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Identifying critical transitions in complex diseases
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Mortality and the burden of diseases worldwide continue to reach substantial numbers with societal devel-
opment and urbanization. In the face of decline in human health, early detection of complex diseases is
indispensable, albeit challenging. In this review, we document the research carried out thus far on the
appearance of complex diseases marked by a critical transition or a sudden shift from a healthy state to a
disease state. The theory of resilience and critical slowing down can provide practical tools to forecast the onset
of various fatal and perpetuating diseases. However, critical transitions in diseases across diverse temporal and
spatial scales may not always be preceded by critical slowing down. In this backdrop, an in-depth study of the
underlying molecular mechanisms provides dynamic network biomarkers that can forecast potential critical
transitions. We have put together the theory of complex diseases and resilience, and have discussed the need
for advanced research in developing early warning signals in the field of medicine and health care. We
conclude the review with a few open questions and prospects for research in this emerging field.
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1. Introduction

The burden of diseases and associated fatalities on the
global human population continues to rise due to
environmental or behavioral attributes. Sudden deteri-
oration in the health of individuals with the progression
of diseases is common with hypertension (Lagro et al.
2012), diabetes (Li et al. 2014; Zeng et al. 2014),
cancer of various organs (Kianercy et al. 2014), asthma
attacks (Venegas et al. 2005; Winkler et al. 2015),
epileptic seizures (Mormann et al. 2007), cardiovas-
cular ailments (Kowalski et al. 2013), depression (van
de Leemput et al. 2014), etc. Nevertheless, disease
progression in a number of instances can be theoreti-

cally defined as a series of stages, viz., a healthy state
(a stable state where the system encounters a gradual
change on being perturbed), a pre-disease state (un-
stable or the edge of the healthy state before a drastic
shift), and a stable disease state (Scheffer et al. 2009;
Chen et al. 2012; Liu et al. 2012; Liu et al. 2013a, b).
As the driver of disease increases beyond a critical
threshold, the underlying system experiences an abrupt
shift from a normal healthy state to a disease state. The
risk accompanying the disease state of various complex
diseases demands their early diagnosis, prevention, and
cure. Detecting the pre-disease state is crucial to evade
a critical transition to the disease state.
In the vicinity of a tipping point or a bifurcation

point, critical transitions occur in the state of a system
when tiny changes in an input condition cause a sudden
shift to a contrasting state. For systems exhibiting fold
or catastrophic bifurcation, a sudden shift to an
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alternate state is inevitable as the critical threshold for
the control parameter (i.e., input condition) is crossed
(Scheffer et al. 2001; Scheffer and Carpenter 2003;
Scheffer 2009). A characteristic feature associated with
such catastrophic events is the presence of the hys-
teresis loop (Scheffer et al. 2012). As the system col-
lapses at the fold point with degrading conditions and
in further trying to restore conditions by reversing the
control parameter range, the point of recovery occurs
past the point of collapse at another fold point. This
phenomenon leads to the formation of a hysteresis
loop. The distance between the fold points indicates the
degree of hysteresis (Scheffer et al. 2001). Small
changes in the vicinity of a tipping point can produce
significant unforeseen changes in the state of a system
(shift to a contrasting state). Anticipating such unan-
nounced shifts in various real-world systems is chal-
lenging yet fundamental for the survival of the human
race.
A plethora of mathematical methods incorporating

stochasticity imitate the dynamics of complex systems
exhibiting catastrophic bifurcation and multistability.
Primitive theories confirm that a phenomenon com-
monly occurs in complex systems as they approach a
tipping point – i.e., critical slowing down (CSD) (Tredicce
et al. 2004). CSD is the phenomenon whereby the
system’s rate of return to the current equilibrium state
upon a random perturbation becomes increasingly slow
as the dominant eigenvalue associated with the equi-
librium state approaches zero. The autocorrelation at
lag-1 reaches unity (Ives 1995; Dakos et al. 2008) and
variance grows indefinitely (Carpenter and Brock
2006) as the eigenvalue goes to zero. Thus, an
increasing trend in these statistical indicators works as
an early warning signal (EWS) of an impending critical
transition (Brock and Carpenter 2010; Dakos et al.
2012). Thereafter, researchers have developed generic
as well as model-based EWSs and used them to fore-
warn of sudden shifts in diverse complex systems
(Scheffer and Carpenter 2003; Lenton 2011; Veraart
et al. 2012; Guttal et al. 2016). Recent studies have
focused on transitions between alternate stable states in
various biological systems (Lagro et al. 2014; van de
Leemput et al. 2014; Sarkar et al. 2019). Slowing
down has been used as a marker indicating the emer-
gence of several chronic diseases (Trefois et al. 2015).
Despite the usefulness of CSD-based generic indicators
in forecasting critical transitions, they have their limi-
tations (Ditlevsen and Johnsen 2010; Boettiger and
Hastings 2012a, b; Clements et al. 2015; Dutta et al.
2018). This has led to the development of improved
indicators such as dynamic network biomarkers

(DNB) in preference over the traditional biomarkers
(Chen et al. 2012; Liu et al. 2013a).
Recent studies have also detected critical transitions

in various diseases using spatial patterns. Spatial pat-
terns contain additional information depicting the sys-
tem’s dynamics, providing predictions at a shorter lead
time before the actual regime shift (van de Koppel
et al. 2008; van de Leemput et al. 2015). Although
less explored in disease biology, spatial early warning
indicators have been used to forewarn of tippings in
gene regulation systems (Yang et al. 2021), human
seizures (Kramer et al. 2012), and various multiplex
disease behaviors (Jentsch et al. 2018). The recent
growth in the number of investigations on abrupt shifts
in various diseases speaks of the importance of early
diagnosis of the pre-disease state in the fields of med-
icine and health care. Albeit a well-developed theory
exists on tipping points and their precursors, applying
the latter in anticipating the fate of complex diseases is
complicated. This entails a thorough understanding of
the intertwined relationship among the various param-
eters triggering the system to a disease state.
In this review, we discuss sudden transitions

observed in diverse systems of disease biology while
deconstructing the vast literature on diagnosis and
panacea for respective diseases. We study critical
transitions in a two-dimensional cell-signaling system,
the Cdc2-Cyclin B/Wee1 system which is a mutually
inhibitory feedback loop (Sha et al. 2003; Angeli et al.
2004), in the presence of intrinsic noise. The activity
and amount of the Cdc2-Cyclin B complex are asso-
ciated with cells entering mitosis and causing cell
proliferation. While unifying the mathematics associ-
ated with the critical transition in complex diseases, we
also review the class of existing indicators. After that,
we discuss the prospects, limitations, and future
directions for this emerging area of research at the
interface of complex systems, critical transitions, and
disease biology.

2. Fundamentals of critical transitions

2.1 Resilience

In an ever-changing world, stochasticity is omnipre-
sent. In multistable systems, due to the existence of
multiple basins of attraction, small stochastic pertur-
bations can allow a system to shift in the basin of
another alternate state (Arnold et al. 1999). The prob-
ability or likelihood of the same is a function of the
strength of perturbation as well as the size of the basin.
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Resilience is associated with the size of the valley/basin
of attraction. It is a measure of the system’s ability to
ingest the changes as the driver of decline increases,
while ascertaining persistence; the deeper the valley,
the larger is the perturbation it can withstand (fig-
ure 1c–d). The resilience of a system to random per-
turbations can be estimated by calculating extinction

probabilities. This can be done by finding the domain
of attraction regions where chances of shifts are more
likely, displacing the system to the contrasting
stable state. The approximate distance of the lowest
point of the basin of attraction from the equilibrium
point is a metric estimating the force necessary to drive
the system to an extinction state (Holling 1973). In
other words, resilience of a steady state depends on the
distance to the boundary of the unstable manifold and
how far away it is from the threshold value of the driver
parameter (Scheffer et al. 2015; Strogatz 2018). The
rate of recovery of the system (Pimm 1984) on being
perturbed is estimated from the slope of the basin of
attraction. Although the dominant eigenvalue approxi-
mates the slope, it does not completely determine the
resilience of the system. As the system approaches the
tipping point, CSD becomes more pronounced, indi-
cating contraction of the basin of attraction of the

Figure 1. Critical transition in the concentration of protein
Cdc2-cyclin B: (a) Stochastic time series of the model
represented in equation 1 a-b: with feedback strength ðvÞ ¼
1:5 (far from the tipping point), and (b) with v ¼ 1 (close to
the tipping point). (c) Schematic potential landscapes
representing stable states of the deterministic system: higher
resilience of the Cdc2-cyclin B state when it is far from the
tipping point, and (d) lower resilience close to a tipping
point, when the system approaches a sudden shift from the
lower stable state to the upper stable state. (e, f) Closer to a
tipping point, on account of reduced resilience, the system
has more memory for perturbation than when far from a
tipping point, characterized by higher SD and AR-1. (e) All
other parameters for the circuit are given in the mathematical
model section.

Box 1. Glossary

Bifurcation: Gradual changes in the driver parameter
causing a ‘qualitative’ change in the system dynamics.
Tipping point: A threshold value at which a dynamical
system abruptly shifts from one stable state to another
alternative stable state, in response to small stochastic
perturbations.
Hysteresis: Multiple stable states exist under the same
environmental conditions guided by a positive feedback
loop. Reverting to the previous state by varying the
bifurcation parameter in the opposite direction is non-
trivial, i.e., point of collapse and recovery are not the
same. This is particularly more common in systems with
a saddle-node (fold) bifurcation.
Stochastic simulation algorithm: A Monte Carlo
algorithm to generate numerical solutions of a stochastic
equation system for known reaction rates. This is an
exact scheme also known as the Gillespie algorithm.
Variance: The expectation of the squared deviation of a
distribution about its mean. Slower recovery rates
around the equilibrium on perturbations or flickering
between alternate stable states increase the variance.

Variance is defined as r2z ¼ 1
n

Pn
i¼1ðzi � lÞ2, where l is

the mean of the distribution.
Autocorrelation at lag-1 (AR-1): It is a measure of the
change in short-term memory of a system prior to

tipping. The formula to calculate AR-1 is given by: q ¼
ðEðztÞ�lÞðEðztþ1Þ�lÞ

r2z
: The slow rate of return to the

equilibrium point on approaching the bifurcation point
can be measured by change in the correlation of a time
series.
Kendall’s s: It indicates the strength of the trend in the
generic indicators such as AR-1 and SD (rz) along the
time series. The mathematical formula to calculate
Kendall’s rank correlation s statistics is as follows:
s ¼ ðc� dÞ=ðcþ dÞ, where c is the concordant pair
within the dataset, and d is the discordant pair within the
dataset.
Stochastic potential: The negative logarithm of the
probability of trajectories visiting a steady state. The
probability is calculated as the ratio of frequency count
of visiting a steady state to the total count of visits for a
large number of initial conditions.
Mean first-passage time: The average time taken by the
system to leave the basin of attraction. This is useful in
characterizing the resilience of a system having alternate
stable states or exhibiting flickering between states.
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present state (figure 1). This is accompanied by a
decrease in recovery rate and decline in resilience. An
alternative way to quantify the resiliance of a flickering
system is by estimating the mean first-passage time
(MFPT). MFPT from a basin of attraction can be cal-
culated from the Fokker–Planck equation. However,
estimating MFPT for real data is challenging as exit
from a basin of attraction is hardly witnessed, apart
from the need for massive data.

2.2 Critical slowing down

As stated in the introduction, CSD is a phenomenon
where the system’s return to the current equilibrium
state is slowed down upon perturbations in the vicinity
of a tipping point. CSD occurs when the real part of the
dominant eigenvalue approaches zero at the bifurcation
point (Strogatz 2018). In general, the existence of a
smooth bifurcation point in a dynamical system alone
can determine the prevalence of CSD. The CSD
property is prevalent in both catastrophic (fold) bifur-
cation and non-catastrophic (transcitical, pitchfork, or
Hopf) bifurcation (Tredicce et al. 2004; Dutta et al.
2018). The dominant eigenvalue typifies the rate of
change around equilibrium and is expected to essen-
tially capture information related to tipping. Even
though CSD may be present in systems far from the
bifurcation point (Van Nes and Scheffer 2007), the
property becomes more pronounced close to the latter
as the recovery rate continuously decreases to zero.
Slowing down energizes the system as the basin of
attraction shrinks before eventually ceasing to exist.
The rate of recovery on perturbing the system and the
width of the basin of attraction are interrelated and vary
with the timescale of the system dynamics. CSD
observed in time series delineating a sequence of
events prior to the aforementioned bifurcation forms
the basis for development of early warning indicators
of an impending transition (Scheffer et al. 2015).
Theoretical studies confirm that dynamical systems
with alternate stable states when observed at a spatial
scale coupled through diffusion or advection of its state
variables also exhibit CSD. It has been observed that
CSD alters the diffusibility of the connected units in the
system. This can be interpreted as the propensity of the
system to return to its local equilibrium weakens as a
critical threshold is reached (Dai et al. 2013). Taking
into consideration spatial interactions, signatures of
CSD can function to anticipate imminent transitions in
a class of spatio-temporal systems (Dakos et al. 2010).
While CSD may be persistent in a one-dimensional

system or a network of interacting variables in spa-
tio-temporal scales, it is not a precursor of all critical
transitions (Dakos et al. 2015). Predictions using
CSD-based indicators may be considered as the
broader spectrum to only propel deeper investigation
into the system dynamics and the change in resi-
lience subject to infinitesimal perturbation close to
equilibrium.

2.3 Sudden transitions in biological systems

Predictability of the fate of acute diseases depends on
the knowledge of the complex nonlinear dynamics of
specific disease systems. Although patterns of pro-
gression of diseases are diverse, there exist analogies of
various human diseases with complex systems
involving self-propagating positive and negative feed-
backs among its state variables (Pomerening 2008).
Being able to capture the stikingly similar dynamics of
certain diseases, researchers have been able to identify
abrupt shifts in chronic diseases and provide
biomarkers forecasting their onset.
The genesis of several fatal diseases can be attributed

to potential changes or degradation in gene expressions
(Chen et al. 2012; Glass 2015; Trefois et al. 2015).
Gene dysfunction involving the mutation, degradation,
and modification of encoded proteins is majorly
responsible for casualty due to hepatitis-B, hepatocel-
lular carcinoma, and cancer of other organs (Yang et al.
2018). Recent studies have identified recurrent somatic
mutation networks and they have performed analyses
of gene mutations confirming its association with dis-
ease progression (Liu et al. 2013c). Positive feedback,

Figure 2. Examples of circuits containing positive feed-
back loops: (a) Initiation of S-phase in eukaryote cell cycle.
(b) Differentiation in ovaries of mammals. (c) Feedback in
the two-component Cdc2-Cyclin B and Wee1 system. ?

sign denotes positive feedback.
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a motif present in many genes found thus far, aids in
the regulation of gene expression via synthesized pro-
teins which promote the production of more proteins
(figure 2). The presence of an auto-regulatory feedback
module leads cells to exist in different steady states
(Hari et al. 2020). Stochastic fluctuation in gene
expression may trigger an abrupt shift from one state to
another alternate state (Sharma et al. 2016; Sharma and
Dutta 2017). Some instances are the existence of
bistable gene expression in the induction of the lac
operon in E. coli. An unannounced transition from an
unregulated (state 1) to a regulated (state 2) state of the
lac operon occurs at a critical value of an inducer
concentration. In B. subtilis, positive feedback leads to
the existence of low- and high-comM proteins. As the
basal rate of protein synthesis crosses a threshold value,
an abrupt shift is observed in the bacterial population
level (Karmakar and Bose 2007). However, alterations
in single gene expressions are often not sufficient to
elucidate the course of action of a disease. Instead,
gene regulation networks have reliably unveiled the
progression of hepatitis-B (HBV)-hepatocellular carci-
noma (HCC) and hepatitis-C (HCV)-HCC diseases
(Yang et al. 2018).
Cancer involves abnormal cell growth and prolifer-

ation to other body parts. Almost 60% of cancers of
various organs trace their roots to dysregulation of
pathways such as MAPK and P13K/AKT owing to
multiple changes in several proteins (Samal et al.
2019). Although the origins of most solid tumors lie in
epithelial cells, inhibitory feedback loops among gene
expressions control epithelial–mesenchymal transitions
(EMT). For instance, while the ZEB transcription fac-
tor family promotes EMT, the miR-200 family repres-
ses EMT. EMT and its reverse process, mesenchymal–
epithelial transition (MET), are important in cancer
metastasis. Mathematical modeling of the ZEB/miR-
200 feedback loop reveals multistability and critical
transitions in cancer cells (Sarkar et al. 2019). Pul-
monary disease such as asthma attacks also exhibit
bistable regimes. Constriction of bronchioles leads to
reduced lung ventilation. Further increase in the critical
driver value may lead to a catastrophic transition
entailing severe breathing and ventilation defects
(Venegas et al. 2005; Winkler et al. 2015). Congenital
heart disease accounts for around 24% of birth defect-
related deaths. Unlike the adult circulatory system
composed of atria and ventricles, the embryonic
cardiovascular system consists of 6 pairs of aortic
arches, out of which only 3 exist post stage-36.
Investigation of intermediate stage-21 shed light on the
critical transition in the embryonic circulatory system

while estimating the susceptibility period (Kowalski
et al. 2013).
Another deadly disease that perpetuates through an

individual’s lifetime is diabetes. There are two variants
of diabetes: type 1 diabetes mellitus (T1DM) and type
2 diabetes mellitus (T2DM). In people suffering from
T1DM diabetes, the person’s body is unable to produce
insulin (essential for controlling blood sugar level),
while in T2DM, one fails to adjust the blood sugar
level even though insulin is produced. T1DM is a
genetic disease which has a prolonged pre-diabetic
period. Investigating the molecular mechanisms of the
pre-diabetic state and distinguishing it from the other
states is essential in evading a critical transition in
T1DM (Liu et al. 2013b; Zeng et al. 2014). In T2DM,
there exist 5 stages, viz., the latent stage, transition
stage, impaired glucose tolerance (IGT) stage, impaired
fasting glucose stage, and overt stage. While the patient
is in any of the first 4 stages, recovery to the normal
state is feasible. However, at the last stage, the system
is unable to recover. In such a scenario, it is crucial to
identify the transitions at the molecular level for early
recovery using customized medication (Petersen et al.
2012). Loss of b-cells that weaken connectivity of
pancreatic islets act as a driver of critical transition
(Szendroedi et al. 2007; Keller et al. 2008; Camastra
et al. 2011).
The course of action of epidemic inflammatory dis-

eases also exhibit bistable regimes where cytokinins act
as a driver of inflammation (Ashley et al. 2012;
O’Regan and Drake 2013). The emergence and spread
of infectious diseases such as tuberculosis, measles,
swine origin influenza A (H1N1), COVID-19, etc., are
major health hazards affecting large parts of the com-
munity. An increase in R0 (secondary infections from
pre-infected individuals) over a threshold value can
trigger a critical transition in a susceptible community.
Researchers have studied both susceptible–infectious–
susceptible (SIS) and susceptible–infectious–recovered
(SIR), representing the dynamics of a large class of
infections, by using master equations from statistical
physics (O’Regan and Drake 2013; O’Dea and Drake
2019; Drake et al. 2019). Another fatal disease path-
way that undergoes critical transition is epileptic sei-
zure. This occurs due to malfunction of the nervous
system accompanied by mild symptoms at an early
stage to complete loss of control at later stages.
Alternate stable states in seizure dynamics are the ictal
and post-ictal states, as studied by Kramer et al. (2012)
and Mormann et al. (2007). Recent studies have also
found groups of neurons exhibiting Hopf bifurcation in
seizures. Diseases such as depression, weakness in
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elderly people, and bacterial populations in the human
intestine exhibit bistable steady states. Thus far, a wide
range of diseases have been found to exhibit alternate
stable states and a panacea to these complex diseases
demand anticipating the pre-disease states and devel-
oping biomarkers that efficiently characterize their
occurrence a priori. The phenomenon of CSD in
temporal and spatial systems has been instrumental in
developing genetic indicators that forewarn about
transitions in many instances but does not always
suffice. The complex dynamics of certain diseases
require thorough investigation of the system and sys-
tem-specific biomarkers.

3. Early warning indicators of sudden transitions
in acute diseases

3.1 Early warning indicators for temporal systems

As a system approaches a bifurcation point, the return
rate to equilibrium goes to zero. This is often expressed
in terms of the dominant eigenvalue of the Jacobian
matrix. From the fluctuation dissipation theorem, on
approximating the critical point, variance grows large
and autocorrelation at lag-1 reaches unity. Thus, CSD
may be characterized by an increasing trend in variance
and autocorrelation at lag-1 (figure 1e–f) closer to the
tipping point, thus forewarning of a critical transition
ahead of time (Ditlevsen and Johnsen 2010). As
explained earlier, a change in the basin stability is
observed as the system shifts to another steady state.
This asymmetry leads to a skewed distribution of the
stable states (Guttal and Jayaprakash 2008). Com-
monly used generic early warning indicators (Dai et al.
2012) of CSD are recovery rate (Wissel 1984; Drake
and Griffen 2010), standard deviation (SD) (Carpenter
and Brock 2006; Carpenter et al. 2008), autocorrelation
at lag-1 (AR-1) (O’Regan and Drake 2013), skewness
(Carpenter et al. 2008; Guttal and Jayaprakash 2008),
kurtosis (Biggs et al. 2009), etc., and their spatial
counterparts, viz., spatial correlation (Dakos et al.
2010, 2011), spatial variance (Guttal and Jayaprakash
2009; Dakos et al. 2011), etc. Trends in indicators of
slowing down, viz., variance and temporal correlations
across moods in healthy and depressed persons, are
suggestive of using them as EWSs in mood tippings
(van de Leemput et al. 2014; Olde Rikkert et al. 2016).
Intuitively, for persons close to tipping (before the
jump to depressed state), mood recovery post stress
slows down, thus increasing AR-1 and variance.
Slowing down also works as a metric for cardiac fitness

tests (Olde Rikkert et al. 2016). Slow recovery of heart
rate post exercise is an indicator of reduced fitness and
may be a precursor to myocardial ischemia (Shephard
1967). Changing variance and skewness have proved
to be potential indicators of critical transition in acute
asthma attacks, forewarning of sluggish lung activity
on ozone exposure (Venegas et al. 2005; Hsieh et al.
2014). Transitions to both emergence and elimination
of such diseases have been anticipated using generic
EWSs. These tools have been practical to an extent in
forewarning about the outcomes of mitigation of
COVID-19 and its impact on populations across
countries (Kaur et al. 2020). Summary statistics such
as CSD-based and likelihood-based tools for antici-
pating the emergence of diseases are more reliable
when tested on high-resolution data. Detecting stronger
signals for systems with fast timescales may require
even more advanced methods (Brett et al. 2017).
Critical transition in epileptic seizures are anticipated
by rising AR-1 and flickering between ictal and post-
ictal states (Kramer et al. 2012; Meisel et al. 2012).
Flickering (Guttal and Jayaprakash 2008; Scheffer
2009) or bimodal frequency distribution have also
signaled bistability in Cheyne–Stokes respiration and
acute granulocyte leukemia (Olde Rikkert et al. 2016).
For hibernating animals, flickering of body temperature
signaled the transition between hibernation and activity
states in species with gradual change in temperature
(Oro and Freixas 2021). Frailty in individual patients
remains understated by means of static metrics such as
hospitalization, mortality, etc. However, dynamic resi-
lience indicators such as AR-1, variance, and cross-
correlation calculated on self-rated time series of indi-
viduals indicate frailty tippings in old age, which is
further concerned with the resilience to various com-
plex diseases (Gijzel et al. 2017). Apart from the dis-
eases discussed above, recovery time predicts recovery
post tippings in arrhythmia, colitis, falls, breast cancer
(Stratton et al. 1982), neck cancer, smoking, and tube
ventilation (Olde Rikkert and Melis 2019).

3.2 Early warning indicators for spatial systems

Theoretical studies have manifested the signatures of
CSD to be also present in systems when observed at the
spatial scale. Although envisioning systems across
spatial scales aid in better understanding of the
underlying mechanisms driving regime shifts, the lack
of high-resolution spatial data and associated com-
plexities have averted researchers from widely explor-
ing spatial systems in various fields. However, in recent
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times, the availability of satellite and remote-sensing
high-resolution data has kindled research of spatial
systems (Kefi et al. 2014). Yang et al. (2021) studied
critical transitions in a spatially extended gene regula-
tion system where a sudden transition occurs from high
to low protein concentrations. TF-A monomer con-
centration experiences a sudden collapse via a fold
bifurcation as the transcription rate reaches a threshold
value over time. This is supported by rising trends in
variance, AR-1, and kurtosis at spatial scales. Asym-
metry in spatial skewness is also observed prior to the
transition in various dynamical systems (Yang et al.
2021). The various interventions to control protein
concentration in the gene transcription regulation sys-
tem have implications in providing remedies to a large
class of complex diseases. Recently, the onset of
epileptic seizure has been studied at different spatial
scales (Meisel et al. 2012). The association of Hopf
bifurcation with seizures and applicability of scaling
laws at various spatial scales of a cluster of neurons and
a rise in phase-locking near seizure thresholds have
been reported. This has set goals to predict the smaller
events, apart from the larger ones, leading to subclin-
ical seizures. Another approach studied the dynamics
of focal seizures and found that termination of seizures
from the ictal to the post-ictal stage occurs via a dis-
continuous transition. These results are based on brain
electrical activity data at different spatial scales.
Although the termination of seizure was clearly con-
firmed by reduced neuron spiking, early warning
indicators showed no trends. A rationale for this might
be the microscopic dynamical mechanisms while the
critical transition occur at a macroscopic spatial scale
(Kramer et al. 2012). Thus, anticipating an impending

transition in real-world datasets is often much more
involved and requires better understanding of the spa-
tial system and similar timescales. Studies also reveal
the application of spatial indicators to multi-dimen-
sional systems such as systems comprising the inter-
action of disease and public opinion. Tested across
network types, increase in spatial correlation forewarn
of critical transition from full vaccination (no disease
state) to no vaccination (disease state). However,
empirical social networks exhibit ambiguity in the type
of transition, thus professing the need for further
investigation to consider spatial CSD-based indicators
for forewarning transitions in real networks (Dakos and
Bascompte 2014). Although CSD-based indicators
precede tippings in a range of complex diseases, a
catastrophic transition in such diseases may occur
without prior symptoms and early warnings (Dakos
et al. 2015). However, system-dependent studies may
better portray the course of the underlying dynamics of
the disease while investigating stochasticity in molec-
ular interactions, thereby paving the way for further
research in developing biomarkers.

3.3 Dynamic network biomarkers

Traditional biomarkers were genes, molecules, or a
network of genes that distinguish between a disease
and normal state but fail to detect a pre-disease state
due to their static property. However, this limitation has
been overcome by the development of dynamic net-
work biomarkers (DNBs), which can discern a pre-
disease state from the normal state in complex diseases
(figure 3). DNBs have successfully detected regime

Figure 3. Schematic representation of the functioning of DNB (Dynamical Network Biomarker): Disease progression in
several diseases occur in three states, i.e., the normal state, the pre-disease state, and the disease state. The normal state and
the disease state exhibit high resilience, while the pre-disease state shows lower resilience.
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shifts in various biological processes related to the
initiation of complex diseases, such as cell proliferation
and differentiation (Zeng et al. 2013). As the system
approaches a regime shift, groups of genes and tran-
scription factors or molecules functioning as DNB
exhibit increased correlation and considerable increase
in variance among their expressions. DNBs for differ-
ent diseases may not share common network topolo-
gies, although the statistical features such as SD and
the Pearson correlation coefficient (PCC) remain the
same, which aids in the identification of genes or cel-
lular networks to function as a DNB. Based on the

above criteria, a composite index is formulated that
functions as an EWS for detecting a pre-disease state.
These have been tested on experimental datasets of
multi-period gene expression of three different tissues,
liver, muscle, and adipose, in a diabetic rat model and
control rat model. DNB methods not only provide early
warnings for state transitions but also find the common
function among these tissues from real spatio-temporal
expression data (Li et al. 2014). However, the DNB for
each tissue turns out to be different, stipulating the
study of system-specific analysis. Time series of gene
expression data in the mice metastasis model

Figure 4. Critical transitions in protein Cdc2-Cyclin B and associated generic EWSs: (a) Transitions from a lower state to
an upper stable state. Solid (cyan) lines indicate stable steady states, and dashed (red) lines indicate unstable steady states of
the deterministic model. The black trajectory indicates stochastic time series. (b) Pre-transition stochastic time series
(segment as indicated by the yellow boxed region in (a)). (c) Residual time series after applying a Gaussian filter (the orange
curve in (b) is the trend used for filtering). (d and e) Generic EWSs calculated from the filtered time series after using a
rolling window of 60% of the data length: (d) variance and (e) AR-1. (f–i) Filtering bandwidth and rolling window chosen
based on sensitivity analysis. (f) and (h) Contour plots showing the trends of generic EWSs variance and AR-1 respectively
for different rolling-window sizes and filtering bandwidths as measured by the Kendall’s s value. The triangles indicate the
rolling-window size and bandwidth used to calculate the EWSs. (g and i) Frequency distributions of Kendall’s s values
corresponding to variance and AR-1, respectively.
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HCCLM3-RFP proclaims CALML3 as a DNB. The
role of CALML3 in initiating metastasis was studied
using two models – gain of function and loss of
function. In the first model, HCCLML3 cells have low
CALML3 concentration and high metastasis capac-
ity. In the second model, HCCLML3 cells have high
CALML3 concentration and low metastasis capacity.
CALML3 acts as a biomarker anticipating pulmonary
metastasis in liver cells, with loss in CALML3 pro-
viding indication for clinical treatment (Yang et al.
2018).
Composite indices based on DNB have also proved

fruitful in anticipating critical transitions in experimental
data of acute lung injury, hepatitis-B, and lymphoma
(Chen et al. 2017). An approach by Chen et al. (2017)
considered temporal differential networks where edges
connecting two nodes store correlation while edges con-
necting one node store variance. The inconsistency score
(I-score) is obtained by training the hiddenMarkovmodel
on a sequence of differential networks for N-1 time steps
and thenmeasuring the likelihood of a time point to be the
end point of the process, and in this way marking the pre-
disease state. The I-score effectively predicted pre-disease
states in three real genomic datasets: acute lung injury,
corneal trauma, and heregulin-induced breast cancer
(Chen et al. 2017). The I-score provides robust prediction
but is limited by the need for training with ample high-
throughput data. Another interesting framework for
EWSs for disease states is the progressive module net-
workmodel (Zeng et al. 2014). This differs from classical
DNBs by considering network constraints and is thus
much more biologically relevant. The key features of the
module include tissue and time specificity, and the net-
work module is constructed based on a Markov cluster
algorithm and from gene expression data, taking note of
the possible biological interactions. This model has suc-
cessfully detected the pre-disease state for T1DM from
three different datasets having their origins in different
parts of the body – pancreatic lymph nodes, spleen, and
peripheral blood cells – based on the signal indices.

4. Predicting critical transitions in the Cdc2-Cyclin
B/Wee1 system

4.1 Mathematical model

To better understand critical transitions and the appli-
cability of EWSs, we present a detailed study of a cell
signaling system involving proteins Cdc2-Cyclin B and
Wee1. The Cdc2-Cyclin B/Wee1 system (see figure 2c)

regulates mitotic control pathways and plays a signifi-
cant role in cell division. Sudden changes in these
protein concentrations regulated by the strength of the
feedback loop can affect DNA repair and disease pro-
gression. As the feedback strength decreases, Cdc2-
Cyclin B protein concentration increases, and further
past a threshold value of v (see figure 4a), the system
experiences an abrupt rise in Cdc2-Cyclin B concen-
tration. High expression of Cdc2-Cyclin B can be
involved in the process of tumor development and
progression, which leads to disordered mitosis and
malignant cell proliferation (Hou et al. 2018).
The model system with a few underlying assump-

tions is given by equation (1), where x and y represent
the protein concentrations of Cdc2-Cyclin B and Wee1,
respectively (Angeli et al. 2004). The model can be
written as:

dx

dt
¼ a1ð1� xÞ � b1ðvyÞc1x

k1 þ ðvyÞc1 ; ð1aÞ

dy

dt
¼ a2ð1� yÞ � b2yx

c2

k2 þ xc2
; ð1bÞ

where a1 ¼ 1, a2 ¼ 1, b1 ¼ 200, and b2 ¼ 10 are rate
constants. v represents the feedback strength varying in
the range 0–2. k1 ¼ 30 and k2 ¼ 1 are the Michaelis
constants, and c1 ¼ c2 ¼ 4 denote Hill’s coefficients.
To study the influence of intrinsic noise, we derive the
master equation for the grand probability function
P(x, y, t) using the processes in table 1, which takes the
form as below:

oPðx; y; tÞ
ot

¼ V1a1Pðx� 1; y; tÞ

þ b1ðvyÞ4ðxþ 1Þ
k1V

4
1 þ ðvyÞ4

Pðxþ 1; y; tÞ

þ a1ðxþ 1ÞPðxþ 1; y; tÞ
þ V1a2Pðx; y� 1; tÞ

þ b2x
4ðyþ 1Þ

k2V
4
1 þ x4

Pðx; yþ 1; tÞ

þ a2ðyþ 1ÞPðx; yþ 1; tÞ

� ðV1a1 þ
b1ðvyÞ4x

k1V
4
1 þ ðvyÞ4

þ a1xþ a2V1 þ
b2x

4y

k2V
4
1 þ x4

þ a2yÞPðx; y; tÞ
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¼ ½V1a1ðA�1
x � 1Þ

þ b1ðvyÞ4ðxþ 1Þ
k1V

4
1 þ ðvyÞ4

ðAx � 1Þ

þ a1xðAx � 1Þ þ V1a2ðA�1
y � 1Þ

þ b2x
4ðyþ 1Þ

k2V4
1 þ x4

ðAx � 1Þ

þ a2yððAy � 1ÞÞ�Pðx; y; tÞ;

ð2Þ

where AxPðx; y; tÞ ¼ Pðxþ 1; y; tÞ. The bifurcation
diagram in figure 4a depicts the steady state
density of protein-active Cdc2-Cyclin B as a
function of the feedback strength (v). Cdc2-
Cyclin B and Wee1 occur complementarily (a
higher state for Wee1 implies a lower state for the
other, and vice versa). A hysteresis loop occurs in
the system on decreasing v from 2 to 0 and further
increasing v in the opposite direction. The width
of the hysteresis loop in marked by the
bistable regions. We generated the time series
under the influence of intrinsic stochastic
fluctuations using Monte Carlo simulations. All
the associated processes are presented in table 1.
We calculated generic EWSs for the stochastic pre-
transition time series, which may have implications
for the early diagnosis of several acute diseases.
We calculated the stochastic potential and mean
first-passage time for the two-dimensional system
to further analyze the dynamics before tipping.

4.2 Early warning signals

We calculated generic EWSs (Dakos et al. 2012) for
anticipating abrupt shifts in Cdc2-Cyclin B concentra-
tion. Further, we comment on the reliability of the two
most robust indicators, variance and AR-1, in fore-
warning about critical transitions in the above system.
We calculated variance and AR-1 for the pre-transition
stochastic time series (see figure 4). To avoid non-sta-
tionarities in time series that affect the prediction of
generic EWSs, we applied Gaussian detrending using
appropriate filtering bandwidth and rolling window to
remove high frequencies and obtain the residuals (fig-
ure 4b–c). Rolling window and filtering bandwidth
were chosen based on sensitivity analysis (see fig-
ure 4f–h) for variance and AR-1, respectively. As
observed in figure 4d–e, both the indicators, variance
and AR-1, successfully forewarn of an upcoming crit-
ical transition in the protein Cdc2-Cyclin B. Figure 4g–
i shows a high Kendall’s s estimate for both the indi-
cators. However, to comment on the reliability of the
above indicators, we performed a surrogate analysis.
We generated 1000 surrogate datasets and compared
trend estimates to those of the original time series. We
fitted the best linear auto-regressive moving-average
model to the residuals for generating surrogates. We
estimated the trends for variance and AR-1 using
Kendall’s s. Figure 5a–b shows that for the combina-
tion of window size and bandwidth 60% (of the orig-
inal time series), AR-1 trends are not significant (p-

Table 1. Different birth and death processes, change of state vectors, gain and loss probabilities, and their propensity
function, associated with the Cdc2-Cyclin B/Wee1 model represented by equation 1a–b

Sl. No. Elementary events
Before
reaction

After
reaction Gain probability

Loss
probability

Propensity
function

1. / ! x x� 1

y

� �
x
y

� �
V1a1Pðx� 1; yÞ V1a1Pðx; yÞ V1a1

2. xþ 4y ! z
z ! 4y

xþ 1

y

� �
x
y

� �
b1ðvyÞ4ðxþ1Þ
k1V

4
1
þðvyÞ4 Pðxþ 1; yÞ b1ðvyÞ4x

k1V
4
1
þðvyÞ4 Pðx; yÞ

b1ðvyÞ4x
k1V

4
1
þðvyÞ4

3. x ! / xþ 1

y

� �
x
y

� �
a1ðxþ 1ÞPðxþ 1; yÞ a1xPðx; yÞ a1x

4. / ! y x
y� 1

� �
x
y

� �
a2V1Pðx; y� 1Þ a2V1Pðx; yÞ a2V1

5. 4xþ y ! z
z ! 4x

x
yþ 1

� �
x
y

� �
b2x

4ðyþ1Þ
k2V

4
1
þx4

Pðx; yþ 1Þ b2x
4y

k2V
4
1
þx4

Pðx; yÞ b2x
4y

k2V
4
1
þx4

6. y ! / x
yþ 1

� �
x
y

� �
a2yPðx; yþ 1Þ a2yPðx; yÞ a2y

V1 is the system’s volume where all the reactions occur. The symbols (þ1) and (�1) in the column represent birth and death
processes of the respective chemical species. Here, P stands for the grand probability function. / and z are empty state and dummy
variables, respectively.
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value, 0.18), while trends for variance are significant
with a p-value of 0.001. Thus, it might be worth high-
lighting that trends for CSD-based indicators may be
considered, but with a note of caution, indicating the need
for a further in-depth study of the respective system.

4.3 Stochastic potential

We examined the resilience of the system to random
perturbations by calculating the stochastic potential and
basin stability (Sarkar et al. 2019) for the Cdc2-Cyclin
B/Wee1 system (see figure 6). Higher values of
potential indicate the existence of a shallow well, while
lower values correspond to a deeper well. In other
words, lower values in the color bar imply that on
perturbing the system, the system has a higher proba-
bility of returning to the steady state. As shown in
figure 6a–b, the potential well for the lower stable state
corresponding to Cdc2-Cyclin B is deeper, while that
for the higher stable state is shallower in the monos-
table regions (figure 6h–i). However, the depth of the
potential for Cdc2-Cyclin B is greater for the upper
stable state than the lower stable state. Consequently, a
large perturbation is required to shift Cdc2-Cyclin B to
the lower stable state as a deeper well signifies higher
resilience to perturbations. Our conclusions based on
the stochastic potential for the protein Cdc2-Cyclin B

are also supported by the results obtained from calcu-
lating the basin stability for the system. For a suffi-
ciently large number of random initial conditions, basin
stability is the probability of returning to the original
state. In the monostable regions, this probability stands
at 1 (see figure 6c–j). However, in the bistable regions,
for 105 different initial conditions, trajectories reach the
upper stable state with probability 0.75, while they shift
to the lower stable state with probability 0.25 (fig-
ure 6g). This can be attributed to the deeper well of the
upper stable state of the protein Cdc2-Cyclin B in the
bistable regions as indicated by the stochastic poten-
tials in figure 6f.

4.4 Mean first-passage time of the Cdc2-Cyclin B/
Wee1 system

We explored the average time taken by the protein
Cdc2-Cyclin B to reach an alternate stable state for the
first time, having started at an initial stable state (Samal
et al. 2021). For systems existing in the bistable region,
the first-passage time (FPT) gives an estimate of the
time taken by the system to leave a potential well for a
chosen initial point for the first time. MFPT is the
average of the FPTs. We derived MFPT for the Cdc2-
Cyclin B state variable numerically using the Gillespie
simulations for a set of initial conditions in a potential

Figure 5. The probability distribution of Kendall’s s test statistic on a set of 1000 surrogate time series: Histograms depict
the distribution of the test statistic for the surrogate time series (a) variance and (b) autocorrelation function at lag-1. Dashed
(red) lines represent 5% and 95% confidence intervals. Solid (green) lines indicate the limit beyond which the Kendall’s s of
the surrogate data is higher than the statistic observed in the indicators of the original time series. As observed, trends for
variance are significant, while AR-1 trends are not significant.
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of volume V; we noted the time at which the state
variable exits V for the first time. The inverse of MFPT
quantifies the rate at which the state variable Cdc2-
Cyclin B hits the potential barrier (unstable steady

state). MFPT for Cdc2-Cyclin B from upper to lower
states and the converse are reported as the average of
5000 realizations sampled all over the potential well,
and all the initial conditions are taken uniformly from

Figure 6. Stochastic potential landscapes and basin stability for feedback strength (v) obtained from the master equation (2):
Stochastic potential for: (a) monostable low-density state for Cdc2-Cyclin B at v ¼ 2, (e) bistable high-density and low-
density Cdc2-Cyclin B states for v ¼ 0:9, and (h) monostable high-density Cdc2-Cyclin B state at v ¼ 0:4. The blowup
diagrams (a), (d), (f) and (i) represent magnified regions in potential wells. The color bar represents the negative logarithm of
steady state probability [i.e., �logðPssÞ]. (c, g and j) Pie diagrams representing basin stability of the system for feedback

strengths v ¼ 2, 0.9, 0.4, respectively. The basin stability measure is calculated for percentages of 105 simulations with
random initial conditions reaching a particular steady state in a monostable or bistable region. Green and peach regions
correspond to the percentage of simulations reaching upper and lower states, respectively. x and y denote Cdc2-Cyclin B
complex and Wee 1, respectively.

Figure 7. MFPT with decrease in feedback strength (v): The red curve represents the MFPT calculated for Cdc2-Cyclin B
system to switch from the upper state to the lower steady state under the influence of intrinsic noise. Similarly, the blue curve
shows the MFPT to switch from the lower steady state to the upper state.
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the ranges [0, 1.2] 9 [0, 1.2]. As observed in figure 7,
for both the transitions, as we move closer to the
bifurcation point, the time taken to shift to an alternate
state for the first time decreases. Evidently, as the
feedback strength decreases, the concentration of
Cdc2-Cyclin B increases, and at the threshold value of
v, the system jumps to an alternate state. This increased
amount causes cells to enter mitosis, losing control
over cell division and promoting cancer cell prolifera-
tion and development conditions. Hence, MFPT pro-
vides us insight into the time before which necessary
control measures can prevent the abrupt shift of the
Cdc2 complex.

5. Prospects

CSD can form the basis for anticipating critical tran-
sitions associated with complex diseases a priori, but
considering it a panacea for forewarning all sudden
shifts is misleading. Moreover, the CSD theory is well
established for mathematical models representing
complex stochastic systems, but their applicability to
real empirical data remains limited. For various
dynamical systems in bistable regions perturbed by
external noise, the efficacy of generic EWSs can vary
as shown in the literature (Qin and Tang 2018; Samal
et al. 2021). In fact, for external noise, the efficacy of
EWSs can reduce, and the effect become more pro-
found with increasing noise amplitude and correlation
timescale (Qin and Tang 2018). In instances where
CSD-based indicators provide early warnings, the sig-
nals should be relied upon for further considering the
system for an in-depth study of the molecular mecha-
nisms that guide it en route to the alternate stable state.
Studying the dynamics of such models and dominant
eigenvalues can aid in CSD prediction. However, to
mitigate a critical transition in cancer patients or other
diseases, it is important to identify the bifurcation
parameter (small gradients of the parameter which can
produce large changes on crossing a threshold value)
(Korolev et al. 2014). An in-depth study of the evo-
lution in human cancer samples can aid in more precise
modeling of tumor dynamics. However, despite the
complexities, researchers have put significant effort
into developing measurable signals of tipping points in
disease biology. This has led to the development of
network biomarkers, including single-gene biomarkers,
or involving groups of genes, and further advancement
has brought DNBs into the field. Although DNBs for
systems decipher information at the molecular level,
seeking a reliable indicator out of them requires high-

throughput empirical data. Nevertheless, the success of
DNBs is due to the fact that changes in the system
dynamics near a critical threshold may be envisioned
through changes in gene (protein) sequences. At the
same time, generic CSD-based indicators only capture
fragments of it. A key goal in the health-care sector is
to increase adaptability and recovery on exposure to
stressors. Achieving this requires identifying drivers
and their interconnections while developing improved
DNBs.
Building resilience is an ongoing process and shall

continue at various levels of health care with the emer-
gence of complex diseases (Martin 2018). As conser-
vationists, we need to learn from the prevailing
conditions to forewarn and hence be fortified (Scheffer
et al. 2018). A potential advancement in the field to
achieve resilience is the use of machine learning (ML).
ML models can be trained using data from an array of
critical behaviors in biological systems to predict the
onset of critical transition. While ML methods have
shown their mystique in discerning transitions (Dev
et al. 2021), it remains to apply ML techniques to dis-
ease transitions. Lastly, developing robust and reliable
indicators to anticipate instabilities in a ceaselessly
changing world requires real-time monitoring of systems
rather than predicting in retrospect. This upfront area of
research leaves open questions related to sudden tran-
sitions in disease biology. A few major questions that
need to be addressed are: Is it possible to devise indi-
cators that optimize the timescale while providing reli-
able early warnings before a disease state? Can we
develop an absolute measure of resilience in biological
systems amidst noisy sequences of intertwined events?
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