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Measuring and identifying the specific level of sustained attention during continuous
tasks is essential in many applications, especially for avoiding the terrible consequences
caused by reduced attention of people with special tasks. To this end, we recorded
EEG signals from 42 subjects during the performance of a sustained attention task
and obtained resting state and three levels of attentional states using the calibrated
response time. EEG-based dynamical complexity features and Extreme Gradient
Boosting (XGBoost) classifier were proposed as the classification model, Complexity-
XGBoost, to distinguish multi-level attention states with improved accuracy. The
maximum average accuracy of Complexity-XGBoost were 81.39 ± 1.47% for four
attention levels, 80.42 ± 0.84% for three attention levels, and 95.36 ± 2.31% for two
attention levels in 5-fold cross-validation. The proposed method is compared with other
models of traditional EEG features and different classification algorithms, the results
confirmed the effectiveness of the proposed method. We also found that the frontal
EEG dynamical complexity measures were related to the changing process of response
during sustained attention task. The proposed dynamical complexity approach could
be helpful to recognize attention status during important tasks to improve safety
and efficiency, and be useful for further brain-computer interaction research in clinical
research or daily practice, such as the cognitive assessment or neural feedback
treatment of individuals with attention deficit hyperactivity disorders, Alzheimer’s disease,
and other diseases which affect the sustained attention function.

Keywords: attention recognition, sustained attention task, electroencephalogram, dynamical complexity,
extreme gradient boosting

INTRODUCTION

Sustained attention refers to the ability to focus on task-related information stimuli while
consciously trying to ignore other stimuli over a relatively long period. As a foundational cognitive
function, sustained attention underlies other cognitive domains, such as learning and memory
(Fortenbaugh et al., 2017). However, due to the lack of a monitoring mechanism, assessing whether
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people are sustainably focused and improving concentration in
learning activities is a challenge. Many studies have applied
electroencephalography (EEG) to explore neural mechanisms
because it has both high time-resolution and applicability (Schu,
1999). In addition to being used to diagnose various brain-
related diseases, EEG has shown great potential in studying
related brain activities such as cognition, memory, and emotion.
It is also an essential measurement for assessing attention status
(Aoki et al., 1999; Müller et al., 2000; Palva and Palva, 2007;
Srinivasan et al., 2009).

It has been shown that EEG activities in different frequency
bands can be related to specific physiological states. The
traditional EEG analysis method is to divide the brain activity
into different frequency bands, including delta (1–4 Hz),
theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (30–60 Hz) waves (Teplan, 2002). A lot of studies
were considering band power as an important parameter to
characterize the state of attention. EEG power-based indices
[Pβ/Pα, 1/Pα, and Pβ/(Pα + Pθ)] were used to assess the
sustained attention level in healthy controls and diffused
axonal injury patients, and they found significant negative
correlations between Pβ/Pα, 1/Pα indices and the variations
of mean reaction time during sustained attention test (Coelli
et al., 2018). Hu et al. (2018) extracted the Hjorth parameters
and power spectral features to distinguish three attention
levels evaluated by a self-assessment model according to 10
subjects’ self-reports during a learning process. They proposed
a combined procedure with correlation-based feature selection
and k-nearest neighbors classification algorithm to achieve the
highest accuracy of 80.04%.

In addition to linear characteristics, nonlinear analysis
methods have great potential in EEG analysis based on
its nonlinear and nonstationary characteristics. Nonlinear
dynamical analysis make it possible to study self-organization
and pattern formation in the complex neuronal networks of
the brain (Stam, 2005). Several studies have reported the
association between attentional function and EEG single-scale
complexity. Bob et al. (2011) using pointwise correlation
dimension to analyze attentional processes related to dissociative
states. Rezaeezadeh et al. (2020) focused on entropy measures,
including univariate features from individual EEG channels and
multivariate features from brain lobes, to diagnosis Attention
Deficit Hyperactivity Disorder. Recent studies have shown that
applying nonlinear multiscale information analysis to EEG can
provide new information about the complex dynamics of brain
cognitive function, such as emotion recognition (Gao et al.,
2019). Ke et al. (2014) conducted two experiments instructing
all subjects to perform tasks with three different levels of
attention (i.e., attention, no attention, and rest). Nonlinear
parameters including entropy and multiscale entropy were
extracted, and a Support Vector Machine (SVM) model was
performed for classification between each experiment state and
resting states, with 76.19 and 85.24% accuracy, respectively, in the
two experiments.

The relationship between EEG activity and attention state
is not limited to EEG amplitude changes with experimental
tasks, it also includes phase and cross-frequency coupling.

Hanslmayr et al. (2005) calculated the phase-locking index
using Gabor wavelet analysis with a frequency resolution of
0.5 Hz during a continuous visual target stimulus processing
task. The results suggested that focused attention will cause
a large phase locking of alpha wave without amplitude
change. Szczepanski et al. (2014) found increases in power
of high gamma (70–250 Hz) in electrocorticography (ECOG)
signal during allocation of visuospatial attention, and these
high gamma power increases were modulated by the phase
of the ongoing delta/theta (2–5 Hz) phase. Borhani et al.
(2019) applied brain network connectivity analysis based on
Granger causality on event-related selective attention tasks,
and found that the flow of information between independent
neural components on the left occipital cortex and the right
supplementary motor area became highly coupled on alpha
waves during the selective attention tasks. The dynamical
analysis is an extension of the EEG measures with a focus
on the time sequence of EEG index or functional connectivity
networks (Bola and Sabel, 2015; Pagnotta et al., 2020). Previous
studies based on perfusion functional magnetic resonance
imaging found that the connectivity strength of frontal-parietal
network represented by topological characteristics dynamically
changes to compensate the cognitive decline during long-term
sustained attention task (Taya et al., 2018). The dynamical
analysis represents the evolution of neural activity, mostly
used is dynamic functional connectivity. At present, the
correlation between dynamical sequence of EEG complexity
measures and sustained attention performance in the aspect of
helping assess attention during sustained attention tasks still
need research proof.

To date, little research has been done on the identification of
multiple attention levels using continuous EEG feature analysis
instead of superposition of event related potentials. Previous
studies mostly allowed subjects to control or self-assess their
attention level by subjective methods (Li et al., 2013; Chen
et al., 2017). Due to the reliable of continuous attention
test, and the neural mechanism of continuous attention has
been widely recognized (Rosvold et al., 1956), we performed
an AX-continuous performance test (AX-CPT) task to get
EEG segments of different attention levels. The entropy and
multiscale entropy based dynamical complexity analysis were
performed for discriminating attention states in four levels. The
quantified complexity indices were used as a feature vector
to classify different attention levels through Extreme Gradient
Boosting (XGBoost). Furthermore, the relationship between EEG
complexity indices and task response performance was studied
to assess the effectiveness of dynamical complexity analysis
in attention recognition. Our hypotheses for this study were
that (1) during sustained attention tasks, the reaction time
becomes faster or slower is corresponded to different attention
state, and this change of attention level can be reflected in
the variation of EEG dynamical complexity; (2) the multi-scale
nonlinear method will provide more information than the single-
scale complexity in recognition of different attention states, and
(3) the EEG dynamical complexity-based attention recognition
may be more sensitive and effective in frontal region than
other brain regions.
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MATERIALS AND METHODS

Experiments
Participants
This study included 42 right-handed subjects (16 males, 26
females) with age ranging from 20 to 26 years (mean age
24.26 ± 1.17). All participants had no history of neurological
or psychological disorder, and they all had normal vision or
were corrected to normal vision (self-report). This study was
approved by IEC for clinical research of Zhongda Hospital,
affiliated to Southeast University (No. 2019ZDSYLL073-P01). All
participants signed the informed written consent form before
participating in the experiment.

Sustained Attention Task
In this study, the attention continuous performance test
(CPT) task was employed to assess the sustained attention
capability of the participants, while their continuous EEG
signals were recorded.

The version of the CPT task used in this study was the AX-
CPT (Cohen et al., 1999). During the AX-CPT task (see Figure 1),
the participants were presented with a series of letters of English
alphabet randomly, in which they were instructed to inhibit
their response when the target sequence is “X” preceded by an
“A” and to make a response as fast as possible for other target
sequences different from sequence “AX.” There were 192 trials,
with 144 “AX” sequences (Left mouse button response) and 48
other sequences (right mouse button response), each sequence
contained two letters. Each letter stimulus was presented for 250
ms with an inter-stimulus interval (ISI) of 250 ms and an inter-
trial interval (ITI) of 1,500, 2,000, or 2,500 ms randomly set. The
task was performed in a dimly lit and quiet room.

Questionnaires
All questionnaires were administered to participants after EEG
recording, including demographic (age, gender, and handedness),
Pittsburgh Sleep Quality Index (PSQI) questionnaire (Buysse
et al., 1989), Profile of Mood States (POMS) questionnaire
(Curran et al., 1995), and Cognitive Failures Questionnaires
(CFQ) (Broadbent et al., 1982).

FIGURE 1 | AX-Continuous performance test (AX-CPT) task flow.

EEG Recording and Preprocessing
The EEG data were recorded by 32 electrode cap (Easycap)
based on the international 10-10 system (Fp1, Fp2, Af3, Af4,
F7, F3, Fz, F4, F8, Fc5, Fc1, Fc2, Fc6, T7, C3, Cz, C4, T8,
Cp5, Cp1, CP2, Cp6, P7, P3, Pz, P4, P8, Po3, Po4, O1, Oz,
O2) and digitized at 1,000 Hz using the Neuroscan Synamp2.
The reference electrode is located near Cz. Eye movements were
recorded using two bipolar electrodes (one electrode superior to
the right eye, another electrode to the right of the orbital fossa).
The impedance of each electrode was below 10 k�.

A notch filter at 50 Hz to suppress the remained power-
line noise, and a band-pass filter at 0.3–70 Hz using a FIR
filter with a 3rd order Butterworth window was used to
eliminate movement artifacts. Independent Component Analysis
(ICA) was performed for removing EEG ocular artifacts
(Vigário, 1997). The 32-channels EEG was decomposed into 30
independent components (ICs) by ICA, and then the Electro-
oculogram (EOG) were automatically recognized by calculating
the correlation between each IC and two EOG signals. The noise
ICs were set to zero, and the other ICs were reconstructed to
EEG without ocular noise. The clean EEG was segmented into 3 s
sections according to each AX-CPT trial for feature extraction.

Previous studies have shown that response time may be an
indicator of attention level (Gunawan et al., 2017). When people
are sustaining a high level of concentration, they usually respond
to visual stimuli immediately and quickly. Conversely, people
with low attention levels usually make slower response. In fact,
the ability to respond to tasks rapidly varies with different
individuals, so it would happen that some subjects respond
relatively slowly on all trials, and some subjects respond relatively
quickly on all trials. In this case, evaluation and definition
of different attention levels directly by absolute reaction time
in a cross-subject attention recognition will not be accurate
enough. Hence, for the purpose of cross-subject attention states
recognition, we corrected the task response times based on the
average reaction time of each person to obtain calibrated response
times (C-RTs). Since the AX-CPT task is composed of 192 trials
and each trial corresponds to a calibrated response time, the EEG
data is segmented according to the event of the task trial with a
window length of 3 s. After removing the outliers of C-RTs, an
average of 190.76 (±2.55) task epochs segments (1 epoch = 3
s) for each subject were remained. As we can see in Figure 2,
the distribution of C-RTs in the histogram is very similar to the
log-normal distribution.

In this context, we set a critical value α based on the C-RTs
to match EEG segments with different attention states. we
defined task data epochs with C-RTs significantly shorter than
the critical value as “high attention state,” data epochs with C-RTs
significantly longer than the critical value as “low attention state,”
and other data segments with medium C-RTs were considered
as “medium attention state.” For example, α = 0.25 defined that
the data segments with C-RTs in the top 25% (shorter response
times) represented “high attention state,” the data segments with
C-RTs in the bottom 25% (longer response times) represented
“low attention state,” and other segments represented “medium
attention state.” To increase the reliability of this definition,
different significance level α (0.05–0.35) were picked up to
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FIGURE 2 | The distribution of the calibrated response times (C-RT).

represent different attention levels in Results section. Besides
the task states, we also took the 3-min resting state EEG of
each subject for analysis and obtained 60 resting data epochs
(1 epoch = 3 s) for each subject.

Frequency Domain Features
Wavelet Packet Decomposition (WPD) (Coifman and
Wickerhauser, 1992) projects the time series onto the space
of orthogonal wavelet basis functions and decomposes the signal
into low frequency and high frequency. Compared with wavelet
analysis, it not only decomposes the low-frequency part of the
signal, but also re-decomposes the high-frequency part. In this
paper, 7-layer WPD was used to obtain theta (θ, 4–8 Hz), alpha
(α, 8–13 Hz), and beta (β, 13–30 Hz) band oscillations. The
power ratio features β/θ, β/α, β/(α+θ) calculated by Welch’s
power spectral density estimate methods (Welch, 1967) were seen
as classical EEG features for attention recognition in this study.

Single-Scale Complexity
Approximate Entropy
Approximate entropy (ApEn) (Pincus, 1991) uses a non-negative
number to represent the complexity of a time series and reflect the
occurrence of new information in the time series. For a given time
series [u(1), u(2), ..., u(N)], two parameters m and r are defined
to compute ApEn. First, take m consecutive points in sequence to
form vectors sequence

U(i) = {u(i), u(i+ 1), ..., u(i+m− 1)} (1)

where i = 1, 2, ..., N −m+ 1 then define the distance between
the two vectors U(i) and U(j) as

d[U(i), U(j)] = max
k =0,1,2,..,m−1

∣∣u(i+ k)− u(j+ k)
∣∣ (2)

where i = 1, 2, ..., N −m+ 1. For a given threshold r, count the
number of d[U(i), U(j)] < r as Nm(i), and the ratio of Nm(i) to
the total number of distances N-m+1 is recorded as Cr

m(i),

Cr
m(i) = Nm(i)/(N −m+ 1) (3)

Take the logarithm of Cr
m(i) and calculate its average values for

all i, denoted as φm(r),

φm(r) = (N −m+ 1)−1
N−m+1∑

i =1

lnCr
m(i) (4)

Increase the dimension to m + 1, and recalculate φm+1(r)
according to the above steps, the approximate entropy of the
sequence is

ApEn(m, r, N) = φm(r)− φm+1(r) (5)

The parameters for ApEn was set as m = 2,r = 0.2.

Sample Entropy
Sample entropy (SampEn) is an improved complexity
measurement based on the concept of ApEn (Richman and
Moorman, 2000). The initial calculation process is the same as
ApEn, but there is an additional restriction that i 6= j for the
calculation of d[U(i), U(j)] in formula (2).

SampEn is calculated as

SampEn(m, r, N) = ln(φm(r)/φm+1(r)) (6)

The parameter for SampEn was set as m = 2,r = 0.15.

Fuzzy Entropy
Fuzzy entropy (FE) uses a fuzzy membership function to measure
the degree of similarity of vectors (Chen et al., 2007), so the
calculated values are smooth, continuous, and more robust.
The phase-space reconstruction is performed on time series
[u(1), u(2), ..., u(N)], and a set of m-dimensional (m ≤ N-2)
vectors are reconstructed as follows:

Xm
i = {u(1), u(2), ..., u(i+m− 1)} − um(i), i

= 1, 2, ..., N −m+ 1 (7)

where um(i) represents the mean of this m-dimensional vector.
The maximum Euclidean distance between Xm

i and Xm
j was

defined as dm
ij , given n and r, the degree of similarity of two vectors

can be calculated according to the fuzzy membership function:

Am
ij = u(dm

ij , n, r) = exp(−(dm
ij )

n/r) (8)

Define the function ϕm(n, r) as

ϕm(n, r) =
1

N −m

N−m∑
i =1

[
1

N −m− 1

N−m∑
j =1,j6=i

Am
ij ] (9)

The fuzzy entropy for the given time series can be defined as

FuzzyEn(m, r, n, N) = lnϕm(n, r)− lnϕm+1(n, r) (10)

The parameters for FuzzyEn was set as m = 2, r = 0.15, n = 2.
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Multiscale Complexity
Multiscale Sample Entropy
Multiscale Entropy analysis is a method to investigate the
complexity of time series at multiple time scales (Costa et al.,
2005). Multiscale sample entropy (MSE) extends sample entropy
to multiple time scales or resolutions. The basic principle of
MSE involves coarse-graining and entropy calculation procedure.
For a given time series[u(1), u(2), ..., u(N)], the range of
scale factor τ is defined from 1 to s, and the original time
series was coarse-grained according to the scale factor τ as
follows:

yτ
j =

1
τ

jτ∑
i =(j−1)τ+1

u(i), j = 1, 2, ..., int (N/τ) (11)

Calculate the SampEn for each coarse-grained series {yτ
j } in

different scale factors.

MSE(τ, m, r) = SampEnyτ
j
(m, r, N), τ = 1, 2, ..., s (12)

Multiscale Fuzzy Entropy
The calculation principle of multiscale fuzzy entropy (MFE)
(Zheng et al., 2014) are similar to the steps of MSE. After the
coarse-graining procedure in all scale factors, MFE is defined as:

MFE(τ, m, r) = FuzzyEnyτ
j
(m, r, N), τ = 1, 2, ..., s (13)

When analyzing multiscale complexity, we used m = 2, r = 0.15
for MSE and m = 2, r = 0.15, n = 2 for MFE, and scales were
set from 1 to 50.

Extreme Gradient Boosting
Extreme gradient boosting (XGBoost) model was used as a
classifier to distinguish different levels of sustained attention.
XGBoost is an efficient and distributed implementation of the
Gradient Boosting algorithm (Chen and Guestrin, 2016). The
main advantage of XGBoost lies in its scalability, which allows
parallel and distributed computing, and makes learning and
model exploration faster. And approximate algorithm used in
XGBoost finds the candidate set of cutting points according
to the quantile of the feature distribution, and then traverses
all the sub-sets to determine the best split point. This method
replaces the greedy algorithm that needs to traverse all samples
when looking for the best segmentation point in training.
In addition, XGBoost proposed a more regularized model
formalization to prevent over-fitting, so that the performance
of XGBoost is better than the conventional Boosting algorithm.
Apart from that, XGBoost is an unexplored algorithm in the
field of attention recognition. So here in this work we explored
this algorithm to get better accuracy. The subject leave-one-
out cross-validation (LOOCV) and 5-fold-cross validation were
both performed to evaluate the model’s predictive performance.
XGBoost library through the python package was used to
complete this work.

Statistical Analysis
The D’Agostino-Pearson normality test was performed to
check whether the data satisfied the normal distribution. The
parametric ANOVA test was used for the data that satisfied
normality. If the data are not normally distributed, a non-
parametric Kruskal-Wallis test was used.

To uncover the associations between the dynamical analyzed
indices and behavioral parameters, Spearman’s correlation
coefficient was performed between the EEG features and
calibrated response time (C-RTs). The significant difference was
defined as the p-value < 0.05. All statistical analysis methods were
performed in MATLAB R2018a.

RESULTS

Behavior Analysis
Descriptive statistics were presented in Table 1, behavioral
results were reported in terms of mean reaction time (RT) (ms)
and mean errors (%) for all subjects. The average PSQI score
(mean = 5.31, SD = 2.09) can be used as evidence to support
that the currently selected group of subjects does not have
insomnia disorder (Dietch et al., 2016). The average Total Mood
Disturbance (TMD) score of POMS (mean = 108.31, SD = 20.60)
shown that the emotional state of participants is normal and there
is no negative mood swing [TMD score range from 68 to 268,
a higher TMD score is indicative of greater mood disturbance
(McNair et al., 1992)]. The average CFQ score (mean = 52.90,
SD = 12.47) suggested that the concentration of participants in
daily life is at a normal range (Wallace et al., 2002). No abnormal
value was found in the PSQI, POMS, and CFQ questionnaires.

EEG Dynamical Complexity Between
Resting and Attention States
We analyzed the ApEn, SampEn, FuzzyEn, MSE, and MFE of
all 32 channels for all EEG epochs to investigate the single-
scale and multiscale complexity, and the group difference of EEG
complexity between resting state (eyes opened) and sustained

TABLE 1 | Mean task results of all subjects.

Characteristics Mean (standard deviation) n %

Subject

Male 16 38.10

Female 26 61.90

Age (years) 24.26 (1.17)

Education level college student 42 100

Handedness right-handed 42 100

AX-CPT task

Mean RT (ms) 405.04 (96.52)

Mean errors (%) 8 (6.65)

Questionnaires

PSQI 5.31 (2.09)

POMS 108.31 (20.60)

CFQ 52.90 (12.47)
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attention state was presented in Figure 3. The three single-
scale complexity values during the sustained attention task
were significantly higher than resting state (Figure 3A, ApEn,
p < 0.001, SampEn, p < 0.001, and FuzzyEn, p < 0.001).
Distinct increases of multiscale complexity curves (scales 1–50)
measured by MSE and MFE were observed during sustained
attention state (Figures 3B,C). These promising results suggest
that complexity has the potential to distinguish different levels of
attention states.

EEG Dynamical Complexity Compared
Among Four Attention Levels
Single-Scale EEG Complexity
The single-scale EEG complexity for different attention levels was
explored using three kinds of entropy calculation methods, i.e.,
ApEn, SampEn, and FuzzyEn. Four different levels of attention
states were defined in this study, including high attention (HA),
medium attention (MA), low attention (LA), and resting state
(RS). The definition criterion for different attention levels was
introduced in section “EEG Recording and Preprocessing.” Here,
we first took α = 0.25 as the representative case in this section,
and finally α = 0.05–0.35 were evaluated accordingly in section
“Effects of Significance Level Alpha.”

The brain topography of averaged ApEn, SampEn, and
FuzzyEn for all 42 subjects was shown in Figure 4, representing
HA, MA, LA, and RS, separately. These topography maps
demonstrate that (i) consistently in all three entropy
methods, higher attention levels showed higher single-scale
EEG complexity than lower attention levels in frontal and
central brain regions, whereas resting state showed lowest EEG
complexity than keeping focused (see Figure 4A), and (ii) these
differences among the four attention levels in frontal and central
regions were highly significant (evaluated by nonparametric
Kruskal-Wallis test, see Figure 4B).

Furthermore, as illustrated in Figures 4C,D, we took Fz and
F4 as representative results to show the group differences in
frontal regions. FuzzyEn achieved highest statistical difference

than ApEn and SampEn among HA, MA, and LA states,
representatively shown in Figures 4C,D, ApEn (Fz: p < 0.05,
F4: p < 0.01), SampEn (Fz: p < 0.01, F4: p < 0.01), and
FuzzyEn (Fz: p < 0.01, F4: p < 0.01). Approximately equal
significant group differences were found among four attention
levels (p < 0.001 for both SampEn and FuzzyEn measures in
both Fz and F4). Similar group differences were found in other
EEG channels (i.e., channels marked with the red asterisk in
Figure 4B).

Thus, the comparison results of single-scale complexity
measured by ApEn, SampEn, and FuzzyEn showed that most of
the frontal lobe electrodes (e.g., FP1, FP2, AF3, AF4, F7, F3, Fz,
F4, F8, Fc1, Fc2) and part of the parietal lobe electrodes (e.g.,
C3, C4) all have significant differences among different attention
levels, suggesting that characterization of different attention
levels is more associated with EEG complexity in the frontal and
central regions than other brain regions.

Multiscale EEG Complexity
The dynamical complexity measured from the temporal
regularity of EEG oscillations across different time scales may
provide more information. The multiscale EEG complexity of
three different attention levels and resting state were analyzed
by multiscale measures of both MSE and MFE. The averaged
MSE and MFE curves of F4 were shown in Figure 5. As in the
enlarged detail plots at scales 1–10, more obvious difference was
found in MFE curves (Figure 5B) than MSE curves (Figure 5C)
among four attention states, showing that the higher the
attention level is, the higher the entropy value at this scale. In
Figure 5A, the mean sample entropy values of MA and LA
are approximately equal across different time scales. At time
scales 11–50, the curves of four attention levels are aliased
together in both Figures 5A,B. Hence, the area under MSE
and MFE curves at time scales 1–10 was defined as multiscale
sample entropy index (MSEI) and multiscale fuzzy entropy
index (MFEI). Figure 5C displayed the group differences among
both three different attention levels (i.e., HA, MA and LA,
MSEI: p < 0.01 and MFEI: p < 0.001) and four attention

FIGURE 3 | Comparison of complexity measured separately by approximate entropy (ApEn), sample entropy (SampEn), fuzzy entropy (FuzzyEn), Multiscale sample
entropy (MSE), and Multiscale fuzzy entropy (MFE) between resting state and sustained attention state at Fz. (A) The averaged values of single-scale complexity
(ApEn, SampEn, and FuzzyEn) for 42 subjects [∗∗∗p < 0.001, the error bar represented standard deviation (SD)]. (B) The averaged Multiscale complexity measured
by MSE and (C) MFE for 42 subjects [shadows represented standard error (SE)].
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FIGURE 4 | Brain topography and representative results of single-scale EEG complexity. (A) Topography of approximate entropy (ApEn), sample entropy (SampEn),
and fuzzy entropy (FuzzyEn) for all 42 subjects at four attention states (i.e., high attention—HA, medium attention—MA, low attention—LA, and resting state—RS).
The red color means high entropy, and blue means low entropy. (B) The statistical significance of 32 channels using Kruskal-wallis test. The color of circle indicates
significance level α, blue represents α in the range of (0.01, 0.05], yellow represents α in the range of (0.001, 0.01], red represents α smaller than 0.001. (C,D)
Representative results of single-scale complexity measured group differences for three attention levels (HA, MA, and LA) and four different attention levels (HA, MA,
LA, and RS) in frontal region at Fz and F4. Nonparametric Kruskal-Wallis test, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Error bars = ±1 SD.

levels (i.e., HA, MA, LA, and RS, MSEI: p < 0.001 and MFEI:
p < 0.001).

Recognition of Multi-Level Attention
Classification Results
For the dynamical complexity method, both single-scale (i.e.,
ApEn, SampEn, FuzzyEn) and multiscale complexity indices (i.e.,
MSEI, MFEI) extracted from EEG recordings in the frontal region
(i.e., FP1, FP2, AF3, AF4, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6)
were fed into the classification model. To prove the efficiency
and advantage of complexity-based features, the conventionally
used power ratios of different frequency bands which have been
widely considered to be related with attention level (Barry et al.,
2009; Putman et al., 2010), e.g., β/θ, β/α, β/(α+θ), were applied
as classical method to recognize different level of attention
states. For the classical method, 3 power ratio features β/θ, β/α,
β/(α+θ) was extracted from the same frontal electrodes. Hence,
the feature dimension of each sample in the complexity-based
model is 65 (5∗13) and for the classical model, each sample is
described by 39 (3∗13) features. To eliminate the influence of
individuality on classification, the features of all data segments
were separately normalized to 0–1 in all subjects, respectively,
before classification.

Furthermore, in order to further evaluate the distinguish
performance of the Complexity-XGBoost, SVM, and random

forest (RF) were also performed, which have been commonly
used in EEG analysis. The parameters optimizing process was
performed for each classifier model during training.

Table 2 demonstrated the classification results of multi-level
attention recognition obtained from both the LOOCV and 5-
fold cross-validation. With LOOCV, the proposed Complexity-
XGBoost model achieved accuracy of 64.69, 70.49, and 76.39%,
respectively for four-level attention states classification (HA,
MA, LA, and RS), three-level attention states classification
(HA, MA, and LA), and two-level attention states classification
(attention state (AS), and RS). With 5-fold cross-validation, the
Complexity-XGBoost model achieved accuracy of 81.39, 80.42,
and 95.36%, respectively.

Compared with classical methods, complexity-based methods
resulted in best performance in all two validations and three
classification strategies, and this advantage is more distinct when
using the 5-fold cross-validation. When both LOOCV and 5-fold
cross-validation was conducted, the performance in XGBoost
outperformed those of other two machine learning methods. The
results of the SVM were not much different from those of the RF.

The Receiver Operating Characteristic (ROC) curves of
Complexity-XGBoost and Classical-XGBoost methods for three
classification strategies are showed in Figure 6. The area under
curve (AUC) of Complexity-XGBoost method are 0.95, 0.91,
and 0.99 respectively, for four-level, three level, and two-level
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FIGURE 5 | Representative results of multiscale complexity analysis on electrodes F4. (A) The averaged multiscale sample entropy curves and (B) averaged
multiscale fuzzy entropy curves of four attention states for 42 subjects, and the shadow represents SE. (C) Group differences between MSEI and MFEI among
different attention levels. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Error bars = SD.

TABLE 2 | The performance between XGBoost and other machine learning methods in the LOOCV and 5-fold cross-validation.

Methods Model LOOCV 5-Fold cross validation

4-Level 3-Level 2-Level 4-Level 3-Level 2-Level

Classical methods SVM 59.23 ± 8.32 65.14 ± 7.79 73.82 ± 8.72 62.42 ± 0.51 72.00 ± 1.73 82.32 ± 0.81

RF 60.19 ± 5.21 64.12 ± 4.96 72.34 ± 7.46 63.52 ± 0.65 73.39 ± 1.10 81.71 ± 1.37

XGBoost 63.15 ± 4.63 65.24 ± 3.86 73.39 ± 4.47 67.45 ± 0.48 72.75 ± 1.03 83.46 ± 1.83

Complexity analysis SVM 60.13 ± 12.32 70.34 ± 9.76 75.43 ± 13.45 78.46 ± 1.12 78.25 ± 1.19 94.34 ± 1.18

RF 63.77 ± 8.63 72.33 ± 10.22 73.70 ± 11.68 77.27 ± 1.73 77.68 ± 0.90 94.12 ± 0.34

XGBoost 64.69 ± 6.20 70.49 ± 4.59 76.30 ± 9.24 81.39 ± 1.47 80.42 ± 0.84 95.36 ± 2.31

attention states classification. And the AUC of Classical-XGBoost
method are 0.83, 0.81, and 0.88, respectively, for three kinds pf
classification strategies.

Feature Importance
The complexity-based features and the classical PSD features
from 32 channels were combined to conduct a Combined-
XGBoost classifier. One advantage of this approach is that
we can retrieve the importance score of each feature after
constructing the gradient boosted trees to obtain the importance

ranking of the feature. The top 10 important features and
their electrode positions are shown in Figure 7. The top 10
important features were all complexity-based features. MFEI
appears 4 times in the top 10 important features, FuzzyEn 3 times,
MSEI twice, and SampEn once, indicating that the complexity-
based features in identifying different attention levels were far
better than the PSD features. Meanwhile, the electrode positions
where these features are located also showed that the frontal
lobe brain area is of great significance for identifying different
level of attention.
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FIGURE 6 | The Receiver Operating Characteristic (ROC) curves of Complexity-XGBoost and Classical-XGBoost methods for three classification strategies. (A) The
ROC curve for four-level classification. (B) The ROC curve for three-level classification. (C) The ROC curve for two-level classification.

FIGURE 7 | Feature importance of Combined-XGBoost (top 10 features).

Effects of Significance Level Alpha
The above results were obtained based on the definition criterion
α = 0.25 for different attention levels (introduced in sections
“EEG Dynamical Complexity Compared Among Four Attention
Levels” and “Recognition of Multi-Level Attention”). Here,
to investigate the reliability of complexity-based features for
characterizing specific attention level, we evaluated the multi-
level attention recognition accuracy under different significance
level α = 0.05–0.35 (see Figure 8, 4-level attention classification).
With the increase of α-level, the classification accuracy of
classical methods based on the power ratio tends to decrease
dramatically from 80.59% (α = 5%) to 64.40% (α = 30%),

while the methods based on complexity analysis have much
higher accuracies (73.91–95.01%) for the recognition of the
four attention states. These findings further confirmed the
advantages of nonlinear complexity analysis for attention-related
EEG recognition. Hence, in this study we took α = 0.25 as the
representative threshold to define HA, MA, and LA is reliable.

Relationship Between EEG Dynamical
Features and Real-Time Response
During Sustained Attention Task
Brain dynamics research has highlighted the contributions of
the ongoing EEG to behavioral responses. In this section, we
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FIGURE 8 | The effects of the significance level α to classification accuracy.

examined the correlation effects of state-related EEG changes on
stimulus-response efforts during sustained attention task. First,
the averaged time-varying C-RTs across subjects were calculated.
As for multi-channels EEG features, we performed principal
component analysis (PCA) method to realize dimensionality

reduction. PCA and related techniques have been applied to
describe the fluctuation of EEG measurements during the resting
state (Leonardi et al., 2013), continuous movie-watching task
(Demirtaş et al., 2019), and whole-brain connectivity dynamics
(Allen et al., 2014; Zhu et al., 2020). PCA is a method
accepted by many researches to reduce the dimensionality
of multi-channel or whole brain features, and then to study
dynamic fluctuation. PCA was performed on the dynamical
EEG features of 13 electrodes in the frontal brain area
within each subject, then the first principal component (PC1)
was selected as the representative EEG features for each
subject. Finally, the averaged time-varying PC1 of 42 subjects
were calculated. These correlation effects were estimated
using a Spearman’s correlation test between averaged EEG
features and averaged C-RTs of all subjects along with data
segments over time.

Five complexity-based features (ApEn, SampEn, FuzzyEn,
MSEI, and MFEI) and 3 power ratio features [β/θ, β/α, and
β/(α+θ)] are all took into consideration separately. Significant
negative correlations were found between the involved EEG

TABLE 3 | Comparison with previous studies on attention recognition.

Authors Attention task
(levels)

Subjects Methods Window
(seconds)

Brain regions
(channels)

Validation Accuracy (%)

2-Levels

Chen et al.
(2017)

Continuous
performance task
(high-attention,
low-attention)

10 Temporal and
entropy
features—SVM

Trial length Prefrontal (1) 3/4 train, 1/4
test

91.60

3-Levels

Hu et al.
(2018)

Randomly selected
learning task (high,
neutral, low)

10 Linear and
nonlinear
features—
CFS+KNN

180 Central and
temporal (6)

10 times
3-Fold CV

80.84

2-Levels 3-Levels

Gaume et al.
(2019)

Continuous
performance task (easy,
medium, and hard)

14 Power
features—LDA

5 Whole brain
(16)

Leave-one-
subject-out

75 51.8

30 85 64.8

2-Levels
(in-ear)

2-Levels
(prefrontal)

Jeong and
Jeong (2020)

Psychomotor vigilance
tasks (attention, rest)

6 Temporal and
spectral
features—Echo
State Network

0.5 In-ear (2)
prefrontal (2)

Within-
subject

81.16 82.44

Cross-
subject

64.00 65.70

10-Fold CV 74.15 73.73

2-Levels 3-Levels 4-Levels

Our study AX-CPT (rest, LA, MA,
HA)

42 Complexity—
XGBoost

3 Frontal (13) Leave-one-
subject-out

76.30 70.49 64.69

5-Fold CV 95.36 80.42 81.39

SVM, support vector machine; CFS, correlation-based feature selection; KNN, k-nearest-neighbor; LDA, Linear discriminant analysis; ESN, Echo State Network; CV,
cross-validation.
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features (except the classical features β/α) and C-RTs, MFEI had
the highest correlation (r =−0.35, p < 0.001).

DISCUSSION AND CONCLUSION

This study proposed to use a calibrated response times (C-RTs)
to obtain multi-level attention states during an AX-CPT
sustained attention test, which can truly reflect the changes in
attention without the influence of individuality on response. The
proposed entropy-based Complexity-XGBoost model achieved
outstanding performance, respectively, in recognizing four,
three, and two levels of attention states relative to a similar
model trained on conventional power spectral based measures.
Furthermore, we found significant correlation relationships
between complexity-based EEG features and C-RTs over time.

EEG signal is a nonlinear coupling of large number of nerve
cells. The linear EEG analysis can evaluate the communication
between neural networks in the same oscillating frequency
band or similar neuron firing patterns. However, it is not clear
how much information is missing since the behavior of neural
network can be highly nonlinear and nonstationary (Yang et al.,
2018; He and Yang, 2021). Thus, nonlinear analysis methods
like entropy and complexity are more suitable for EEG feature
extraction than the power spectral based linear analysis. The
dynamical complexity of the neural network should correlate
with the conscious state of the subject (Tononi and Edelman,
1998). The neural network based on automatic behavior or low-
control behavior should have lower dynamical complexity than
the neural network that consciously controls behavior, such as
controlling oneself to maintain a high attention state.

Compared with the performance of previous studies on the
EEG application of attention state monitoring (Chen et al., 2017;
Hu et al., 2018; Gaume et al., 2019; Jeong and Jeong, 2020), we
dealt with the recognition up to four levels of attention states
and our performance is higher than them using Complexity-
XGBoost (see Table 3). The Complexity-XGBoost achieved the
accuracy of 81.39 ± 1.47% for four-level attention states (HA,
MA, LA, and RS), 80.42 ± 0.84% for three-level attention states
(HA, MA, and LA), and 95.36 ± 2.31% for two-level attention
states (AS and RS) when using 5-fold cross-validation. With
LOOCV, the accuracies were 64.69 ± 6.20%, 70.49 ± 4.59%,
and 76.30 ± 9.24%, respectively. The performance of the three-
level attention classification (without RS) is still relatively high,
indicating that the accuracy of the four-level classification is
not affected by the obvious difference between resting state and
attention state.

The proposed attention recognition model based on the
XGBoost algorithm adds a regularization step to the traditional
gradient enhancement algorithm, which can reduce the degree
of overfitting of training and improve the performance of
cross-subject classification. Moreover, the Complexity-XGBoost
model supports multi-threaded parallel computing, and the
approximate algorithm is used to replace the greedy algorithm
when looking for the best segmentation point, thereby greatly
improving the computing efficiency of the algorithm and
reducing the computational cost in real-time training. In terms of

the recognition of small and medium-sized data, such as attention
recognition using EEG features, algorithms based on XGBoost
are by far one of the best ways for an application purpose.
So attention recognition based on Complexity-XGBoost model
has great application potential in actual portable brain-computer
interface applications.

Furthermore, the interpretable property of the XGBoost
algorithm also showed the importance of complexity-based
features and frontal brain region. The presented attention
recognition results in this study were obtained using EEG features
derived from frontal brain region instead of the whole brain.
The frontal region is involved in the generation of top-down
control signals for attention transition, especially the prefrontal
lobe area plays a vital role in the ability to switch attention
control based on changing task requirements (Rossi et al., 2009).
It is suggested that the frontal region played an important
role in attention regulation (Daffner et al., 2000; Paneri and
Gregoriou, 2017). Both the brain topography of three single-
scale complexity indices (see Figure 4) and feature importance
ranking with electrode locations (see Figure 7) showed that
frontal channels could distinguish different levels of attention
states more significantly than any other brain area. The frontal
cortex, the control center for most cognitive functions, is
considered a higher order area that controls several executive
functions including taking charge of the brain’s attention and
controlling relevant parts of the visual cortex (Baldauf and
Desimone, 2014). However, previous studies found that other
brain regions, including parietal and occipital, also reflect
attentional modulation (van Schouwenburg et al., 2017; Magosso
et al., 2019; Misselhorn et al., 2019). These studies focused on the
relationship of attentional modulation and alpha oscillation or
alpha power, which all used linear analysis methods. It appears
that Hu et al. (2018) excluded frontal electrodes (they used C3,
C4, Cz, P3, P4, Pz), whereas the this study focused on frontal
electrodes. The mechanism that the linear analysis method and
the nonlinear analysis method behave differently in different
brain regions is worthy of further investigation. In this study,
we proposed and verified the effective dynamical complexity
indices for attention evaluation based on frontal EEG, which
is a good impetus for the application of portable prefrontal
EEG devices to promote real-time attention state assessment.
Attention recognition based on Complexity-XGBoost could
applied to the neural feedback treatment of diseases that affect
cognitive function such as attention deficit hyperactivity disorder,
mild cognitive impairment, or Alzheimer’s disease.

This study also provides an instance of EEG dynamical
correlation analysis to investigate the effectiveness of EEG
features in attention assessment. Our results showed that
dynamical complexity measures were related to the changing
process of response, e.g., dynamical complexity measure MFEI
(r = −0.35, p < 0.001) were significantly correlated to the task
performance during sustained attention task. Previous studies
also demonstrated that attention dynamically modulates brain
rhythms (Liu et al., 2020; McCusker et al., 2020; Pagnotta
et al., 2020). McCusker et al. (2020) observed multi-spectral
oscillatory robust effected by attention dynamically for both the
directed and divided attention experiments in a MEG study.
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Liu et al. (2020) applied an complex analysis framework
composed of weighted phase lag index and tensor
component analysis and they found dynamic organizations
of frequency-specific function connectivity can track the
decrement and motivation of attention in sustained task.
In a simplified perspective, dynamical complexity analysis
conducted in this study may offer additional predictive value
for attention.

One limitation of this study is that the time course of AX-
CPT tasks was not sufficiently long, resulting in the reaction
time not being able to progress overtime to produce more
obvious changes. In future research, multi-session variable-
speed AX-CPT tasks and longer experimental time will be
performed to verify the advantages of nonlinear complexity
methods for attention recognition. In addition, we also hope
to use cross-frequency neural coupling measurement for
attention recognition.

The present study investigated brain dynamical complexity
concurrently during rest and a task characterized by
sustained attention. The present findings demonstrated
that dynamical complexity and XGBoost achieved great
performance for different levels of attention states
recognition, and significant differences were observed in the
frontal regions.
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