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Hydrodynamic interactions (HI) are incorporated into Langevin

dynamics of the Ca-based protein model using the Truncated

Expansion approximation (TEA) to the Rotne–Prager–Yamakawa

diffusion tensor. Computational performance of the obtained GPU

realization demonstrates the model’s capability for describing pro-

tein systems of varying complexity (102–105 residues), including

biological particles (filaments, virus shells). Comparison of numeri-

cal accuracy of the TEA versus exact description of HI reveals simi-

lar results for the kinetics and thermodynamics of protein

unfolding. The HI speed up and couple biomolecular transitions

through cross-communication among protein domains, which

result in more collective displacements of structure elements gov-

erned by more deterministic (less variable) dynamics. The force-

extension/deformation spectra from nanomanipulations in silico

exhibit sharper force signals that match well the experimental pro-

files. Hence, biomolecular simulations without HI overestimate the

role of tension/stress fluctuations. Our findings establish the

importance of incorporating implicit water-mediated many-body

effects into theoretical modeling of dynamic processes involving

biomolecules. VC 2016 The Authors. Journal of Computational

Chemistry Published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24368

Introduction

The solvent environment affects the dynamic properties of bio-

molecules, but the issue of hydrodynamic coupling between var-

ious segments within the same biological macromolecule has

not received much attention. Although hydrodynamic interac-

tions (HI) affect the properties of condensed phase systems,

there are only a handful of reports in the literature on the effects

of these interactions in proteins. Recent theoretical studies have

mainly focused on how hydrodynamic effects influence the diffu-

sion of biomolecules,[1,2] protein ensembles’ association,[3,4] and

protein folding.[5] Very few studies have focused on how hydro-

dynamic interactions affect the kinetics and thermodynamics of

protein unfolding. In a recent study,[6] the investigators

addressed the role of hydrodynamic interactions on protein

unfolding, but the example chosen was a small protein-

ubiquitin. Therefore, a number of interesting questions remain.

For example, it is not known how hydrodynamic interactions

influence the unfolding pathways and mechanism(s) in multido-

main proteins under tension. Little is known about the extent of

domain–domain coupling in multidomain proteins in the pres-

ence of hydrodynamic interactions. More intriguing questions

concern the effect of hydrodynamic interactions on the biophysi-

cal properties of large protein complexes. It is not yet known

how hydrodynamic interactions modulate any large system’s

dynamic response to external mechanical factors, where exam-

ples of such important biological assemblies include microtu-

bules, cell organelles, and animal and plant virus particles, etc.

Langevin dynamics simulations based on simplified models

of biomolecules are widely used to access large-amplitude and

long-timescale molecular motions. In these simulations, the

description of solvent effects is typically limited to stochastic

collisions implicitly reflecting the thermal environment. These

are modeled by random forces acting on each particle and in

each dimension x, y, and z in the three-dimensional space.

Although the collective behavior of solvent molecules can dra-

matically alter the dynamics of the whole system, in coarse-

grained modeling approaches this behavior is usually

neglected. Here, we employ the Langevin dynamics simula-

tions of the Ca-based Self Organized Polymer (SOP) model of a

polypeptide chain[7,8] to explore the influence of solvent
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induced many-body effects on dynamic structural transitions

in protein assemblies. A variety of biochemical systems have

been described using this approach.[7,9–11]

We have ported the SOP-based simulations to Graphics Process-

ing Units (GPUs).[12,13] The computational acceleration attained on

a GPU with the SOP-GPU program (see Fig. S1 in the Supporting

Information) has enabled us to address the biological N-body

problem and to probe dynamic structural transitions in: fibrin

monomer and oligomers (N� 103–104 amino acids),[14,15] microtu-

bule polymers (N � 105),[16] and protein shells of the virus particle

CCMV and the bacteriophage HK97 (N� 104–105).[13,17,18] Here, we

employ the SOP-model to account for the hydrodynamic interac-

tions between the Ca-particles with all the computational subrou-

tines fully implemented on a GPU. In the past decade, GPUs have

transformed from being an obscure rapid visualization oriented

technical development to becoming integral components of mod-

ern supercomputers with wide software support. The utilization of

GPUs for Molecular Dynamics (MD) based scientific applications

began in 2007,[19] but now successful MD simulation packages

have partial or full GPU support including HOOMD-blue,[20]

ACEMD,[21] AMBER,[22,23] and GROMACS.[24]

A simple method to account for hydrodynamic interactions in

Langevin dynamics simulations was proposed by Ermak and

McCammon.[25] A downside of this approach is the requirement to

perform computationally expensive Cholesky decomposition to

obtain the correlation matrix for random forces at each step of

numerical integration. Several methods have been introduced to

leverage this difficulty, including the Fixman approximation[26] and

Krylov subspace methods,[27] but the issues remain. Here, we pro-

pose to use an approximate treatment of the hydrodynamic effects

based on the Truncated Expansion approximation (TEA).[28] The

obtained realization of the SOP model with hydrodynamics is fully

implemented on a GPU and is incorporated into the SOP-GPU pack-

age. We profiled the computational performance of the SOP-GPU

program with HI option for a range of biomolecular systems of vary-

ing size (N 5 101–105 amino acids) to demonstrate that the pro-

gram enables one to complete simulation runs in reasonable wall-

clock time. We also compared the numerical accuracy of TEA-based

treatment of HI against the results obtained with the Cholesky

decomposition by performing Umbrella Sampling calculations of

the unfolding free energy landscape for small proteins and by ana-

lyzing the unfolding kinetics of a generic multidomain protein.

Excellent agreement between the approximate and exact

results has enabled us to carry out a comprehensive study of the

influence of HI on a number of different processes, including the

forced unfolding of a large multidomain protein, and the deforma-

tion of a biological filament. The results obtained illuminate the

critical importance played by solvent-induced correlations influ-

encing finite-rate dynamic processes involving biomolecules. Our

results also necessitate the development of scalable computa-

tional modeling schemes for the accurate description of force gen-

erating properties of proteins, in which solvent-mediated many-

body effects are accounted for. Utilizing these hydrodynamic inter-

actions will allow better theoretical modeling of biological assem-

blies of all sizes to compare with both single-molecule force-based

experiments as well as descriptions of biomolecular systems in the

context of their cellular mechanical environment.

Methods

Hydrodynamic interactions

In Langevin Dynamics simulations in the overdamped limit, the

x-, y-, and z-coordinates of N particles of the system in the three-

dimensional space ra, where index a runs through all the degrees

of freedom for all N particles (a 5 1,. . ., 3N), are propagated for-

ward in time according to the Langevin equation of motion:

Dra5
Dt

c
ðFa1qgaÞ (1)

In eq. (1), q5kBT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=DaaDt

p
is the amplitude of random force, Dt

is the timestep, kBT is the temperature, and c is the friction coeffi-

cient, which is given by the Einstein-Stokes equation c 5 6pga,

with water viscosity g 5 7.0 3 105 pN ps/nm and the particle’s

size a. In eq. (1), Fa52@U=@ra is the molecular force acting on

the a-degree of freedom (U is the potential energy). In this

approach, which ignores the hydrodynamic coupling of degrees

of freedom, all particles are described by the same diffusion coef-

ficient, D5Daa5kBT=c, and stochastic kicks from solvent mole-

cules are modeled using N(0,1)-distributed random forces ga.

To account for solvent-mediated many-body effects, one can

use an approach due to Ermak and McCammon.[25] In this

approach, the equation of motion eq. (1) is transformed into

the following equation:

Dra5
X3N

b51

Dab

kBT
DtFb1

ffiffiffiffiffiffiffiffi
2Dt
p X3N

b51

Babgb (2)

In eq. (2), the hydrodynamic tensor D, a real 3N 3 3N matrix

in which an entry Dab describes a contribution to the diffusion

of degree of freedom a from the degree of freedom b. Tensor

D can be represented by an N 3 N matrix of 3 3 3 submatri-

ces Dij, each corresponding to a pair of particles i and j. In eq.

(2), B 5 D1/2; therefore, for the correct distribution of random

forces a real 3N 3 3N matrix B must satisfy the condition

BsB 5 D, where the superscript s represents the transpose of a

matrix. When D is diagonal with the equal matrix elements

Daa 5 kBT/c, we recover eq. (1).

The simplest explicit form of the hydrodynamic tensor D was

first proposed by Oseen.[29] However, since this quantity is not

always positively defined, the correct matrix B may not exist for

some system’s configurations. In this work, we use the Rotne–

Prager–Yamakawa (RPY) tensor[30,31] which is a positive-definite

quantity. The submatrices Dij of RPY tensor are given by

Dii5
kBT

6pga
I (3a)

Dij5
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In eqs. (3a)–(3c), I is the identity matrix of rank 3 and a is the

hydrodynamic radius of the particle. In this work, we use the

same value of a for all particles.
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Truncated expansion approximation

There are several methods for numerical computation of

matrix D, including a fast multipole method[32] and Ewald

summation method.[33] In this work, however, we utilized an

approach in which the elements of the diffusion tensor D are

computed on a pairwise basis. For each pair of residues i and

j, the submatrix Dij is computed directly according to eqs.

(3a)–(3c). This approach has been extensively tested in con-

junction with various algorithms for finding the matrix

B,[27,28,34] and it does not require the periodic boundary condi-

tions. Also, a straightforward way of computing B is Cholesky

decomposition of D, but this method requires a total of O(N3)

arithmetical operations and O(N2) memory space to store the

whole matrix D. Clearly, such an approach is not most efficient

for an implementation on a GPU, due to memory limitations.

Several methods for approximate calculation of the matrix B

have been developed, including the Fixman approximation,[26]

Krylov subspace methods,[27] and the Truncated Expansion

approximation.[28] In the Fixman method,[26] the square root of

D is approximated using Chebyshev polynomials pL(D). Here,

we only need a product B�g � pL(D)g, which can be com-

puted more efficiently than pL(D) itself. This method is iterative

and requires estimation of the extreme eigenvalues of the

matrix D for fast convergence. The Krylov subspace method[27]

is similar to the Fixman method, but uses polynomials over

Krylov subspace {g, Dg, . . ., Dm21g}. Although the use of

Krylov subspace leverages the need to estimate the extreme

eigenvalues, this method requires the whole matrix D as the

input and several iterations to achieve convergence.

Therefore, in this work we employed the Truncated Expan-

sion approximation (TEA).[28] This is by far the fastest method

for calculation of the matrix D,[27] and it can be adapted to

compute the matrix elements on a pairwise basis. The TEA

method is less accurate than other methods available,[27,34] but

given the coarse-grained nature of the SOP model, we accept

this trade-off to achieve a significant computational speed-up,

while also maintaining a reasonable level of accuracy. In the

TEA approach, the matrix elements of B can be rewritten as

Bab5CababDab=
ffiffiffiffiffiffiffi
Daa
p

, and eq. (2) can be recast as:[28]

Dra5
Dt

c

X3N

b51

Dab

Daa
ðFb1CababqgbÞ (4)

where

bab5
1; if a5b

b0; if a 6¼ b

(
(5)

In eqs. (4) and (5), Ca and b0 are given by

Ca5 11
X
a6¼b

b02
D2

ab

DaaDbb

 !1=2

(6)

b05
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ðN21Þe22ðN22Þe½ �

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN21Þe22ðN22Þe

p (7)

where e5hDab=Daai. Equations (5)–(7) allows one to parallelize

the integration algorithm on a GPU. The memory demand

associated with using TEA scales with system size as O(N), as

opposed to O(N2) for Cholesky decomposition. The memory

cost is small compared to the amount of memory required to

store the lists of pairs of interacting particles.

Cholesky decomposition

We used the Cholesky decomposition method to assess the

accuracy of the TEA method. Cholesky decomposition allows

one to calculate the matrix elements of the diffusion matrix

exactly. In this method, a decomposition of a positive-definite

matrix D is employed to find the upper triangular matrix B so

that the matrix D can be written as the product D 5 BsB.

Numerically, this is achieved by solving a system of N(N 1 1)/2

linear equations. It takes O(N3) operations using the Cholesky–

Banachiewicz or Cholesky–Crout algorithms to solve these

equations, which differ only in their access pattern. We used

the CPU implementation of Cholesky decomposition available

in the GNU Scientific Library.[35] For the free energy calcula-

tions, we created our own GPU-based realization of Cholesky

decomposition, which is now part of the SOP-GPU package.

SOP model

We employed the native topology-based SOP model of a poly-

peptide chain.[7,8] In the SOP model, each protein residue is

represented by a bead, positioned at the residue’s Ca-atom.

The explicit form of the potential energy USOP expressed in

terms of the coordinates of the Ca-atoms {ri} 5 r1, r2,. . ., rN of

residues 1, 2, . . ., N is given by

USOP5 UFENE1UATT
NB 1UREP

NB (8)

In eq. (8), the first term is the finite extensible nonlinear elastic

(FENE) potential, which describes the backbone chain

connectivity:

UFENE52
XN21

i51

k

2
R2

0log 12
ri;i112r0

i;i11

� �2

R2
0

0
B@

1
CA (9)

where k 5 14 N/m is the spring constant, and the tolerance in

the change of the covalent bond distance is R0 5 2 Å. The dis-

tance between the next-neighbor residues i and i 1 1, is ri,i 1 1,

and r0
i;j11 is its value in the native structure. The second term

in eq. (8) takes into account the noncovalent (or nonbonded)

interactions that stabilize the native state (structure). To

describe these interactions, we use the Lennard–Jones

potential:

UATT
NB 5

XN23

i51

XN

j5i13

eh r0
ij=rij

� �12

22 r0
ij=rij

� �6
� �

Dij (10)

In eq. (10), we assume that if noncovalently linked residues i

and j (|i2j|> 2) are within the cut-off distance of 8 Å in the

native state, then Dij 51; and Dij 5 0 otherwise. The value of eh

quantifies the strength of the nonbonded (noncovalent)
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interactions. In the SOP model, parameter eh sets the energy

scale. The third term in eq. (8) accounts for the remaining

non-native (nonbonded) interactions, which are treated as

repulsive, including the bond angle between the residues i,

i 1 1, and i 1 2:

UREP
NB 5

XN22

i51

el rl=ri;i11

	 
6
1
XN23

i51

XN

j5i13

el r0
ij=rij

� �6
12Dij

	 

(11)

where parameters el 5 1 kcal/mol and rl 5 3.8 Å define the

strength and range of the repulsion.

Model systems

The following model systems were used: (i) a fragment of an

a-helical chain (a-peptide), (ii) a single WW-domain (WW), (iii) a

trimer of linearly connected WW-domains (WW3), (iv) a c-c-

crosslinked double-D fragment from human fibrin(ogen) (dou-

ble-D fragment), (v) a single microtubule (MT) protofilament,

(vi) the nanocompartment encapsulin, and (vii) the bacterio-

phage HK97 capsid. The structures of these systems were

taken from the Protein Data Base (PDB); see Figure 1. A sum-

marized description of all the model systems, that is, system

size, number of native contacts, and the total number of resi-

due pairs for the calculation of diffusion tensor D, is given in

Table 1.

The a-peptide – a 22-residue peptide from the a-chain of

human fibrinogen (residues 172–194[36];) was used in the cal-

culation of the free energy landscape for the a-type protein.

The WW-domain of mitotic rotamase Pin1,[37] a 34-residue long

single protein domain, was used in the calculation of the free

energy for the b-sheet protein. The WW-trimer WW3—used as

a prototype of a multidomain protein, was constructed by

connecting head-to-tail three identical WW-domains with gly-

cine linkers, which were also attached to the N- and C-termini

of WW3. We used WW3 to explore the effect of hydrodynamic

interactions on protein forced unfolding. The double-D frag-

ment from human fibrin(ogen)[38] consists of two identical D-

regions from the abutted fibrin monomers connected through

the c-c crosslinking sites. We used the double-D fragment to

explore the influence of hydrodynamics on structural transi-

tions in large-size protein assemblies. The MT protofilaments

are long threads of longitudinally arranged a- and b-tubulin

heterodimers (439 and 427 amino acids, respectively), which

form long MT polymers in eukaryotic cells.[39] We used an 8-

dimers long MT protofilament, employing nanoindentations in

silico, to study the effects of hydrodynamic interactions on dis-

sociation of longitudinal ab-tubulin bonds. The Encapsulin and

Bacteriophage HK97 are examples of regular geometry biologi-

cal protein assemblies.[40,41] We used encapsulin and HK97

(Head II state) to test the SOP-GPU (with HI option) capability

(computational speed, memory usage).

Applications

Langevin dynamics

The biomolecular dynamics were obtained by performing

numerical integration of the Langevin equations of motion for

each particle’s position ri (i 5 1, 2, . . ., N) in the overdamped

limit without HI [eq. (1)] and with HI [eq. (2)] using the first-

order integration scheme. We implemented the Truncated

Figure 1. Computational performance of the SOP-GPU package with an approximate treatment of hydrodynamic interactions (TEA HI) and without hydro-

dynamics (no HI). The computational speed (number of integration steps per second) of an end-to-end realization of the SOP-GPU program implemented

on a GPU Tesla K40 is estimated for a number of systems arranged in the order of their increasing size N (Table 1): i) a-peptide, ii) WW-domain, iii) trimer

WW3, iv) double-D fragment from fibrin, v) MT protofilament, vi) encapsulin shell, and vii) HK97 virus capsid. The computational speed is compared using:

a) single-run-per-GPU approach without the HI (solid line) and with the TEA HI (dash-dotted line), and b) many-runs-per-GPU approach without the HI

(dashed line) and with the TEA HI (dotted line). The inset plot shows the associated GPU memory usage vs. N for using the single-run-per-GPU approach

(results of simulations with and without HI are indistinguishable on this scale).
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Expansion based approximate treatment and the Cholesky

decomposition based exact treatment of HI. The molecular

forces were calculated from the total potential energy

U 5 USOP [eqs. (8)–(11)]. The Langevin equations were propa-

gated with the time step Dt 5 0.08sH � 20 ps, where

sH 5 fehsL/kBT. Here, sL 5 (ma2/eh)1/2 5 3 ps, f 5 50 is the

dimensionless friction constant for a residue in water (g 5 fm/

sL), and m � 3 3 10222 g is the average residue mass.[42] All

the simulations with and without the HI were carried out at

300 K using the bulk water viscosity, which corresponds to the

friction coefficient g 5 7.0 3 105 pN ps/nm. Numerical values

of the hydrodynamic radius a vary in the literature from 1.5

Å[5] to 5.3 Å[1]. The TEA treatment of hydrodynamics correctly

handles overlaps,[34] but the RPY tensor works better at

describing the nonoverlapping particles. Since the Ca2Ca dis-

tance in a polypeptide chain is 3.8 Å and due to self-

avoidance, we set a 5 1.9 Å.

Umbrella sampling simulations

To map the free energy landscape for unfolding of the WW-

domain and a-peptide, we utilized the Umbrella Sampling

technique (Supporting Information),[43] which is widely used

to access the thermodynamics of biomolecules.[44–46] Using

Umbrella Sampling requires generation and subsequent

equilibration of initial conformations (windows), which span

the entire range of reaction coordinate (elongation X). The

potential of mean force was constructed using the Weighted

Histogram Analysis Method.[44,47,48] To generate a set of initial

structures for the a-peptide and the WW-domain, we ran 200

4-ms-long equilibration simulations for each molecule. We

carried out force-ramp simulations by constraining the N-

terminus and applying the pulling force to the C-terminus

through a virtual cantilever spring j 5 0.05 kcal/mol/Å2 � 35

pN/nm moving with velocity mf 5 2.5 lm/s in the direction of

X. We generated 1450 sampling windows of width 0.1 Å, cor-

responding to a 5 - 150 Å interval of X for the WW-domain;

and 630 windows of width 0.1 Å, corresponding to a 25 - 88

Å interval of X for the a-peptide. These conformations were

used in 10-ms equilibration runs. We carried out the Umbrella

Sampling simulations without HI, and with HI using the exact

(Cholesky) and approximate (Truncated Expansion)

treatments.

Protein forced unfolding

In force-clamp simulations, which mimic force-clamp (e.g., AFM-

based) measurements, the Ca-atom of the molecule at the N-

terminus was constrained and the constant pulling force f 5 f n

with the magnitude f was applied to the Ca-atom at the mole-

cule’s C-terminus in the direction n coinciding with the end-to-

end vector X. In the force-clamp simulations for WW3, the N-

terminal Ca-atom in the first WW-domain was kept fixed whereas

f was applied to the C-terminal Ca-atom of the third domain (Fig.

1). We generated 1000 runs for each force from f 5 100 pN to

320 pN, with 20 pN increment. The unfolding time for each WW-

domain was defined as the first time at which the end-to-end dis-

tance of the domain had exceeded 90 Å. Force-ramp simulations

were carried out using the time-dependent force f(t) 5 j(mft-Dx),

where mf is the velocity of the cantilever base, represented by a

virtual particle, j is cantilever spring constant, and Dx is the dis-

placement of the pulled residue from its initial position.[12] For

double-D fragment, we constrained/pulled cCys139 in the first/

second domain D (Fig. 1). We set the pulling velocity to either

mf 5 2.5 or 25 lm/s, and the cantilever spring constant to j 5 35

pN/nm. The output was used to profile the unfolding force (F) as

a function of molecular extension (X) or the FX-curves.

Nanoindentations in silico

For nanoindentations in silico on the MT protofilament, we har-

monically connected the cantilever base with the spherical bead

of radius Rtip mimicking the cantilever tip. The tip interacted

with the particle via the repulsive Lennard–Jones potential:

Utip5
XN

i51

etip
rtip

jri2rtipj2Rtip

� �6

(12)

which produced an indentation on the particle’s surface. In eq.

(12), ri and rtip are coordinates of the i-th residue and the cen-

ter of the tip, respectively; etip 5 4.18 kJ/mol, and rtip 5 1.0 Å.

For the cantilever tip-sphere (Fig. 6), we solved the following

Langevin equation:

c
drtip

dt
52

@UtipðrtipÞ
@rtip

1jððr0
tip2mf tÞ2rtipÞ (13)

where r0
tip is the initial position of the tip center, and the fric-

tion coefficient c corresponds to the viscosity g 5 7.0 3 106

Table 1. Summarized description of and results of performance measurements for a-peptide, WW-domain, trimer WW3, double-D fragment, microtubule

(MT) protofilament, encapsulin shell, and bacteriophage HK97 capsid.

System PDB code

System

size N

Number of native

contacts

Number of

bead pairs

Optimal number of

trajectories, sopt

a-peptide 3GHG 22 32 992 350

WW-domain 1PIN 38 75 1406 170

trimer WW3 1PIN 144 225 12,882 70

double-D fragment 1FZB 1062 3894 1,126,782 9

MT protofilament 1JFF 6928 21734 46,990,256 2

Encapsulin 3DKT 15,840 75138 890,813,562 1

bacteriophage HK97 1FT1 115,140 352224 13,257,104,460 1

Shown are the system size (number of amino acids), number of native contacts stabilizing the native state, number of pairs of beads (number of opera-

tions in the calculation of RPY tensor), and the optimal number of simulation runs on a GPU (Tesla K40) with the many-runs-per-GPU option.
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pN ps/nm. To generate the dynamics of a biological particle,

we solved numerically eqs. (1) (without HI) or (2) (with HI),

eqs. (8)–(11) for the particle, and eqs. (12) and (13) for the tip

of radius Rtip 5 10 nm. The cantilever base moving with con-

stant velocity (vf ) exerted the compressive force f 5 f(t)n in the

direction n perpendicular to the particle surface; f(t) 5 rft

increased linearly in time t with the rate rf 5 jvf (mf 5 3, 10,

and 30 lm/s and j 5 50 pN/nm). We monitored the tip posi-

tion X, which defines the extent of deformation; the resisting

force F was calculated using the energy output. To bend the

MT protofilament, we constrained the Ca-atoms at the N-

terminus of the first monomer (residues 248, 253, 257, 262,

325, 326, 329, 348, 349) and at the C-terminus of the last

monomer (residues 98, 176, 177, 180, 221, 224, 225, 403, 407).

Results

GPU-based implementation of hydrodynamic interactions

The SOP-GPU with HI option can be run in the one-run-per-

GPU mode (for large systems when N is comparable with the

number of ALUs) and in the many-runs-per-GPU mode (for

small systems when N is much smaller than the number of

ALUs).[12] In our implementation of the TEA algorithm, all com-

putations described in eqs. (3)–(7) are performed on a single

GPU. First, we compute molecular forces Fb and random forces

gb for all particles. Next, we perform the numerical integration

of the Langevin equations of motion using one thread of exe-

cution for each particle. At this stage, we compute the ele-

ments of tensor D for each particle by performing the

summation over contributions from all particles [eq. (4)]. In

this approach, each element of D is calculated twice, but we

avoid synchronization issues and the need to store the whole

matrix, which would be impossible given the relatively limited

amount of memory in contemporary GPUs (up to 12 GiB).

Here, the only operation performed on a CPU is the averaging

of the off-diagonal elements of D [parameter e in eq. (7)]. Also,

because the positions of amino acid residues in 3D-space

change gradually, parameter b’ [eq. (7)] does not need to be

updated frequently. In our implementation, we update b’ every

�10–50 steps. More frequent updates do not improve accu-

racy and less frequent updates do not reduce significantly the

computational time.

We also implemented the exact treatment of HI where we

used the modified Cholesky–Banachiewicz algorithm, in which

each thread computes a single row of the matrix B. This

requires that the whole matrix is processed by a single CUDA

block (a group of threads sharing same memory) for synchro-

nization purposes. In the developed implementation, we uti-

lized shared memory for efficiency. While this approach works

well when using the many-runs-per-GPU approach, which

allows us to process simultaneously as many blocks as there

are trajectories, it places an upper limit on system size due to

the number of available threads in a single block: 341 residues

on a GPU with CC 2.0 and later or 170 residues for CC lower

than 2.0. Leveraging this would result in significant complica-

tion of the CUDA code, and simulations with N> 102 residues

in centisecond timescales would not be feasible.

Computational performance

We assessed the computational performance of our implemen-

tation of the TEA algorithm on a GPU Tesla K40 (from NVIDIA)

for the following systems: a-peptide, WW-domain, trimer WW3,

double-D fragment, MT protofilament, encapsulin shell, and

HK97 capsid (Table 1). In the first set of benchmark tests, we

performed long equilibrium simulations (107 integration steps)

in the one-run-per-GPU mode for each system at T 5 300 K

with (TEA HI) and without (no HI) hydrodynamic interactions.

We evaluated the computation speed (number of integration

steps per second) and memory demand in the one-run-per-

GPU mode. The profiles of computational speed and memory

usage vs. system size N are compared in Fig. 1. When HI are

switched off, the computational speed scales roughly linearly

with N. This is because the computational speed is mostly

determined by force calculations and by numerical integra-

tion of Langevin equations, both having the O(N) complexity.

Because the pair list generation, which has the O(N2) com-

plexity, is performed infrequently (every 105 steps), it barely

affects the runtime. Accounting for HI with the TEA approach

results in the increase of algorithm complexity to O(N2)

operations (Table 1). Since the integration of the Langevin

equations is performed at each step, the runtime scales as

�N2, which translates to a more rapid decrease of the com-

putational time with N (Fig. 1). For small systems (101–103),

the TEA HI simulations slow down several-fold. For large-size

systems (�104–105), the runtime penalty is one-two orders of

magnitude.

Next, we performed the same equilibrium simulations, but

in the many-runs-per-GPU mode. There is the question of the

optimal number of independent trajectories (sopt) that can be

run concurrently on a GPU. In principle, sopt can be estimated

using the formula:

sopt �
1

N

Mth �Mcores

P
; (14)

which connects the total number of CUDA cores Mcores, the

number of threads per GPU multiprocessor Mth, and the num-

ber of cores per GPU multiprocessor P. For Tesla K40 (based on

Kepler architecture with compute capability 3.x), Mcores 5 2880,

Mth 5 512, and P 5 192. Hence, for the a-peptide (N 5 22 resi-

dues) sopt � 350. Because, eq. (14) provides only an estimate

of sopt, we performed equilibrium simulations described above

in which we varied the number of trajectories s. Supporting

Information Fig. S2 demonstrates that for small systems

(N 5 101–103 residues), the computational speed barely

changes when s is small. This is because to fully load a GPU

one needs to use up all the multiprocessors, which takes place

when Mth�Mcores/P � 7500 threads. For example, the computa-

tional speed is �1.7 3 104–2.5 3 104 steps/second for the a-

peptide when s< 350, �1.3 3 104–1.7 3 104 steps/second for

the WW-domain when s< 170, �0.8 3 104–1.1 3 104 steps/

second for WW3 when s< 70, and �0.3 3 104–0.5 3 104
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steps/second for the double-D fragment when s< 9. We find

that all the profiles have a similar initial slope, but after pass-

ing some optimal value s 5 sopt the computational speed starts

decreasing more rapidly with s (Supporting Information

Fig. S2). The GPU is now fully loaded and starts slowing down

with each additional run. We used this crossover point to esti-

mate sopt. For large systems (N 5 104–105), the GPU is loaded

when s �1, and the initial weak dependence on s is not

observed.

The values of sopt (Table 1) are the same for the simulations

with and without HI, which shows that accounting for the

hydrodynamic effects does not change the total numbers of

threads of execution. The values of sopt obtained were next

used to carry out the equilibrium simulations (107 integration

steps) in the many-runs-per-GPU mode to estimate the aver-

age computational speed. Figure 1 shows similar values of the

computational speeds attained with the many-runs-per-GPU

and one-run-per-GPU approaches, regardless of whether HI are

accounted for or ignored. This means that the SOP-GPU pro-

gram in the many-runs-per-GPU mode can be utilized to gen-

erate 10–100 independent runs with or without HI. The

associated memory usage per trajectory for simulations with

HI is very close to that without HI (the inset in Fig. 1), which

means that biomolecular simulations with HI are not at all lim-

ited by the low memory of graphics cards.

Numerical accuracy

Unfolding energy landscape. To assess the numerical accuracy

of TEA implementation, we profiled the unfolding free energy

and unfolding force for the a-peptide and the WW-domain

(Fig. 1) DG and F, as a function of the end-to-end distance X.

Figure 2 compares DG vs. X and F vs. X obtained with no HI,

with exact HI, and with TEA HI. Because HI should not influ-

ence the unfolding thermodynamics, the results of calculations

of DG and F should not depend on whether HI are accounted

for or ignored. We see that the profiles of DG vs. X (and F vs.

X) for all three sets of simulations practically collapse onto the

same curve both for the WW-domain and the a-peptide. Small

deviations of the profiles of DG(X) and F(X) obtained with TEA

HI from the results obtained using exact HI are due to insuffi-

cient sampling (10 ms) of resulting conformations and the

very slow but finite rate of change of X.

The WW domain represents a paradigm for describing fold-

ing and unfolding of the b-sheet proteins. The calculated pro-

file of DG confirms that the WW domain is a two-state folder

(Fig. 2a)[49] following the single-step kinetics of unfolding,

F!U, from the native (folded) state F to the unfolded state U.

By contrast, the profile of DG for the a-peptide shows that this

is a downhill folder (Fig. 2b). We also calculated the average

DG for unfolding of WW-domain and a-peptide from their

folded state with Xf 5 2.7 nm (WW-domain) and Xf 5 3.5 nm

(a-peptide) to the globally unfolded state with Xu 5 8.5 nm

(WW-domain) and Xu 5 6.8 nm (a-peptide). For the WW-

domain, DG 5 40.9 kcal/mol (no HI), 41.3 kcal/mol (exact HI),

and 40.5 kcal/mol (TEA HI). For the a-peptide, DG 5 24.0 kcal/

mol (no HI), 24.7 kcal/mol (exact HI), and 23.4 kcal/mol (TEA

HI). Hence, the results of exact and approximate treatments of

hydrodynamics agree very well.

Unfolding kinetics. To explore the effects of hydrodynamic

interactions on the kinetics of protein unfolding and to probe

further the accuracy of TEA-based versus exact treatment of

HI, we carried out force-clamp simulations for WW3 (Fig. 1).

Because in the trimer WW3 any WW-domain can unfold at any

given time with equal probability (domains are identical),[50]

the unfolding kinetics can be characterized by analyzing the

statistics of ordered unfolding time variates {ti:3} (order statis-

tics), where i 5 1, 2, 3.[51] We calculated the average first, sec-

ond, and third unfolding times t1:3, t2:3, and t3:3 using the

results of simulations with exact HI, TEA HI, and no HI treat-

ments of hydrodynamics. The profiles of order statistics data

vs. f (Fig. 3) show that the average 1st, 2nd, and 3rd unfolding

times all decrease with force. Surprisingly, the unfolding times

from the simulations with exact HI and TEA HI are �5–10

times shorter than the unfolding times from no HI simulations.

Hence, hydrodynamic coupling accelerates unfolding of pro-

tein domains. Our results for �1023–1025 s unfolding times

(Fig. 3) also correlate well with the �103–105 s21 unfolding

Figure 2. Thermodynamics of unfolding of the WW-domain (panel a) and

the a-peptide (panel b); see Figure 1. Compared are the profiles of unfold-

ing force F vs. end-to-end distance X (solid curves; left y-axes) and the

unfolding free energy change DG vs. X (dashed curves; right y-axes)

obtained with exact HI, TEA HI, and no HI treatments of hydrodynamics.

Snapshots show the WW-domain and a-peptide in their folded and force-

unfolded states.
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rate constants from temperature jump and urea denaturation

experiments.[52,53] The unfolding-time profiles obtained with

exact HI and TEA HI practically overlap in the entire force

range, implying a very good agreement between these two

approaches (Fig. 3). Hence, the TEA treatment of HI offers an

accurate description of the protein unfolding kinetics.

In our previous study, we showed that mechanical factors

couple protein domains in multidomain proteins.[54] We esti-

mated pair-wise correlations between the unfolding times of

WW-domains in WW3 tI, I 5 1, 2, 3 (parent data). Using statisti-

cally representative sets (1000 runs), we calculated for each IJ-

pair of WW-domains (I, J 5 1, 2, and 3) the Pearson correlation

coefficient:

pIJ5

X
n
ðtn

I 2htIiÞðtn
J 2htJiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n
ðtn

I 2htIiÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n
ðtn

J 2htJiÞ2
q (15)

and the Spearman rank correlation coefficient:

sIJ5

X
n
ðrn

I 2hrIiÞðrn
J 2hrJiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n
ðrn

I 2hrIiÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n
ðrn

J 2hrJiÞ2
q (16)

In eqs. (15) and (16), tn
I is the unfolding time of the Ith domain

observed in the nth trajectory, rn
I is the rank of tn

I , respectively,

and <. . .> denotes ensemble averaging. The force profiles of

pIJ and sIJ (21< pIJ, sIJ< 1) are displayed in Figure 4. We

observe very strong negative correlations between the unfold-

ing transitions in the 1st WW-domain (constrained) and 2nd

domain (in the middle) reflected in large negative values of

p12 5 20.3–0.7 and s12 5 20.3–0.6, and weak negative correla-

tions between the unfolding transitions in the 1st and 3rd

WW-domain (pulled) corresponding to small negative values of

p13 5 s13 5 20.05–0.15, and p23 5 20.05–0.2 and s23 5 20.05–

0.15 in the 150–300 pN force range (Fig. 4). Negative correla-

tions between domains I and J imply that the longer (shorter)

unfolding times for domain I correspond to the shorter (lon-

ger) unfolding times for domain J on average. These very simi-

lar results correspond to exact-HI and TEA-HI simulations. In

contrast, no-HI simulations predict that correlations between

the unfolding transitions in the 1st and 2nd domains change

from large negative (p12 5 s12 5 20.3–0.6 for f 5 100–175 pN)

to large positive (p12 5 0.1–0.4 and s12 5 0.3–0.6 for f 5 175–

300 pN), and that correlations between the unfolding times

for the 1st and 3rd domains and 2nd and 3rd domains are

negligible in the 100–250 pN force range but weak and posi-

tive for f> 250 pN (Fig. 4). Positive correlations imply that the

longer (shorter) unfolding times for domain I correspond to

the longer (shorter) unfolding times for domain J on average.

Hence, the results obtained demonstrate that biomolecular

simulations with HI ignored incorrectly describe dynamic cou-

pling of protein domains in multidomain proteins.

Unfolding pathways. We also analyzed the unfolding path-

ways. A pathway I-J-K is a sequence of unfolding transitions, in

which the WW-domains I, J, and K have unfolded first, second,

and third, respectively. The pathway probabilities are accumu-

lated in Table 2. The exact-HI and TEA-HI simulations display

very similar pathway probabilities, which differ from probabil-

ities for no-HI simulations. For example, the no-HI simulations

predict that 3-2-1 and 3-1-2 are the most dominant pathways

in the 100-280 pN force range. For f 5 100 pN, the pathways

3-2-1 and 3-1-2 are detected, respectively, 30.4% and 23% of

the time. Yet, the exact-HI and TEA-HI simulations display com-

parable pathway probabilities for all pathways, that is, �14–

23% (exact-HI) and �11–18% (TEA-HI). Although at higher

forces pathways 3-2-1 and 3-1-2 become increasingly more

dominant in all three simulation schemes, at f 5 220 pN, simu-

lations with HI predict 80% (pathway 3-2-1) vs. 20% (pathway

3-1-2) for the exact-HI and 83.6% (pathway 3-2-1) vs. 16.4%

(pathway 3-1-2) for the TEA-HI. At this 220 pN force, the no-HI

simulations predict 99% (pathway 3-2-1) vs. 1% (pathway 3-1-

2). Hence, in terms of pathway probabilities, the results of sim-

ulations with and without HI disagree in the entire 100–280

pN force range. This can also be seen in the scatter plots in

Figure 3. Order statistics of the forced unfolding times from force-clamp

simulations for WW3 (Fig. 1; Table 1). The average unfolding times for the

1st, 2nd, and 3rd unfolding transition t1:3 (panel a), t2:3 (panel b), and t3:3

(panel c) vs. constant force f. Compared are the results of simulations with

no HI (black circles), exact HI (red triangles), and TEA HI (blue squares).

Averages and standard deviations are calculated over 103 trajectories (data

for exact-HI simulations are shifted along the x-axis for clarity). [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]
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Supporting Information Figs. S3 and S4, which demonstrate

that the TEA-HI simulations better represent the unfolding

pathways not predicted in the no-HI simulations. Hence, the

neglect of hydrodynamic interactions leads to inaccurate

descriptions of unfolding pathways.

Forced unfolding of double-D fragment

The very good agreement we obtained comparing the results

of exact vs. approximate treatments of hydrodynamics for

WW3, has enabled us to explore the effect of hydrodynamic

interactions on the dynamics of forced unfolding of a large

protein complex–the double-D fragment (Fig. 1). We demon-

strated in our previous study[15] that the noncovalent D-D

interface formed by two neighboring fibrin monomers exhibit

complex multistep unfolding transitions. We performed the

force-ramp simulations of double-D fragment with HI (TEA HI)

and without HI (no HI) and compared these results obtained

with slow and fast cantilever velocities mf 5 2.5 and 25 lm/s.

The force (F)-extension (X) profiles (Fig. 5) show that the corre-

sponding FX curves differ only in minute details under slow

force loading, but significant differences become manifest

under faster loading. Interestingly, the FX-spectra obtained

with HI are more sawtooth-like, that is, have more pronounced

force peaks with higher peak-forces and deeper valleys, and

show much lower tension noise level and a lower lying base-

line. The FX curves from TEA-HI simulations with 2.5 and 25

lm/s cantilever velocity have the baseline running 10–20 pN

and 100–200 pN lower, respectively, than the FX curves from

no-HI simulations. We also performed structure analysis using

the output from TEA-HI and no-HI simulation, and found no

substantial differences in the unfolding mechanisms. This can

also be learned from the similar QX-profiles (Fig. 5).

The disruption of the D-D interface induces a conforma-

tional transition from the “closed” state with hidden D-D junc-

tion to the “open” state with the D-D interface fully disrupted

(see the first small �35–40 pN force peak at the �12 nm sepa-

ration distance in Fig. 5a). The following six high-amplitude

force peaks correspond to sequential unraveling of the c nod-

ules in the globular D regions (three force peaks for each D

region).[15] Under fast loading (25 lm/s), the last two transi-

tions are resolved in the TEA-HI simulations and are not

Figure 4. Pairwise correlations characterizing dynamic coupling of the unfolding transitions in WW-domains (Fig. 3) from pulling simulations for WW3 with

constant force f (Fig. 1; Table 1). Shown are the profiles of Spearman rank correlation coefficient sIJ (panels a–c) and Pearson correlation coefficient pIJ

(panels d–f ), I 6¼ J 5 1, 2, 3, calculated using the unfolding times for the 1st and 2nd WW domains (s12 and p12), 1st and 3rd domains (s13 and p13), and

2nd and 3rd domains (s23 and p23). The results are compared for simulations with no HI (black circles), exact HI (red triangles) and TEA HI (blue squares)

treatment of hydrodynamics (error bars indicate 95% confidence interval). [Color figure can be viewed in the online issue, which is available at wileyonline-

library.com.]

Table 2. Unfolding pathways for the trimer WW3.

Pathway probability, %

Force, pN HI 1-2-3 1-3-2 2-1-3 2-3-1 3-1-2 3-2-1

100 exact HI 19.0 14.3 14.3 23.8 11.9 16.7

160 exact HI 0.0 1.0 0.0 5.6 32.4 61.0

220 exact HI 0.0 0.0 0.0 0.1 18.7 81.2

280 exact HI 0.0 0.0 0.0 0.0 5.9 94.1

100 TEA HI 11.0 18.3 15.1 16.6 21.6 17.4

160 TEA HI 0.0 0.9 0.0 2.3 36.0 60.8

220 TEA HI 0.0 0.0 0.0 0.0 16.4 83.6

280 TEA HI 0.0 0.0 0.0 0.0 4.4 95.6

100 no HI 7.8 11.0 8.5 19.3 23.0 30.4

160 no HI 0.0 0.0 0.0 0.0 20.2 79.8

220 no HI 0.0 0.0 0.0 0.0 1.0 99.0

280 no HI 0.0 0.0 0.0 0.0 0.0 100.0

Shown are the probabilities of observing a particular sequence of

unfolding transitions in WW-domains calculated from the force-clamp

pulling simulations with exact HI, TEA HI, and no HI treatments of

hydrodynamic interactions for each value of the constant force f 5 100,

160, 220, and 280 pN.
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resolved in the no-HI simulations (Fig. 5b). Hence, accounting

for the HI makes the FX profiles look sharper and more

experimental-like, in which tension fluctuations are much

reduced. Yet, the inclusion of HI does not alter the unfolding

pattern.

Bending deformation of MT protofilament

Next, we explored the influence of HI on the dynamics of

bending deformations of biological particles using a short 8

ab-tubulin dimer long microtubule (MT) protofilament (Fig. 1).

We performed in silico nanoindentations of the MT protofila-

ment with and without HI and compared the results obtained

with slow, intermediate, and fast cantilever velocities mf 5 3, 10,

and 30 lm/s (see Supporting Movie S1).

The force (F)-deformation (X) spectra (FX curves) are dis-

played in Figure 6. The differences in the lineshapes obtained

with and without HI grow with the loading rate and become

significant under fast loading. At mf 5 3 lm/s, the inclusion of

HI only slightly affects the values of critical force F* and critical

distance X* (Fig. 6), that is, X* � 6.3 nm and F* � 0.19 nN (no-

HI) vs. X* � 7.3 nm and F* � 0.21 nN (TEA-HI). Here, the criti-

cal force corresponds to the largest deformation before the

breakage occurs (snapshots 2 and 3 in Fig. 6a). With the inclu-

sion of HI, the force peak becomes sharper and the baseline is

less noisy and runs lower. Increasing vf to 10 lm/s barely

changes the FX spectrum for the TEA-HI simulations in terms

of the lineshape and the values of F* and X*, but results in a

huge line-broadening in the spectrum for the no-HI simula-

tions (Fig. 6b). Under fast loading at mf 5 30 lm/s, the force

peak barely shifts in the spectrum from the TEA-HI simulations,

but the spectrum from the no-HI simulations becomes feature-

less (Fig. 6c). We extracted the average initial slope dF/dX,

which was used to calculate the flexural rigidity EI (see Sup-

porting Information). We found that dF/dX 5 30.6 pN nm (TEA

HI) vs. 31.1 pN nm (no HI), and that EI 5 20,500 pN nm2 (TEA

HI) vs. 43,800 pN nm2 (no HI). Hence, the neglect of hydrody-

namic interactions leads to a two-fold overestimation of the

flexural rigidity of the MT protofilament.

Figure 5. The unfolding transitions in double-D fragment (Fig. 1; Table 1).

Shown are the unfolding force spectra, that is, force (F)–extension (X)

curves (left y-axes), and the profiles of native contacts Q vs. X (right y-axes)

from the force-ramp simulations with the pulling force increasing with

mf 5 2.5 lm/s (panel a) and 25 lm/s (panel b). We used the cantilever

spring constant j 5 35 pN/nm. Compared are the FX-and QX-curves from

simulations with no HI (black curves) and TEA HI (blue curves). In panel a,

the first small �40 pN force peak at the �12 nm distance corresponds to

the dissociation of D-D interface (marked by the asterisk). [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6. The dynamics of deformation of MT protofilament (Fig. 1; Table

1). Shown are the force (F)–deformation (X) curves obtained from in silico

nanoindentations with compressive force increasing with mf 5 3 lm/s

(panel a), 10 lm/s (panel b), and 30 lm/s (panel c). The cantilever spring

constant is j 5 50 pN/nm, and the cantilever tip radius is Rtip 5 10 nm.

Compared are the FX-spectra from simulations with no HI (black curves)

and TEA HI (blue curves). In panel a, snapshots corresponding to the simi-

larly numbered regions 1, 2, and 3 in the FX-spectra show the deformation

progress, from the bent structure 1 (ascending part of the FX-spectrum), to

the bent structure 2 before the MT protofilament dissociation (force maxi-

mum in the FX spectrum), and to the disrupted structure 3 (local minimum

in the FX spectrum). In panel c, the locations on the FX-curves numbered

1–4 correspond to the snapshots displayed in Figure 7. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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To probe the origin of these differences, we performed the

principal component analysis (see Supporting Information)

using the structure output from the TEA-HI and no-HI nanoin-

dentations of the MT protofilament under fast force loading

with mf 5 30 lm/s (Fig. 6c). The first mode, which accounts for

�83% of bending deformation, corresponds to the out-of-

plane displacement of the MT protofilament beam in the

direction of applied force (see Supporting Information Movie

S2 and Fig. 6a), but the extent of bending is larger in the pres-

ence of HI. Hence, hydrodynamic interactions couple the dis-

placements of relevant elements of the particle’s structure. The

increased amplitude of these collective displacements corre-

sponds to the decrease of the deformation force (Fig. 6c).

Discussion

Simplified models of biomolecules allow researchers to per-

form meaningful simulations on biologically relevant time

scales.[55] The SOP model of biomolecules (RNA and pro-

teins)[7,8] is a native topology based coarse-grained model,

which, in conjunction with the computational acceleration

available on a GPU,[12,13] enables one to follow the dynamics

of biomolecular systems in the relevant experimental subsec-

ond timescale (Supporting Information Fig. S1). To harness the

computational power of graphic processors, the SOP-GPU

package utilizes the CUDA Toolkit (from NVIDIA). The SOP

model has already been used by many research groups in the

computational exploration of a broad range of biological

systems.[13,15–18,50,51,54,56–60]

There are limitations of the SOP model as with any model:

(i) the atomic details are ignored; (ii) only native contacts are

accounted for; (iii) there are no side chains (in the Ca-model);

and (iv) electrostatic interactions are not described explicitly.

Conversely, laser optical tweezers and atomic force microscopy

cannot resolve structural transitions on the sub-nanometer

lengthscale; the 10–20 nm indenter size used in nanomanipu-

lations with AFM makes the atomic structure details irrelevant.

Although unfolding of proteins occurs via sequential unravel-

ing of the tertiary and then secondary structure blocks formu-

lating the native topology, in mechanical deformation of

whole biological particles, the overall geometry of the par-

ticle’s structures and specific arrangements of large building

blocks (e.g., capsomers in virus shells and protofilaments in MT

polymers) play an important role. Hence, it is sufficient to

model only contacts that reinforce the native structure of pro-

tein domains. Although the side chains are not included into

the SOP model, their influence is implicit in the long 8 Å cut-

off distance [eqs. (10) and (11)]. Also, the explicit treatment of

side chains is feasible with the Ca-Cb version of the SOP model,

and the inclusion of electrostatic interactions is possible with

the screened Coulomb potential.[61] Notwithstanding the limi-

tations of the SOP model summarized above, the model has

the following major advantages. The simplicity of the SOP

model allows using the relevant experimental force-loading

rate conditions to describe the biomolecular transitions in the

diffusion-controlled limit. The simple form of the energy func-

tion [eqs. (8)–(11), which involves the potential energy terms

also used in more detailed descriptions [e.g., FENE potential;

see eq. (9)], makes it possible to implement the SOP model on

a GPU. Owing to a huge computational acceleration attainable

on a GPU, this opens a new direction of research of the force-

generating properties of entire biological particles (viruses, cel-

lular organelles, filaments, etc.)[15–18,55]

To account for solvent-mediated many-body effects in Lan-

gevin dynamics schemes, here, we have employed the Trun-

cated Expansion approximation for calculation of the Rotne–

Prager–Yamakawa hydrodynamic tensor D. We assessed the

computational performance of the end-to-end realization of

Langevin dynamics with HI on a GPU by profiling the compu-

tational speed and memory demand (Fig. 1 and Supporting

Information Fig. S2) for a range of model systems (N 5 101–105

residues; Table 1). Benchmark testing showed that these sys-

tems can be computationally described with the HI in reasona-

ble wall-clock time and that these simulations are not limited

by the low memory of graphics cards. To generate 1 ms of

Langevin dynamics (with time step of 20 ps) with TEA HI on a

single GPU Tesla K40 using the many-runs-per-GPU mode, it

would take �2 h for the D-dimer (sopt 5 9); and �43 hours for

the 8-dimers long MT protofilament (sopt 5 2). It takes 5–20

times longer, depending on system size, to simulate the

dynamics with HI (Fig. 1), but the global transitions in biomo-

lecules occur on a faster timescale in the presence of HI (Figs.

3 and 5, and 6, Supporting Information Figs. S3 and S4). For

example, in the force-clamp simulations for the WW-domain

(Fig. 3), the three-fold computational slowdown is more than

balanced by the approximately four-fold speed-up of unfolding

kinetics.

We assessed the numerical accuracy of our GPU-based real-

ization of the TEA approach to describing the HI by comparing

the results of free energy calculations and protein forced

unfolding simulations generated with the approximate and

exact treatments of hydrodynamics. The profiles of unfolding

free energy for the TEA-HI and exact-HI treatments for the

WW-domain and the a-peptide practically collapse onto the

same curve (Fig. 2). The thermodynamic state functions (DG)

characterizing forced unfolding in these model proteins esti-

mated based on these two approaches agree very well. The

small size of the trimer WW3, used as an example of a multido-

main protein, allowed us to directly compare how simulations

with the exact and approximate treatments of HI describe the

protein unfolding. Analysis of the unfolding kinetics for WW3

revealed overlapping profiles of ordered unfolding times (Fig.

3), as well as Pearson correlation and Spearman rank correla-

tion coefficients (Fig. 4), and the very similar values of pathway

probabilities (Table 2) obtained with the exact and TEA treat-

ments of HI. These results imply an almost quantitative agree-

ment between the results of exact vs. TEA treatments of HI.

Hence, the TEA approach offers a convenient, yet accurate

description of the thermodynamics and kinetics of protein

unfolding.

The main results from this part of our studies are the follow-

ing. Hydrodynamic interactions: (i) accelerate the kinetics of

unfolding transitions in protein domains in multidomain pro-

teins and polyproteins (Fig. 3 and Supporting Information Figs.
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S3 and S4) in agreement with experiments; (ii) couple these

transitions when the tension is sufficiently high (> 160–200

pN for WW-domain; Fig. 4), thereby making them interdepend-

ent in agreement with our previous theoretical study[54]; and

(iii) influence the kinetic partitioning of unfolding transitions

into various pathways (Table 2).

These results can be understood by considering the dynam-

ics of tension propagation in a polypeptide chain together

with the kinetics of protein forced unfolding. When the pulling

force is small, that is, it barely exceeds the threshold force for

unfolding, the timescale of tension propagation and redistribu-

tion is much shorter than the unfolding kinetics. Under these

conditions, the effect of hydrodynamic interactions between

residues in the same or different WW-domains is negligible,

and they unravel nearly independently, with (almost) equal

probability regardless of their position in the trimer WW3.

Hence, any of the six pathways (1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2,

3-2-1) should be observed with the equal probability of 1/6.

When the pulling force is large, the hydrodynamic effects

become important. Because HI are a kinetic effect, that is, they

couple the displacements of various residues, the native con-

tacts stabilizing the WW-folded state disrupt roughly at the

same time. The larger the force, the more time-coordinated

are the dissociations of native contacts. In a sense, the WW-

domains become destabilized kinetically, which shortens their

lifetime and accelerates the unfolding rate (Fig. 3), but not

thermodynamically. Recall that the WW-domains are equally

stable thermodynamically with and without HI (Fig. 2). At large

force, the timescale of tension propagation becomes compara-

ble with the unfolding kinetics, and the domains closer to the

point of force application (i.e., the 3rd and 2rd WW-domains)

unfold more rapidly. This is the cause of kinetic partitioning

and emergence of dominant pathways 3-2-1 and 3-1-2 at large

forces (Table 2). However, because tension propagation is

more rapid and tension redistribution is more uniform in the

presence of HI, the kinetic partitioning becomes stronger at

larger forces (compared to when HI are off ) when the unfold-

ing kinetics exceeds the rate of tension propagation.

The excellent agreement we obtained between the results of

approximate and exact treatments of HI, has enabled us to

explore the influence of hydrodynamic coupling on dynamic

processes involving large biomolecular complexes comprised of

a number of protein building blocks (Table 1). We studied the

dynamics of protein forced unfolding for the D-dimer and

the dynamics of deformation of an MT protofilament (Fig. 1;

Table 1). The results from this part of our studies showed that

the inclusion of HI: (iv) modulates the deformation dynamics of

a biological particle, which become more deterministic (i.e., less

variable) with the reduced role of tension or stress fluctuations;

(v) results in the force-extension/deformation spectra (FX-curves)

that are drastically different from the corresponding FX-curves

collected in the absence of HI, especially in the limit of fast load-

ing (Figs. 5 and 6). However, (vi) the HI do not change the physi-

cal picture underlying the unfolding/deformation. The FX-curves

Figure 7. Structural snapshots explaining detectable differences in the dynamics of deformation of the 8 ab-dimers long MT protofilament fragment (Table

1) in the absence of HI (no HI; structures 1a, 2a, 3a, and 4a on the left) and in the presence of HI (TEA HI; structures 1b, 2b, 3b, and 4b on the right). The

snapshots for X 5 2, 5, 7.3, and 13.3 nm deformation correspond to the FX-curves in Figure 6c. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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obtained using the TEA treatment of hydrodynamics (Figs. 5)

look much more similar to the typical experimental FX-spectra[15]

compared to the results obtained with the no-HI approach. The

force peaks, which quantify the limits of the system’s stability to

the applied pulling/compressive force, are more distinguishable

and they are now reminiscent of the experimental sawtooth-like

force signals due to the lower running baseline and weaker

noise level. The lower lying baseline in the FX-spectra means

that faster tension (or stress) propagation and a more uniform

tension (or stress) distribution exists in the D-dimer (MT protofi-

lament); see Figure 5 (Fig. 6). This leads to a smaller unfolding

(deformation) force reading for the D-dimer (MT protofilament).

Weaker noise levels imply reduced mechanical perturbations

experienced by the system due to the external tension/stress

factor. This is because hydrodynamic interactions couple struc-

tural elements, thereby making them able to undergo correlated

displacements and essentially mask the mechanical fluctuations.

These correlated displacements also echo with the coupled

unfolding transitions observed in the trimer WW3 in the pres-

ence of HI that we discussed above. Stated differently, in the

presence of HI the displacements are less individual (or local)

and more collective (or global). Hence, the inclusion of HI accel-

erates tension or stress propagation and/or redistribution, and

tension or stress fluctuations are much reduced.

Surprisingly, the inclusion or neglect of HI does not change

qualitatively the mechanism of global transitions (unfolding,

deformation, and breakage). This conclusion is uniformly consist-

ent with the results of structural analyses for the D-dimer unrav-

eling, and MT protofilament deformation and breakage. The

most striking evidence supporting this notion comes from the

principal component analysis of nanoindentations of the MT pro-

tofilament. When the HI are switched on, the out-of-plane defor-

mations of the ab-tubulin dimers at the clamped ends and

around the indenter (first principal mode) become strongly

coupled (Supporting Information Movie S2), which makes these

displacements time-coordinated. This explains the lower lying FX-

curves (Fig. 6), and smaller resulting values of the deformation

force for a more bendable beam structure. This last point can be

better understood by comparing the structures of MT protofila-

ment and deformation forces (F) for the same values of deforma-

tion X 5 2, 5, 7.3, and 13.3 nm compared in Figure 7 for fast

force loading (mf 5 30 lm/s) with and without the HI. We observe

the very different values of deformation forces: F 5 250 pN (no

HI) vs. 40 pN (TEA HI) for X 5 2 nm (weakly bent conformation);

F 5 400 pN (no HI) vs. 120 pN (TEA HI) for X 5 5 nm (weakly

bent conformation); F 5 450 pN (no HI) vs. 210 pN (TEA HI) for X

� 7 nm (strongly bent conformation); and F 5 490 pN (no HI) vs.

75 pN (TEA HI) for X � 13 nm (dissociated state). Taking into

account the �64 nm size of 8 ab-tubulin dimers long MT proto-

filament (Fig 1), we can appreciate the fact that in the presence

of HI the displacements of the relevant elements of MT protofila-

ment structure are coordinated on a truly global scale.

Our finding that the neglect or inclusion of HI does not alter

the mechanism of transitions correlates well with our conclu-

sion that hydrodynamic coupling is entirely a kinetic effect,

which mainly correlates the residues undergoing concerted

displacements. To illustrate this point, we used an approach

described in Ref. [62] to calculate the local (position-depend-

ent) diffusion coefficient DX along the reaction coordinate X,

DX 5DðhXiÞ5 var ðXÞ
sX

(17)

In eq. (17), hXi is the average value of X, that is, the end-to-end

distance for the D-dimer (Fig. 5) and deformation for the MT

protofilament (Fig. 6), var ðXÞ5hX2i2hXi2 is the variance, and sX

5
Ð1

0 hdXðtÞdXð0Þidt=var ðXÞ is the characteristic time

(dXðtÞ5XðtÞ2hXi). The results of calculation of DX for the D-

dimer and MT protofilament are presented in Figure 8. Both for

simulations with and without the HI, the profiles of DX and F vs.

X are peaked around the critical values of X, which mark these

global transitions: unfolding events in the D-dimer; and break-

age of the MT protofilament. The higher lying baseline and the

peaks of DX correspond to simulations with HI (Fig. 8). Hence,

the large-amplitude global transitions are accelerated many-fold

when the hydrodynamic interactions are switched on.

Conclusion

Notwithstanding the huge computational speed-up attained

when Langevin simulations are ported to a GPU,[12,13] it is not

yet possible to describe the hydrodynamic interactions exactly

Figure 8. Profiles of the position-dependent diffusion coefficient DX (left y-

axis) vs. X for the double-D fragment unfolding (panel a), and the MT proto-

filament deformation (panel b) based on experiments in silico with TEA HI

(blue curves) and with no HI (black curves). Also shown are the correspond-

ing FX-curves from Figures 5a, and 6a (dashed curves; right y-axis), respec-

tively, for the D-dimer (panel a), and MT protofilament (panel b). For the D-

dimer, we only display the initial 60 nm portions of the DXX- and FX-curves.

Thin vertical lines correlate the critical values of reaction coordinate X in FX-

and DXX-curves marking the global transitions. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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in reasonable wall-clock time, even for a relatively small system

of N 5 103 residues (D-dimer; Table 1) and even at the one-

bead-per-residue level. This situation is due primarily to pro-

hibitively expensive numerical costs associated with the com-

putation of the Rotne–Prager–Yamakawa hydrodynamic tensor.

Here, we implemented an algorithm for fast yet accurate cal-

culation of the hydrodynamic tensor on a GPU, which is based

on the Truncated Expansion approximation.[28] This develop-

ment allowed us to carry out a comprehensive study of the

influence of hydrodynamic interactions on the biomechanical

and force-generating properties for a range of biomolecular

systems from small proteins to large-size protein assemblies.

Biomolecular simulations of protein forced unfolding with the

hydrodynamic interactions neglected lead to an inaccurate

description of the unfolding kinetics and pathways and a signifi-

cant underestimate of the role of dynamic coupling of protein

domains forming a multidomain protein. The visual differences in

the force-extension/deformation spectra and corresponding size-

able disagreement, for example, in the values of slope and criti-

cal forces for unfolding/deformation can potentially lead to

erroneous estimation of the physico-chemical and thermody-

namic characteristics. These problems can be alleviated using

TEA treatment of hydrodynamics. Undoubtedly, hydrodynamic

interactions represent a more accurate physical picture of the

properties of protein domains imparted by solvent to biomole-

cules undergoing structural transformation, whether this is as

part of their functional mechanism in the biological environment,

for example, kinesin walking on the microtubule[61] or during an

experimental pulling/deformation/indentation measurement.

The running of Langevin simulations with implicit approxi-

mate or exact treatments of hydrodynamic interactions on a

GPU is now possible with the SOP-GPU package fully available

for downloading at https://github.com/BarsegovGroup/SOP-GPU.
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