spaces38,39, this 
approach is not always recommended40,41. The main issue is that the data from different datasets do not match 
to each other due to their different resources. In addition, many available datasets still suffer from the lack of 
chemical diversity, and this significantly deteriorates the performances of the deep ML models in chemical 
applications38.

Therefore, our objective is to build a quantum chemistry dataset that includes both ground- and excited-state 
properties. This dataset must show massive-volume, data-consistency and high-diversity. At the same time, the 
suitable protocol for the large dataset construction must show a balance between effectiveness, efficiency, and 
accessibility. To address this, we aim to develop such a comprehensive protocol for general usages, which covers 
initial geometry selection, quantum chemical calculations, and data quality examinations, along with efficient 
accessing and retrieval processes. This protocol ensures the robust and efficient construction of a large-volume 
dataset in chemical research. We wish that the current work provides not only a valuable large dataset but also a 
useful protocol to meet the increasing tendency to treat large-volume data in future chemistry research.

In this work, we reported the QCDGE (Quantum Chemistry Dataset with Ground- and Excited-State 
Properties) dataset with high chemical diversity, which totally includes 443,106 molecules with up to ten heavy 
atoms within the carbon (C), nitrogen (N), oxygen (O) and fluorine (F) range. These molecules are collected 
from the well-known QM925, PubChemQC29 and GDB-112,4 datasets. The ground-state geometry optimization 
and the frequency analysis were performed at the B3LYP/6-31G* level with the D3 version of Grimme’s dis-
persion complemented by Becke-Johnson damping (BJD3)42, while the excited-state single-point calculations 
including the first ten singlet and triplet transition states were performed at the ωB97X-D/6-31G* level. In total, 
27 properties are extracted from these calculations, including ground-state energies, thermal properties, transi-
tion electric dipole moments, etc. We expect this dataset of small organic molecules to be useful in a wide range 
of applications in chemistry, especially for excited-state researches.

Methods
In this work, we tried to construct the QCDGE dataset, which is a quantum chemistry dataset that contains 
ground-state and excited-state information of ~450k molecules. They are small organic molecules with sizes up 
to ten heavy atoms in the range of C, O, N and F. The dataset construction procedure is divided into four steps, 
as detailed in the following subsections. The whole workflow is shown in Fig. 1(a).

Gaussian16

Opt + Freq

Opted Geoms

Check Process

InChI-based

Check

Passed Geoms

Redundant

Internal

Coordinate-

based Check

Passed

dessaPdeliaF

InChI+SMILES-

based

Check for

Duplicates

Passed

Failed

Opted Geoms (c) Checking Process

Initial SMILES Python RDKit Descriptors

Mini-batch

K-Means

Clustering

Selected

SMILES

Python

Openbabel

Initial Guess

Structures
XTB opt

Pre-opted

Geoms
Initial Geoms

(b) Initial Geoms from GDB11

Initial Geoms

Chosen Geoms Final Geoms

Discard

Gaussian16

TDDFT

Final Database

(a) Database
Construction

Failed

Discard

Fig. 1 Workflow employed in the data generation of the QCDGE dataset. (a) Overview of the data generation 
process for the dataset. (b) Initial geometry selection sourced from the GDB11 dataset. (c) Examination of 
optimization convergence and identification of duplicate geometries.
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initial geometry collection. Given our objective to build a dataset that reflects chemical diversity, it is 
imperative to ensure a balanced integration of data sources. The GDB and PubChem datasets commonly serve as 
molecular sources for the construction of quantum chemistry datasets. The GDB series datasets are constructed 
through molecular combinatorial enumerations, according to the criteria of chemical stability and synthetic feasi-
bility. In contrast, PubChem data are built from hundreds of data sources, including government agencies, chem-
ical vendors, journal publishers, and others, which offers a broad collection of molecular information. It was 
observed that the duplication of data between these two datasets may not be significant38,39, which allows us to 
integrate molecules from these two datasets to define a new one. Therefore, we believe that the GDB and PubChem 
datasets stand out as original data sources with the optimal balance between chemical diversity and reliability.

In the first stage, our aim was to collect molecules with a size of up to 9 heavy atoms. To save computa-
tional resources, we first consider quantum chemistry datasets derived from GDB and PubChem, in which the 
three-dimensional optimized molecular structures were already given. Specifically, we took molecules from 
two primary datasets: QM9 and PubChemQC, which are derived from GDB-17 (also built from GDB) and 
PubChem, respectively. The QM9 dataset contains 132,177 molecules with sizes up to nine heavy atoms in the C, 
O, N and F range. Because of its significance and reliability, it is generally considered one of the golden standard 
datasets in the field of ML chemistry. Therefore, we chose compounds from the QM9 dataset according to the 
above selection rule. At the same time, we selected 122,785 molecules from PubChemQC, by using the same 
selection rule of QM9, in terms of the same limitation on heavy atoms.

In the second step, we broadened our selection criteria to include molecules with up to ten heavy atoms, in 
order to cover a wider chemical space. As the PubChemQC dataset contains many large compounds, we simply 
extracted a subset of 105,085 molecules that meet this new standard. As contrast, no such molecules are found 
in the QM9 dataset. Therefore, we selected additional molecules from GDB-11, a dataset generated from the 
original GDB. It is necessary to mention that many datasets were derived from GDB, such as GDB-11, GDB-17, 
QM9, etc. In principle, the GDB-17 dataset might be a better choice since the QM9 dataset is derived from it. 
However, in practice, the large size of the GDB-17 dataset brings numerical challenges. Because both GDB-11 
and GDB-17 are generated on the basis of the same approach, we chose the smaller GDB-11 dataset here.

Here GDB-11 still contains over 3,000,000 molecules characterized by 10 heavy atoms (C, N, O and F ele-
ments). The direct inclusion of such large amounts of molecules would disrupt the balance of data distributions. 
To manage this, we used the mini-batch K-Means clustering algorithm43 to divide these molecules into 10,000 
clusters. We then randomly selected molecules from these clusters, ensuring that the number of molecules cho-
sen from each cluster was proportional to ratio between the cluster size and the total number of molecules. In 
this way, we selected 134,681 molecules, achieving a balanced representation across the chemical space.

Given that GDB-11 solely offers SMILES representations for its molecules, we needed to perform the initial 
geometry optimization. For this purpose, Cartesian coordinates of these molecules were generated using the 
in-house Python interface to Open Babel (version 2.8.1)44,45. Subsequently, these geometries were optimized 
using the semi-empirical method GFN2-xTB46 in the xtb program47. The whole process of collecting initial 
geometries from GDB-11 is shown in Fig. 1(b). For the in-depth information ranging from molecular descrip-
tors, clustering methods, to the data selection strategies, please refer to the Supplementary Information.

Finally, we collected 494,701 pre-optimized molecular structures with balanced data sources as shown in 
Table 1, in which all small organic molecules at most contain ten heavy atoms of C, N, O, and F. It is noted that 
only molecules selected from GDB-11 were newly generated from SMILES strings in this step. This choice is suf-
ficient because our goal is to build a quantum chemistry dataset with high diversity. Moreover, our approach not 
only extends the existing dataset but also establishes a unified method for merging different datasets. Therefore, 
we aim to ensure that all molecules are optimized and calculated at the same computational level. Certainly, it 
is essential to incorporate more new compounds and develop a more comprehensive dataset, which will be the 
focus of our future research efforts.

Ground-state calculations. Once the initial geometries were collected, we moved to the step of the quan-
tum chemistry calculations, which is the most time-consuming one. Here, ground-state geometry optimizations 
and frequency analyses were conducted for all molecules. These calculations were performed at the DFT level 
using the B3LYP functional and the 6-31 G(d) basis set, which employ the Gaussian 16 package (B.01 version)48. 
To enhance accuracy, we incorporated the BJD3 dispersion corrections. Among all optimization jobs, about 0.3% 
(1,534) calculations failed to converge. This indicates that most initial structures are reasonable.

Optimized geometry check. In order to check the optimized geometries and to streamline the dataset by 
removing duplicated compounds, we proposed an examination process as shown in Fig. 1(c).

The first goal of this step is to confirm the consistency between optimized geometries and their initial counter-
parts. We generate InChI (IUPAC International Chemical Identifier) strings49 of initial and optimized geometries 
with the Python scripts interfaced with Open Babel (version 2.8.1). In most situations, the initial and optimized 

dataset Chemical space
Number of selected molecules up 
to 9 heavy atoms

Number of selected molecules 
with 10 heavy atoms Molecular structure data

PubChemQC PubChem 122,758 105,085 Cartesian coordinates

QM9 GDB series 132,177 0 Cartesian coordinates

GDB-11 GDB series 0 134,681 SMILES strings

Table 1. 494,701 initial data sources.
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geometries give consistent InChI representations, indicating the reliability of the optimization tasks. Occasionally, 
some pairs show obvious discrepancies. This may refer to situations where the optimized geometry and the initial 
geometry are significantly different, implying that the optimization may not obtain a consistent result. However, 
such discrepancies may simply be due to the fact that the definition of InChI codes is too rigorous, and this very 
tight rule largely exaggerates stereoisomeric differences, even for minor ones. Therefore, when initial and optimized 
molecular structures show different InChI representations, additional examinations of geometrical details should 
be performed to avoid misjudgments. In practice, the redundant internal coordinates50,51 of the initial and opti-
mized geometries were extracted using Gaussian 16 software. The direct comparison of them gave us solid answers 
to address whether the optimization task brings significant changes in molecular structures. When the optimi-
zation task gives the consistent structure with respect to the initial one, the molecule was retained in the dataset.

The second target is to eliminate duplicate geometries from our dataset. To achieve this, we simultaneously 
compare the structures using both SMILES and InChI strings generated via Open Babel. Given that these two 
representations highlight different aspects of the molecular geometries, it is enough to use them to classify dupli-
cated molecules. In addition, this detection methodology shows the effective balance between computational 
accuracy and efficiency.

After removing 51,595 geometries that failed in optimization (1,534) and discard in duplicated checking pro-
cess (50,061), finally the refined dataset contains 443,106 geometries. The relatively low proportion of duplicates 
further confirms that two original datasets cover different areas of the chemical space.

Excited-state calculations. All excited-state calculations were performed using the TDDFT method with 
the ωB97X-D functional and the 6-31 G(d) basis set. The reason to choose the ωB97X-D functional is mainly due 
to the fact that it gives reasonable descriptions of the charge transfer states, while the employment of the B3LYP 
level here may significantly underestimate the excitation energies of the charge transfer states. In the TDDFT 
calculations, the first ten singlet and triplet excited states were included. These calculations were carried out with 
Gaussian 16 software, employing the molecular geometries optimized at the B3LYP/6-31G(d)/BJD3 level.

Data Records
All data, including optimized molecular structures and important molecular properties, were extracted from the 
results of the quantum chemistry calculations. They are organized in a standard manner, which are accessible 

No. Source Key in HDF5 Description

1 GS labels Atomic labels.

2 GS coords Optimized Cartesian coordinates.

3 GS Etot Total energy.

4 GS e_homo_lumo HOMO and LUMO Energies.

5 GS polarizability Isotropic polarizability.

6 GS dipole Dipole moment.

7 GS quadrupole Quadrupole moment.

8 GS zpve Zero-point vibrational energy.

9 GS rot_constants Rotational constant.

10 GS elec_spatial_ext Electronic spatial extent.

11 GS thermal Thermal properties at 298.15 K.

12 GS freqs Harmonic vibrational frequencies.

13 GS mulliken Mulliken charges.

14 GS cv Heat capacity at 298.15 K.

1 ES Etot Ground-state energy.

2 ES e_homo_lumo HOMO and LUMO Energies

3 ES dipole Dipole moment.

4 ES quadrupole Quadrupole moment.

5 ES rot_constants Rotational constant.

6 ES elec_spatial_ext Electronic spatial extent

7 ES mulliken Mulliken charges.

8 ES transition_electric_DM Transition electric dipole moments.

9 ES transition_velocity_DM Transition velocity dipole moments.

10 ES transition_magnetic_DM Transition magnetic dipole moments.

11 ES transition_velocity_QM Transition velocity quadrupole moments.

12 ES OrbNum_HomoLumo Orbital numbers of HOMO and LUMO.

13 ES Info_of_AllExcitedStates Electronic characters of 10 singlet and 10 triplet excited states.

Table 2. The fundamental and calculated information extracted from both ground-state and excited-state 
quantum chemistry calculations. Due to the utilization of different functionals in ground-state and excited-state 
calculations, some properties are extracted in both scenarios. In the Source column, GS and ES indicates the 
property obtained from the calculation of the ground and excited state, respectively.
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either in the figshare repository52 and or on the website of this data-driven excited-state information project 
(langroup.site/QCDGE). To ensure the integrity of all data in the further applications, we also provide the cor-
responding 512-bit cryptographic hash generated by the Secure Hash Algorithm 512 (SHA-512) for verification.

In the uploaded files, the final_all. csv summarizes the basic information of all molecules, such as their 
features (SMILES and InChI strings), the number of the heavy atoms, the number of ring moieties and so on. 
Within this file, the string in the first column serves as the unique identifier for each molecule. All data obtained 
from ground- and excited-state quantum chemistry calculations are saved in a binary file with the compressed 
version of the Hierarchical Data Format version 5 (HDF5)53 format. The HDF5 format is specifically designed 
to handle large volumes of numerical data, offering more efficient disk space utilization compared to other file 
formats such as text, JSON, and YAML. It supports reading data in chunks, enhancing efficiency in complex 
data analysis. The compressed version of HDF5 further reduces the record space significantly. In the current 
compressed version of the HDF5 file, the information of each molecule is organized as a dataset named after its 
identifier. Several versions of the SMILES and InChI strings are assigned as attributes for the dataset. Within 
each molecular dataset, 14 ground-state and 13 excited-state properties were recorded, as described in Table 2.

Technical Validation
For the current dataset, technical validation includes two main parts. First, the basic qualities of the data must 
be examined, such as their source, consistency, and correctness. Second, the chemical diversity of the dataset is 
crucial for its further applications.

We consider the following checks to ensure basic data quality. During the dataset construction process, the 
identifier for each molecule is created on the basis of its original number in the source dataset, as detailed in the 
Supporting Information. This allows us to easily track each molecule throughout the construction process and 
find the initial information in the source dataset. The primary technical validation of data quality is carried out 
by the checking process shown in Fig. 1(c). Since this is a crucial step in the dataset construction process, we 
described all details in the Methods section.

Number of 
heavy atoms

Element Composition

C N NO CN CO CF CNO CNF COF CNOF Total

2 4 3 2 3 3 1 0 0 0 0 16

3 7 4 9 21 17 4 10 5 2 0 79

4 32 7 18 114 70 19 108 23 20 9 420

5 92 6 20 418 283 58 501 60 82 39 1559

6 279 5 20 1325 1021 149 1878 135 239 89 5140

7 683 2 9 3330 3421 287 5693 301 468 206 14400

8 1968 6 7 7808 11932 484 18375 642 837 575 42634

9 5624 2 6 20714 48437 719 73475 1667 1483 1937 154064

10 4892 3 2 38028 36810 4073 97170 13621 12970 17190 224759

Total 13581 38 93 71761 101994 5794 197210 16454 16101 20045 443071

Table 3. Molecule counts in the QCDGE dataset categorized by element compositions and heavy atom counts. 
Notably, the numbers of molecules with specific element compositions are 9 (O), 1 (F), 4 (OF), 12 (NF) and 9 
(NOF), which are excluded from this table for clarity.

(b)(a)

Fig. 2 Analysis of molecular ring distribution and category diversity in the QCDGE dataset. (a) Distribution 
of molecules by the number of rings. The histogram illustrates the counts of molecules categorized by their 
corresponding ring numbers. (b) Diversity of molecular categories. The horizontal axis quantifies the number of 
molecules examined, while the vertical axis lists several types of molecules discovered. Each bar represents the 
frequency of a particular molecular type.
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Our primary objective is to construct a dataset with high chemical diversity, making chemical diversity a 
crucial indicator of data quality. Therefore, we validated the chemical diversity in QCDGE in various ways to 
ensure data quality meets this high-diversity goal. The technical validation of chemical diversity is presented in 
six aspects, primarily performed on the basis of the Python interface of RDKit (version 2023.3.1, https://doi.
org/10.5281/zenodo.591637).

Here, given that the current dataset does not contain duplicated structures, we simply divided all data into 
two subsets, namely data_A and data_B according to their original resources, the GDB series datasets and the 
PubChemQC dataset, respectively. These labels are used mainly for better illustrations in the following dis-
cussion. The differences in the chemical spaces of data_A and data_B were discussed in the Supplementary 
Information. We wish to emphasize that the conclusions drawn from the forthcoming analysis of data_A and 
data_B can not be generalized to describe the properties of the GDB and PubChemQC datasets themselves.

No. Image
Murcko 
Scaffold Smiles

Number of 
Molecules No. Image

Murcko Scaffold 
Smiles

Number of 
Molecules

1 C1CC1 17600 11 C1CCCC1 3675

2 C1CN1 7855 12 c1ccncc1 3655

3 C1CCC1 6814 13 c1c[nH]cn1 3541

4 C1CO1 5610 14 C1CCOC1 3455

5 C1CCNC1 5085 15 c1ccccc1 3402

6 C1CNC1 4633 16 c1ccoc1 3082

7 c1cc[nH]c1 4596 17 C1CCNCC1 2894

8 C1=CCCC1 4117 18 C1CCCCC1 2561

9 C1COC1 4057 19 C1=CCCCC1 2163

10 c1cn[nH]c1 3885 20 c1cnoc1 2068

Table 4. Top 20 Murcko scaffold SMILES in QCDGE dataset, along with their corresponding images and 
quantities.
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Element composition. First, the chemical diversity was examined by the element composition. Fifteen ele-
mental compositions were identified according to different combinations of four heavy atoms (C, N, O and F). The 
numbers of compounds in several leading composition groups are given in Table 3. Among them, the group com-
posed of molecules containing three heavy elements (C, N, and O) at the same time is the largest one, accounting 
for slightly less than the half of the total. The molecules including both C and O atoms together, as well as C and N, 
define the second and third largest groups, their total contributions accounting for about 3/4 of the total.

The same analysis was conducted on two molecular subsets, i.e., data_A and data_B, as shown in Tables S2 
and S3. The results clearly demonstrate that the data from two different resources in fact do not overlap with 
each other in the chemical space. Interestingly, data_A has a high proportion of molecules that contain other 
heavy atoms except C, whereas data_B exhibits a greater diversity of carbon skeletons. However, molecules 
containing only N atoms, only O atoms, those containing both O and F, both N and F, and those containing N, 
O and F simultaneously, only appear in data_B.

Topology. To ensure high-diversity in topology of molecules, we show the distribution of molecules by the 
number of rings in Fig. 2(a). More than 3/4 of molecular structures contain ring moieties and almost half of all 

No. Image
Murcko Scaffold 
Smiles

Number of 
Molecules No. Image

Murcko Scaffold 
Smiles

Number of 
Molecules

1 C1CCCC1 53327 11 CC1CCC1 4960

2 C1CCCCC1 33802 12 C1CCCCCC1 4902

3 C1CC1 31767 13 C1CCC2CC2C1 4001

4 CC1CCCC1 17570 14 C1CC2CC1C2 3524

5 C1CCC1 16435 15 C1CC2CCC2C1 3455

6 CC1CCCCC1 12189 16 [CH]1CCCCC1 2933

7 C1CC2CC2C1 8816 17 CC1CCCCCC1 2851

8 C1CC2CC12 5886 18 C1CC2CCC1C2 2778

9 C1CC2CCCC2C1 5139 19 [CH]1[CH]CCC1 2642

10 C1CCC2CCCC2C1 5110 20 C1CCC(C2CC2)C1 2413

Table 5. Make Murcko scaffolds generic, where all atom types are transformed into carbon (C) and all bonds 
are considered as single bonds. Top 20 generic Murcko scaffold SMILES in the QCDGE dataset, along with their 
corresponding images and quantities.

https://doi.org/10.1038/s41597-024-03788-x
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molecules include only one ring from a topological perspective. Among them, the proportions of acyclic mole-
cules in data_A and data_B are approximately ~15% and ~35%, respectively (Fig. S2). On average, molecules in 
data_A possess 1.51 rings, whereas in data_B, the average is 0.81 rings. This finding prompts us to make a more 
comprehensive investigation of the existence of various ring units, as the ring moieties, particularly the aromatic 
rings, play important roles in determining excited-state properties.

Compound type. Compound types were counted to determine if they exhibited a high diversity in this 
aspect. According to the descending order of the number of molecules, all composition groups were sorted as 
follows: heterocycles (24.6%), fused heterocycles (22.1%), heteroacyclic (15.3%), heteroaromatics (11. 9%), car-
bocycles (11. 9%), carboacyclic compounds (7.9%), fused carbocycles (5.4%), and aromatics with carbon rings 
(0.9%). This distribution is consistent with the chemical intuitive notion, as the introduction of heteroatoms 
should largely extend the chemical space with respect to the situations with only carbon atoms.

Significant differences appear in the distributions of compound types in data_A and data_B, as illustrated 
in Fig. S3. This divergence could be attributed to the following reasons. More ring structures appears in data_A, 
and thus the fused heterocycles are popular. In contrast, data_B contains more acyclic compounds, including 
both heteroacyclic and carboacyclic ones. As a consequence, data_A features a greater complexity of ring moie-
ties, whereas data_B is characterized by a relative abundance of linear or non-ring structures.

Scaffold analysis. Using the RDKit (version 2023.3.1) toolkit, the Murcko scaffold analysis was conducted 
to explore the diversity of molecular backbone in the QCDGE dataset. Aside from acyclic molecules (~23.2%), 
totally 59,898 distinct scaffolds were identified among the remaining molecules. Among all identified scaffolds, 
the most dominant one is three-membered carbon ring (C1CC1) moieties, as shown in Table 4. This may be 
attributed to the following fact. As our selection rule only chose molecules limited to ten heavy atoms, both small 
and large molecules may easily include stable three-membered rings.

No. General structure Substituents No. General structure Substituents

1 R1, R2= H, alkyl, aryl 11 R = H, acyl, alkyl, aryl

2 R = H, alkyl, aryl 12 R = H, alkyl, aryl

3 R = aryl 13 any compound with a cyclopropyl 
structure

4 R = H, alkyl, aryl 14 any compound with a OH structure

5 any (hetero) aromatic compound with 
an F atom 15 R1, R2, R3 = H, alkyl, aryl

6 any compound with a double bond 16 R = alkyl, aryl

7 R1, R2 = aryl 17 R1, R2, R3, R4 = H, acyl, alkyl, aryl

8 R = H, alkyl, aryl 18 any compound with a triple bond

9 R1, R2= alkyl, aryl 19 R = H, alkyl, aryl

10 R1, R2, R3 = H, alkyl, ary 20 R1, R2, R3, R4 = alkyl, aryl

Table 6. General functional structures and substitute moieties of top 20 functional groups in the QCDGE 
dataset. Marvin57 was used to draw general structures.

https://doi.org/10.1038/s41597-024-03788-x
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To facilitate a more comprehensive analysis, we can also make Murcko scaffolds generic as illustrated in 
Table 5, by converting all types of atom to carbon and treating all bonds as single bonds. In such analysis, 3,258 
Murcko scaffolds were identified, while five-membered rings predominated.

The scaffold analysis were also carried out in data_A and data_B, and results are detailed in Tables S4 to S7 
of Supplementary Information. In the standard scaffold analysis, 46,234 scaffolds were identified in data_A and 
17,290 in data_B. In contrast, the generic scaffold analysis yielded 2,161 and 1,934 scaffolds for data_A and 
data_B, respectively. This observation suggests that data_A show higher chemical diversity in the ring part than 
data_B, consistent with their individual features.

Functional group analysis. The diversity of functional groups was explored using the Ertl algorithm54,55, 
achieved with the RDKit (version 2023.3.1) toolkit. Initially, the original RDKit version only recognizes a limited 
range of generic functional groups composed of C, N, O, and F. To enhance the analysis ability, we expanded its 
functionality to identify 109 functional groups (as shown in Fig. S4), according to their definitions in Checkmol 
software56. The current in-house expansion mainly improves the analysis protocol in two ways, (i) making the 
distinction of substituents such as dialkylether and alkylarylether; (ii) including some larger functional groups 
such as hemiaminal.

Across the dataset, 102 functional groups were detected and the number of functional groups on average 
is 2.4 per molecule. Top twenty functional groups are shown in Table 6. Importantly, the absence of certain 
functional groups in our dataset does not suggest a lack of chemical diversity, while it may be attributed to the 
limitation on the number of atoms due to our selection rule.

The analysis of functional groups in molecules from data_A and data_B showed different distributions, as 
detailed in Tables S8 and S9. 102 and 98 types of functional groups were identified within data_A and data_B, 
respectively. The similar numbers here suggest that both datasets display very high degrees of chemical diversity. 

)i()h()g(

)f()e()d(

)b()b()a(

Fig. 3 Distribution of the lowest singlet state excitation energy across various molecular categories. (a) All 
selected molecules with double or triple bonds. (b) Heterocycles. (c) Fused heterocycles. (d) Heteroacyclic. 
(e) Heteroaromatics., (f) Carbocycles. (g) Carboacyclic compounds. (h) Fused carbocycles. (i) Aromatics with 
carbon rings.
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However, this does not imply that the distribution of chemicals in two datasets is similar. For the same func-
tional group, it is clear that its proportion is different in two subgroups. These results highlight the differences 
in chemical diversity between two subgroups, and further confirm the importance of merging two data sources.

Excitation energy. The high diversity of the QCDGE dataset can also be examined via the analysis of excited 
state properties. Considering that functional groups containing double or triple bonds are typically responsible 
for the photoexcitation to the low-lying excited states of molecular systems, we mainly focus on molecules con-
taining such bonds. In the QCDGE dataset, 346,312 molecules, representing over 78% of total molecules, contain 
double or triple bonds. The excitation energies of the lowest singlet states of them are shown in Fig. 3(a). The vast 
majority of these molecules display the lowest singlet state excitation energies distributed between 2 and 8 eV. 
Since the excitation energy is closely relevant to the type of compound, the corresponding distributions are given 
in Fig. 3. Among all compound types, aromatic compounds have the lowest average singlet state excitation ener-
gies, while carboacyclic compounds have the highest values. This observation is highly consistent with chemical 
intuition. Additionally, the distribution of the lowest singlet-state excitation energies across all molecules in the 
QCDGE dataset is shown in Fig. S5.

Usage Notes
We offer a Python script named extract_data.py, designed to extract relevant data from HDF5 files. This script 
allows for extracting molecular properties from the QCDGE dataset, in which many options are supported as 
well. It can process the full list of all molecules in the dataset, a predefined list of molecules, or a chosen set of 
molecules filtered by the number of heavy atoms and their elemental compositions. It is also possible to import 
the extractData() class from this script, providing the seamless integration with other Python codes. All script 
and data files are available in the figshare repository52 and the project website (http://langroup.site/QCDGE).

Code availability
All research was supported by the Python programming language (version 3.8.5), while several important Python 
libraries and their respective versions are outlined below. Open Babel (version 2.8.1) and RDKit (version 2023.3.1) 
Python libraries were used to generate cheminformatic representations and to perform analysis. The management 
of HDF5 files was facilitated by h5py (version 2.10.0, https://doi.org/10.5281/zenodo.3401726), while pandas 
(version 1.1.3, https://doi.org/10.5281/zenodo.4067057) were used to implement CSV files and perform relevant 
data analysis. All related scripts are also available on GitHub (https://github.com/Yifei-Zhu/Database_codes.git). 
All scripts fall into three categories: calculation, check, analysis, while a separate Python script extract_data.py is 
also given to extract data information.
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