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Abstract

The ErbB4 receptor tyrosine kinase is expressed at high levels in human and mouse colitis, and 

inhibits colon epithelial cell apoptosis in the presence of pro-inflammatory cytokines. In this 

study, we investigated the molecular mechanisms responsible for ErbB4-induced cell survival. In 

cultured mouse colon epithelial cells, ErbB4 overexpression resulted in increased levels of 

cyclooxygenase-2 (COX-2) mRNA and protein; in contrast, ErbB4 knockdown with siRNA 

blocked COX-2 accumulation in response to tumor necrosis factor. While ErbB4 is expressed as 

up to four different isoforms in epithelial tissues, its ability to promote COX-2 expression was 

isoform-independent. ErbB4-stimulated COX-2 induction was associated with an increase in 

mRNA half-life and was blocked by inhibition of Src, phosphatidylinositol 3-kinase, or epidermal 

growth factor (EGF) receptor (R). Furthermore, ErbB4 expression promoted EGFR 

phosphorylation in the presence of heregulin, implicating ErbB4-EGFR heterodimerization in 

these responses. With regard to the cellular responses to ErbB4 activation, increased survival of 

ErbB4-expressing cells in the presence of pro-inflammatory cytokines was sensitive to the COX-2 

inhibitor celecoxib. Furthermore, ErbB4-overexpressing cells acquired the ability to form colonies 

in soft agar, indicative of cellular transformation, also in a celecoxib-sensitive manner. Together 

our data indicate that ErbB4 is a key regulator of COX-2 expression and cellular survival in colon 

epithelial cells, acting in concert with EGFR through a Src and phosphatidylinositol 3-kinase 

dependent mechanism. These results suggest that chronic overexpression of ErbB4 in the context 

of inflammation could contribute to colitis-associated tumorigenesis by inhibiting colonocyte 

apoptosis.
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The ErbB4 receptor tyrosine kinase is a member of the epidermal growth factor receptor 

(EGFR)-related ErbB family, along with EGFR/ErbB1, HER2/ErbB2, and HER3/ErbB3. It 

is broadly expressed in fetal and adult mammalian tissues (1), and following ligand binding 

becomes active either as homodimers, heterodimers with other ErbBs, or as a constitutively 

active intracellular domain proteolytic cleavage product (2). ErbB4 expression and activity 

have been linked to a variety of cellular processes including differentiation (3, 4), cell 

survival (5), migration (6), proliferation (3, 7), growth arrest (8), and tumorigenesis (9, 10) 

in different tissues. However, only limited data are available on the intracellular signaling 

pathways involved in these responses. ErbB4 has several unusual biochemical properties—

the ability to bind both heregulin/neuregulin growth factors and a subset of EGFR ligands 

(11), the expression and metalloproteinase processing of up to four alternatively spliced 

isoforms (6, 8), and association with a more restricted suite of SH2-containing targets than 

ErbB1-3 (12)—which make it unique both in terms of its signaling and its possible role in 

disease. Further characterization of the molecular pathways downstream of ErbB4 activation 

will be key to advancing understanding of the receptor’s biology.

ErbB4 is expressed at elevated levels in the inflamed colonic mucosa of Crohn’s disease 

patients, is induced in cultured cells by the potent inflammatory cytokine tumor necrosis 

factor (TNF), and promotes survival of cultured colon epithelial cells in a 

phosphatidylinositol (PI) 3-kinase dependent manner (13). Furthermore, ErbB4 deletion 

from colorectal cancer cells promotes apoptosis (14). Together, these observations suggest 

that ErbB4 is a key regulator of colonocyte survival in inflammation and tumorigenesis, 

though the underlying signaling pathways remain undetermined.

Cyclooxygenase-2 (COX-2), the inducible form of the mammalian prostaglandin synthase, 

catalyzes the production of prostaglandins from arachidonic acid, simultaneously 

modulating inflammatory responses (15) and promoting intestinal epithelial cell survival 

(16, 17). COX-2 is present at high levels during inflammation and the response to injury in a 

number of tissues, including the digestive tract (18). It has also been identified as a key 

participant in colorectal carcinogenesis (19, 20). A better understanding of the cellular 

mechanisms regulating COX-2 expression and activity is likely to open new therapeutic 

avenues for both inflammatory diseases and cancer.

In this study, we tested the hypothesis that COX-2 is a target of ErbB4 signaling. We report 

that ErbB4 overexpression in mouse colon epithelial cells resulted in elevated COX-2 

expression. This effect was associated with increased COX-2 mRNA half-life and was 

blocked by EGFR, Src, or PI 3-kinase inhibition. Additionally, ErbB4 expression in these 

cells promoted cell survival and anchorage-independent growth which were sensitive to the 

COX-2 inhibitor celecoxib, and ErbB4 knockdown from colon cancer cells resulted in 

decreased COX-2 expression and increased sensitivity to TNF-induced cell death. Together 

these results suggest that ErbB4 promotes colonocyte survival through COX-2 expression, 

and that this pathway may represent a useful therapeutic target for inflammatory disorders 

and cancer.
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Materials and Methods

Cell culture

The non-transformed, conditionally immortalized young adult mouse colon (YAMC) 

epithelial cell line was provided by Dr. Robert Whitehead and the Vanderbilt Digestive 

Diseases Research Center Novel Cell Line Core (21). These cells express a temperature-

sensitive SV40 Large T antigen which confers conditional immortalization, but not 

transformation, under permissive conditions [33 °C in RPMI 1640 with 5% FBS, 5 units/ml 

mouse interferon-γ (Intergen, Norcross, GA), 100 U/ml penicillin and streptomycin, 5 μg/ml 

insulin, 5 μg/ml transferrin, and 5 ng/ml selenous acid (BD Biosciences, San Jose, CA)]. 

YAMC cells express low but detectable levels of ErbB4 in the resting state (13). Parental 

YAMC and ErbB4-infected YAMC cell lines were maintained under permissive conditions 

and transferred to nonpermissive conditions (RPMI 1640 containing 0.5% FBS, 

streptomycin and penicillin without IFN-γ, insulin, transferrin, or selenous acid, at 37 °C) 

for 24h before signaling experiments. LIM 2405 human colon cancer cells were also 

provided by Dr. Whitehead (22) and were grown in RPMI 1640 plus 5% FBS, 100 U/ml 

penicillin and streptomycin, 5 μg/ml insulin, 5 μg/ml transferrin, and 5 ng/ml selenous acid.

Transfections and constructs

pCDNA3.1-ErbB4 (JM-a/CYT-1, JM-a/CYT-2, JM-b/CYT-1, and JM-b/CYT-2 isoforms) 

expression vectors were kindly provided by Graham Carpenter (Vanderbilt University). 

Inserts from these constructs were PCR amplified (primers: 5′-

ATGGCGATCGCATGAAGCCGGCGACAGGACTTTG-3′, Sgf I site; 5′-

TTGGGCCGGACCGGCCTTACACCACAGTATTCCGGTG-3′, Sfi I site) then cut with 

Sfi I and Sgf I and ligated into linearized bicistronic LZRS-GFP vector (Albert Reynolds, 

Vanderbilt). Recombinant plasmids were screened by Sfi I/Sgf I digestion. Phoenix 

packaging cells (Steve Hanks, Vanderbilt) were transiently transfected with LZRS-GFP or 

LZRS-ErbB4-GFP and YAMC cells were subjected to 5 rounds of infection with filtered 

supernatant supplemented with 4 μg/ml polybrene. Infected populations were expanded and 

GFP-positive cells were sorted at the Vanderbilt Medical Center Flow Cytometry Shared 

Resource using a Becton-Dickinson FACSAria; top 20% GFP-expressing cells were 

maintained as pools.

Non-targeting control and ErbB4-specific siRNA pools were purchased from Dharmacon 

(Lafayette, CO) and transfected into YAMC cells (100 nM siRNA) with Lipofectamine 

RNAiMax (Invitrogen, Carlsbad, CA) following the manufacturer’s protocol. Control and 

ErbB4-targeting lentiviral shRNA particles were purchased from Santa Cruz and introduced 

to LIM 2405 cells according to the manufacturer’s instructions.

Soft agar colony formation

YAMC cell pools expressing LZRS-GFP (YAMC-Vec) and cells expressing LZRS-ErbB4 

[JM-b/CYT-2]-GFP (YAMC-ErbB4) were embedded in a 0.35% Noble agar (Sigma)/

growth medium gel overlaid on a 0.5% agar/growth medium support. The ErbB4 ligand 

heregulin-1β (HRG; 100 ng/ml) or the COX-2 inhibitor celecoxib (5 μM, Ray DuBois, 

Vanderbilt University) were added to both the overlay and supporting gels in some wells. 
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Cultures were maintained under permissive conditions, to model cooperation of ectopic 

ErbB4 with the SV40 Large T antigen expressed in these cells, for three weeks. After 3 

weeks in culture at permissive temperature, colonies were stained with MTT and counted by 

an investigator blinded to experimental conditions.

Antibodies, cytokines, and growth factors

Antibodies were purchased from: polyclonal anti-ErbB4 (c-18), monoclonal anti-HuR, 

monoclonal anti-CUGBP-2, and goat polyclonal anti-COX-2, Santa Cruz Biotechnology 

(Santa Cruz, CA); monoclonal anti-RBM3, Novus Biologicals (Littleton, CO); monoclonal 

anti-actin, Sigma Corp. (St. Louis, MO); anti-phospho-Y1284 ErbB4, phospho-Y1068 

EGFR, phospho-S536 p65 NF-κB and HRP-conjugated secondary antibodies, Cell Signaling 

(Danvers, MA). Recombinant HRG was purchased from R&D Systems (Minneapolis, MN). 

Murine TNF was purchased from Peprotech (Rocky Hill, NJ). All HRG and TNF cell 

treatments of were at 100 ng/ml.

Cell lysates, immunoprecipitation, and Western blot analysis

Cellular proteins were extracted in 50 mM Tris, pH 7.4 containing 150 mM NaCl, 1 mM 

EDTA, 1 mM EGTA, 1% Triton X-100, 0.2% sodium deoxycholate, 0.1% SDS, and 0.1% 

protease and phosphatase inhibitor cocktails (Sigma Corp.) and cleared by centrifugation. 

Whole cell lysates were immediately subjected to protein assay and boiled in Laemmli 

loading buffer. For immunoprecipitation, 1 mg lysate was precleared then incubated with 2 

μg antibody for 1h at 4 °C followed by 1h at 4 °C with protein A/G-agarose beads (Santa 

Cruz). Immunocomplexes were washed 4x in lysis buffer and eluted by boiling in Laemmli 

buffer. Samples were separated on SDS-polyacrylamide gels (6–10% as appropriate) and 

blotted on nitrocellulose membranes using the manufacturer’s instructions for each antibody. 

Loading was monitored by Western blot for actin and at least one additional uninvolved 

protein for whole cell lysates.

RNA isolation and analysis

Total RNA was purified with RNeasy columns (Qiagen, Valencia, CA) including on-column 

DNase treatment. COX-2 mRNA expression was determined by real-time quantitative PCR 

(RT-qPCR) using an independent cDNA synthesis step with iScript (Bio-Rad, Hercules, 

CA), SYBR Green reaction mix (Sigma), and iCycler with IQ5 software (Bio-Rad). Relative 

mRNA levels were determined using the 2−ΔΔCT method with 18S RNA as the reference. 

Primers used were: 5′-CGTCTGCCCTATCAACTTTCG (18s Fwd); 5′-

CCTTCCTTGGATGTGGTAGCC (18s Rev); 5′-CTCCCTGAAGCCGTACACAT (COX-2 

Fwd); ATGGTGCTCCAAGCTCTACC (COX-2 Rev).

Cytotoxicity assays

Cells were plated in 96-well dishes (10,000 per well), grown for 24h, shifted to 

nonpermissive conditions in the presence of 150 U/ml γ-IFN for 24h, then exposed to 100 

ng/ml TNF for 24h. Cells were counted using an MTS-based colorimetric proliferation assay 

kit (Promega Corp.) and % cell kill calculated relative to untreated control wells. Reported 

values reflect averages of at least 4 replicate wells.
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Statistics and replicates

All data are representative of at least three independent experiments. Statistical analyses and 

mRNA half-life calculations were performed using Prism software (GraphPad Inc., La Jolla, 

CA). Statistical significance of differences from controls was assessed by ANOVA analysis 

with Tukey post-test. Error bars indicate standard error of means.

Results

Full-length ErbB4 increases COX-2 levels in colon epithelial cells

In colonocytes, ErbB4 is induced by, and promotes cell survival in the presence of, 

inflammatory cytokines such as TNF (13). To investigate the mechanisms of this cellular 

response, we screened ErbB4-overexpressing cells for changes in expression of molecules 

associated with both cell survival and inflammation. An intriguing target identified was 

COX-2, which is involved in inflammation, cell survival, and colon carcinogenesis (23, 24). 

Western blot analysis of YAMC mouse colon epithelial cells infected with empty vector or 

retroviral expression constructs for each of the four ErbB4 isoforms (JM-a/CYT-1, JM-a/

CYT-2, JM-b/CYT-1, JM-b/CYT-2) showed increased steady-state levels of COX-2 protein 

(Figure 1A). Interestingly, this effect did not depend on a particular ErbB4 isoform, but 

seemed to parallel levels of full-length receptor expressed. Subsequent experiments using 

ErbB4 overexpression compared cells expressing vector (termed YAMC-Vec below) with 

cells expressing the ‘minimal’ isoform JM-b/CYT-2 ErbB4 (termed YAMC-ErbB4 below). 

COX-2 expression was further enhanced by addition of the ErbB4 ligand HRG for 3h 

(Figure 1B). Elevated COX-2 was also detected in MDCK cocker spaniel kidney epithelial 

cells overexpressing ErbB4 (Figure 1C), showing that this effect is not specific to the 

YAMC cell line or the colon. COX-2 activity is generally controlled through changes in 

message and protein expression, but regulatory phosphorylation on the enzyme has been 

reported (25). Thus we immunoprecipitated COX-2 from YAMC and YAMC-ErbB4 cells 

with or without HRG treatment, and blotted with antibodies to phospho-tyrosine, -threonine, 

and -serine. However, no ErbB4- or HRG-induced phosphorylation on COX-2 was detected 

(data not shown).

ErbB4 promotes TNF-stimulated COX-2 accumulation

Both ErbB4 (13) and COX-2 (23) are induced in colon epithelial cells by the pro-

inflammatory cytokine TNF. To test whether these pathways are linked, we treated YAMC-

Vec and YAMC-ErbB4 cells with TNF (100 ng/ml) and determined COX-2 expression by 

Western blot analysis. TNF induced COX-2 accumulation by 3h in YAMC-Vec cells; this 

response was significantly enhanced by ErbB4 overexpression (Figure 2A). As noted above, 

these results use the YAMC-ErbB4 cells expressing the JM-b/CYT-2 isoform; similar 

outcomes were observed with lines expressing other ErbB4 isoforms (not shown), further 

supporting the conclusion that ErbB4-mediated COX-2 induction does not require specific 

JM or CYT sequences.

Unchallenged YAMC cells express low but detectable basal levels of ErbB4, which increase 

following cell exposure to TNF. We have previously used siRNA knockdown to show that 

this endogenous ErbB4 expression regulates acute TNF activation of PI 3-kinase/Akt 
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signaling (13). To test the requirement for endogenous ErbB4 in COX-2 regulation by TNF, 

YAMC cells were transfected with non-targeting or ErbB4-specific siRNA pools. As in our 

prior studies, we obtained >85% knockdown of endogenous ErbB4 with siRNA transfection 

(Figure 2B). Following TNF treatment, whole cell protein lysates were prepared and COX-2 

induction was assessed by immunoblot analysis. TNF-induced COX-2 expression was 

significantly attenuated by ErbB4 knockdown (Figure 2C). Other TNF-induced signaling 

targets, including phosphorylation of MAP kinases (13) and the p65 subunit of NF-κB, were 

not sensitive to ErbB4 deletion.

ErbB4 enhancement of COX-2 levels in YAMC cells is Src and PI 3-kinase-dependent

To investigate the molecular pathways involved in ErbB4-stimulated COX-2 expression, 

YAMC-ErbB4 cells were exposed to HRG or TNF for 3h in the presence of Src 

(CGP77675, 1 μM), PI 3-kinase (LY294002, 5 μM), and MEK (U0126, 10 μM) inhibitors. 

Blockade of Src or PI 3-kinase, but not MEK, signaling abrogated COX-2 induction in these 

cells (Figure 3A, B). Results were confirmed with the use of additional Src and PI 3-kinase 

inhibitors (PP2 and wortmannin respectively, data not shown). Interestingly, Src inhibition 

also blocked Akt phosphorylation in response to 3h HRG exposure (Figure 3A), suggesting 

that Src is upstream of PI 3-kinase/Akt in ErbB4-induced signaling. To further explore this 

possible relationship we tested Akt phosphorylation after acute (5 min) HRG treatment. Src 

inhibition abrogated HRG-stimulated Akt phosphorylation at this early time point (Figure 

3C), supporting the notion that Src is required for activation of the PI 3-kinase pathway by 

ErbB4 in colon epithelial cells.

ErbB4 enhancement of COX-2 levels requires EGFR

Treatment with EGF also promotes COX-2 expression levels in YAMC cells (Hobbs and 

Polk, unpublished observations), raising the possibility that ErbB4 enhances COX-2 by 

heterodimerization with, or transactivation of, EGFR. Therefore we exposed YAMC-ErbB4 

cells to the EGFR inhibitor AG1478 (150 nm, 30 min pretreatment) before TNF or HRG 

treatment. Whole cell lysates were prepared and COX-2 levels were assessed by Western 

blot analysis. EGFR inhibition completely blocked both TNF-and HRG-stimulated COX-2 

induction in YAMC-ErbB4 cells (Figure 4A). Similarly, transfection with EGFR-specific 

siRNA abrogated COX-2 induction in the context of ErbB4 overexpression (Figure 4B). 

Furthermore, siRNA knockdown of EGFR expression attenuated ErbB4 phosphorylation in 

response to HRG (Figure 4C), suggesting a role for EGFR in ligand-induced ErbB4 

activation. Using antibodies specific for EGFR phosphorylated on Y1068, we also observe 

EGFR phosphorylation by 5 min in ErbB4-overexpressing cells (Figure 4D), paralleling the 

onset of ErbB4 phosphorylation [note that phosphorylation of the low levels of endogenous 

ErbB4 were also detectable in YAMC-Vec cells after HRG exposure, albeit only at longer 

blot exposure times (not shown)]. In contrast, in vector-expressing YAMC cells HRG had 

minimal effect on EGFR phosphorylation/activation at any time point studied. Thus, while 

EGFR does not bind HRG directly (26), it can be activated by this ligand in the presence of 

ErbB4 and is required for maximal ligand-driven ErbB4 phosphorylation and COX-2 

induction.
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COX-2 mRNA levels are elevated and message half-life extended in ErbB4-expressing cells

COX-2 expression in the mammalian cell is controlled at multiple levels. To investigate the 

point at which ErbB4 signaling is involved in this regulation, we treated cells with inhibitors 

of protein translation and RNA synthesis. 5h exposure of YAMC-Vec and YAMC-ErbB4 

cells to the translation inhibitor cycloheximide had no appreciable effect on basal COX-2 

levels (data not shown). Given that ErbB4 expression enhances COX-2 accumulation in as 

little as 3h following exposure to a stimulus (see Figure 1B, E) regulation of protein 

stability/turnover is therefore unlikely to account for observed differences.

In contrast, preincubation with 10 μg/ml Actinomycin D to stop RNA synthesis completely 

blocked HRG-and TNF-stimulated COX-2 protein expression in YAMC-ErbB4 cells 

(Figure 5A), suggesting regulation of mRNA, either at the level of transcription or message 

stability. RT-qPCR analysis of isolated RNA confirmed an effect on RNA levels; YAMC-

ErbB4 cells showed elevated basal COX-2 steady-state mRNA vs. YAMC-Vec (Figure 5B), 

and an enhanced mRNA accumulation in response to either HRG or TNF. Furthermore, 

siRNA knockdown of ErbB4 from YAMC cells blunted COX-2 mRNA accumulation in 

response to TNF (Figure 5C), as it did with protein accumulation (Figure 2B). To test 

whether these responses might reflect a change in COX-2 message half-life, YAMC-Vec 

and YAMC-ErbB4 cell cultures were subjected to timed incubations with Actinomycin D 

followed by RT-qPCR of isolated RNA and regression analysis. This analysis showed that 

the half-life of COX-2 mRNA is extended from 0.87h in YAMC-Vec cells to 2.79h in 

YAMC-ErbB4 cells (Figure 5D). Additionally, Western blot analysis for CUGBP-2, HuR, 

and RBM3, proteins which regulate COX-2 message stability (27–29), revealed a modest 

increase in RBM3, but no change in CUGBP-2 or HuR, in YAMC-ErbB4 cells versus 

YAMC-Vec (Figure 5E). No apparent change in sub-cellular localization of these regulatory 

proteins with ErbB4 expression was observed by immunofluorescence localization analysis 

(data not shown); in both YAMC-Vec and YAMC-ErbB4 cells CUGBP-2, HuR, and RBM3 

are all expressed primarily in the nucleus.

ErbB4-induced cell survival requires COX-2 activity

We have previously reported that ErbB4 expression protects cells from cytokine-induced 

apoptosis (13). We used the COX-2 inhibitor celecoxib to ask whether ErbB4 induces cell 

survival through COX-2 dependent mechanisms. After confirming that celecoxib does not 

nonspecifically interfere with ErbB4 phosphorylation in response to HRG (Figure 6A), we 

exposed YAMC-Vec and YAMC-ErbB4 cells to a cytotoxic cytokine cocktail (interferon-γ, 

150 units/ml; TNF, 100 ng/ml) to stimulate apoptosis (30) in the presence or absence of 

celecoxib (5 μM). Cell loss was determined using an MTS-based cell count assay. ErbB4 

protection from TNF-induced cell death was reversed by the presence of celecoxib (Figure 

6B), indicating that COX-2 activity is involved in ErbB4-mediated cell survival. Consistent 

with these results, shRNA-mediated knockdown of ErbB4 in LIM 2405 human colorectal 

carcinoma cells, which express high levels of endogenous ErbB4, decreased both steady-

state COX-2 protein expression and cell survival in the presence of TNF plus interferon-γ 

(Figure 6C, D).
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ErbB4 confers anchorage-independent growth through COX-2

As a loss of appropriate cell death can contribute to cellular transformation and 

tumorigenesis, we asked whether ErbB4 promotes soft agar colony formation of colon 

epithelial cells. YAMC-Vec and YAMC-ErbB4 cells were embedded in 0.35% agar and 

maintained at permissive conditions for three weeks. Three-dimensional cell clusters and 

colonies were then counted as a measure of transformation. Vector-expressing cells formed 

only a very few small cell clusters, while in contrast ErbB4-expressing cells formed 

numerous detectable colonies (Figure 7). The ErbB4 ligand HRG enhanced this response, 

while celecoxib blocked ErbB4-stimulated anchorage-independent growth/colony formation 

either with or without HRG, suggesting that COX-2 activity is required for ErbB4-induced 

colon epithelial cell transformation.

Discussion

In this study we show that ErbB4 promotes colon epithelial cell survival in a COX-2 

dependent manner. COX-2 induction by ErbB4 was associated with increased mRNA half-

life, and required EGFR, Src, and PI 3-kinase activity. These data suggest that elevated 

ErbB4 expression in inflammatory bowel disease (13) could contribute to inappropriate cell 

survival in the inflammatory milieu, thus promoting colitis-associated development of 

colorectal tumors. Decreased survival of colorectal cancer cells transfected with ErbB4 

shRNA constructs [(14) and Figure 6] and the ability of ErbB4-expressing cells to form 

colonies in soft agar in a celecoxib-dependent manner (Figure 7) are consistent with this 

possibility.

In contrast to the fairly clear association of other ErbB family members with tumorigenesis, 

data in the literature on ErbB4 in cancer are complex. Overexpression has been reported in 

several cancers including endometrial (31) and non-small cell lung (10, 32, 33), but this 

correlation is not seen in all tumor types (34–36), and studies of breast cancer have yielded 

contradictory results (37, 38). In the GI tract the limited available data support a role for 

ErbB4 in carcinogenesis, with reports noting somatic mutation of the ErbB4 gene in 

colorectal cancer (33) or ErbB2/ErbB4 coexpression in late-stage tumors (39). Leung and 

colleagues recently reported high ErbB4 protein expression in a substantial subset of 

colorectal tumors examined by immunohistochemical staining (40). Taken together with 

these observations, our results linking ErbB4 to expression of COX-2, cell survival, and 

anchorage-independent growth indicate that further investigation into the possible role of 

ErbB4 in colorectal carcinogenesis is warranted. As it recognizes a uniquely broad subset of 

EGF-related ligands (heregulin/neuregulin growth factors, betacellulin, HB-EGF, and 

epiregulin) while at the same time binding a more restricted suite of SH2 and PTB domain-

containing downstream signaling partners than other ErbBs (12), ErbB4 may provide a 

unique therapeutic target amongst this receptor family.

The result that COX-2 induced by ErbB4 is dependent on PI 3-kinase signaling (Figure 3) is 

consistent with our previous data showing that cell survival conferred by ErbB4 

overexpression requires this pathway (13). Interestingly, this was the case even with 

expression of CYT-2 isoforms of the molecule, which lack the YTPM motif required for PI 

3-kinase binding in NIH 3T3 cells (6). The sensitivity of HRG-stimulated Akt activation to 
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Src inhibitors (Figure 3) suggests ErbB4 can stimulate PI 3-kinase indirectly. Furthermore, 

heterodimerization with EGFR or ErbB3 could result in PI 3-kinase activation and cell 

survival signaling without the need for YXXM motifs on ErbB4 itself (41). For example, a 

recent report from the Threadgill laboratory suggests that ErbB3/ErbB4 heterodimers are 

important for survival of HCT116 colon cancer cells (14); in a context in which other ErbBs 

are activated, the CYT-1 YTPM motif on ErbB4 would likely be dispensable for PI 3-kinase 

activation.

We find that EGFR is rapidly phosphorylated by HRG in YAMC-ErbB4 cells, and 

conversely EGFR is required for maximal ErbB4 phosphorylation in response to HRG 

(Figure 4). The most likely interpretation of these data is formation of ErbB4/EGFR 

heterodimers. However, it is also possible that ErbB4 expression is promoting EGFR 

transactivation through other mechanisms. EGFR can be activated as a result of stimulated 

ligand release through metalloproteinase activation such as in the T84 colon epithelial cell 

response to carbachol (42) or corneal epithelial wound healing accelerated by 

lysophosphatidic acid (43). Ligand-independent intracellular EGFR transactivation 

pathways have also been demonstrated (44). Interestingly, both the ligand-release and 

intracellular signaling transactivation mechanisms appear to require Src, which directly 

binds ErbB4-derived phosphopeptides in vitro (12). As ErbB4 expression and activation are 

TNF-responsive in colon epithelial cells (13), and ErbB4-stimulated COX-2 induction 

requires Src activity (Figure 4), it is possible that either of these mechanisms are involved in 

EGFR activation by HRG in YAMC-ErbB4 cells.

ErbB4 expression is typically low in unchallenged colon epithelial cells, but is induced by 

injury and inflammation (13), and promotes cellular survival and transformation. Our data 

connecting ErbB4 to COX-2 mRNA half-life and thus both basal and stimulated expression 

levels are novel and consistent with the hypothesis that elevated ErbB signaling during 

injury and inflammation could promote a tissue environment with elevated EGFR activity, 

PI 3-kinase/Akt signaling (13), and COX-2 expression. This environment would present a 

favorable niche for the expansion of cells which acquire mutations and subsequent cancer 

development. Thus, ErbB4 may represent a novel target for intervention in colorectal 

cancers, particularly those associated with chronic inflammatory diseases. Modulation of 

ErbB4-mediated signaling, possibly through use of blocking or inactivating antibodies (45, 

46) may provide an avenue to block excessive activation of the PI 3-kinase and COX-2 

signaling axes.
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Abbreviations used

COX-2 cyclooxygenase-2

EGF epidermal growth factor

EGFR epidermal growth factor receptor

HRG heregulin-1β

PI phosphatidylinositol

RT-qPCR real-time quantitative PCR

TNF tumor necrosis factor

YAMC young adult mouse colon
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Figure 1. ErbB4 stimulates COX-2 expression in colon epithelial cells
(A) YAMC cells were infected with retroviral vectors expressing each ErbB4 isoform (A1, 

JM-a/CYT-1; A2, JM-a/CYT-2; B1, JM-b/CYT-1; B2, JM-b/CYT-2). Whole cell lysates 

were prepared and subjected to Western blot analysis for full-length (FL) ErbB4 and COX-2 

expression. Actin blot included as loading control. (B) JM-b/CYT-2 expressing cells 

(YAMC-ErbB4) were exposed to HRG (100 ng/ml) for 3h; COX-2 protein levels were 

determined by immunoblot analysis. (C) MDCK cells were infected with Vector or ErbB4-

expressing constructs and COX-2 levels were determined by Western blot analysis.
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Figure 2. ErbB4 enhances TNF-induced COX-2 expression
(A) YAMC-ErbB4 cells were exposed to TNF (100 ng/ml) for 3h; COX-2 protein levels 

were determined by immunoblot analysis. (B) YAMC cells were transfected with non-

targeting or ErbB4-specific siRNA pools for 72h. (C) siRNA-transfected cells were 

stimulated with TNF; whole cell lysates were prepared and subjected to immunoblot 

analysis for COX-2 induction as well as phosphorylation of the p65 NF-κB subunit as 

control for active TNF signaling.
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Figure 3. Src and PI 3-kinase activity are required for COX-2 induction in YAMC-ErbB4 cells
YAMC-ErbB4 cells were exposed to CGP 77675 (Src inhibitor, 1 μM), LY294002 (PI 3-

kinase inhibitor, 5 μM), or U0126 (MEK inhibitor, 10 μM) for 30 min before incubation 

with either (A) TNF or (B) HRG for 3h. COX-2 levels were determined by immunoblot 

analysis. Graphs show densitometry for 4 experiments. *, p <0.01 vs. control. (C) YAMC-

ErbB4 cells were exposed to HRG for 5 min with or without CGP 77675 or LY294002 

pretreatment. Akt phosphorylation was determined by Western blot analysis.
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Figure 4. EGFR regulates ErbB4 activation and COX-2 expression
(A) YAMC-ErbB4 cells were incubated with the EGFR inhibitor AG1478 (150 nM) for 30 

min before 3h treatment with TNF or HRG. COX-2 levels were determined by Western blot 

analysis. (B) YAMC-ErbB4 cells were transfected with non-targeting or EGFR-specific 

siRNA pools for 72h, then stimulated with TNF or HRG. EGFR, ErbB4, and COX-2 levels 

were determined by immunoblot analysis. (C) YAMC-ErbB4 cells were transfected with 

non-targeting or EGFR-specific siRNA pools, then stimulated with HRG for 15 min. ErbB4 

phosphorylation was determined by Western blot analysis. (D) YAMC-Vec and YAMC-

ErbB4 cells were exposed to HRG for indicated times; EGFR and ErbB4 phosphorylation 

were determined by Western blot analysis.
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Figure 5. ErbB4 regulates COX-2 mRNA expression
(A) Cells were exposed to HRG or TNF in the presence of Actinomycin D (ActD; 10 μg/ml) 

and COX-2 protein levels were determined by Western blot analysis. (B) JM-b/CYT-2 

expressing cells (YAMC-ErbB4) were exposed to tumor necrosis factor (TNF, 100 ng/ml) or 

HRG (100 ng/ml) for 3h; COX-2 mRNA levels were determined by RT-qPCR. (C) YAMC 

cells were transfected with non-targeting or ErbB4-specific siRNA pools for 72h. Cells were 

stimulated with TNF and COX-2 levels determined by RT-qPCR. (D) Cells were exposed to 

Actinomycin D for indicated times and COX-2 mRNA levels were determined by RT-

qPCR. (E) Expression of RBM3, HuR, and CUGBP-2 protein in YAMC-Vec and YAMC-

ErbB4 cells was determined by Western blot analysis.
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Figure 6. ErbB4-induced cell survival correlates with COX-2 expression
(A) YAMC-ErbB4 cells were exposed to HRG for 15 min with or without the COX-2 

inhibitor celecoxib (CCB; 5 μM, 30 min pretreatment). Cell lysates were prepared and 

ErbB4 phosphorylation determined by Western blot. (B) YAMC-Vec and YAMC-ErbB4 

cells were primed with interferon-γ (150 units/ml) overnight, then exposed to TNF

+interferon-γ for 24h with or without CCB. Cell loss was determined by an MTS-based cell 

count assay. (C, D) LIM 2405 cells were infected with lentiviral particles to express either 

control or ErbB4 targeting shRNA constructs and selected with 5 μg/ml Puromycin. (C) 

ErbB4 and COX-2 protein levels were determined by Western blot analysis. (D) Cells were 

exposed to a TNF+IFN-γ cocktail for 24h and cell loss determined by MTS cell count. *, p 

<0.01 vs. control.
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Figure 7. ErbB4 promotes mouse colon epithelial cell transformation
YAMC-Vec and YAMC-ErbB4 were subjected to a soft agar colony-formation assay in the 

presence or absence of HRG and celecoxib. After 3 weeks colonies (>30 cells) were 

photographed and counted.
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