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This study aimed to investigate the effects of thermal conditioning and folic acid on the methylation levels of the

avian brain-derived neurotrophic factor (BDNF) promoter region at the M3 and M9 positions in the early life of broiler

chicks. In Experiment 1, male broiler chicks (day 3 of life) were orally injected with methyl cellulose solution with or

without folic acid (25mg). The chicks in the heat-treatment groups were immediately exposed to a high ambient

temperature (40±0.5℃) for 12 h, while chicks in the non-heat treatment groups were left in the thermoneutral zone

(30±0.5℃). The groups were as follows: 1) no thermal conditioning group without folic acid (control), 2) thermal

conditioning group without folic acid, 3) no thermal conditioning group with folic acid, and 4) thermal conditioning

group with folic acid. In Experiment 2, treatments were similar to those in Experiment 1, except for the usage of

female chicks. After the treatments, the methylation levels of the BDNF promoter in chicks were determined using

semiquantitative PCR. There were no significant differences between groups in the levels of methylation at the M3

position in both males and females as a result of thermal conditioning and folic acid treatment. Interestingly,

significant effects of thermal conditioning and folic acid treatment on methylation at the M9 position were found.

BDNF methylation levels at M9 significantly decreased following thermal conditioning, while folic acid suppressed

demethylation in both male and female chicks. These data suggest that folic acid and thermal conditioning affects

DNA methylation patterns in the central nervous system of chicks, regardless of sex.

Key words: brain-derived neurotrophic factor, chicks, DNA methylation, folic acid, thermal conditioning

J. Poult. Sci., 58: 280-285, 2021

Introduction

Early life experiences affect the structural and functional

development of the nervous system in animals, leading to the

development of physiological abilities. Several studies

provide evidence indicating that epigenetic modifications of

the genome exert effects later in life (Sweatt, 2009; Szyf,

2009). DNA methylation is an epigenetic modification that

causes gene expression or phenotypic changes without

changing the primary DNA sequence (Berry et al., 2010;

Crider et al., 2012).

Early thermal conditioning to improve the ability of

chickens to survive heat stress involves the exposure of

young chicks to a high ambient temperature for half a day or

a whole day. This increases heat tolerance, weight gain, and

mortality (Yahav and Hurwitz, 1996; Yahav and McMurtry,

2001). These changes have been related to DNA methyla-

tion or histone modification (Yossifoff et al., 2008; Kisliouk

and Meiri, 2009). As for a candidate of the epidemic

episode, Yossifoff et al. (2008) suggested that the acquisition

of heat tolerance through thermal conditioning occurred

through the methylation of the brain-derived neurotropic

factor (BDNF) promoter region in the hypothalamus of

chicks. The methylation levels in some cytosine-guanine

dinucleotide (CpG) sites of the promoter region were

analyzed, and significant changes at positions M1, M3, and

M9 were found after heat exposure of Cobb male chicks

(Yossifoff et al., 2008). Several reports (e.g., Tanizawa et

al., 2014; Ouchi et al., 2020) have revealed the acquisition

of heat tolerance by thermal conditioning using various
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breeds or lines of chickens; however, there have been few

investigations regarding line or sex differences in the meth-

ylation levels of the BDNF promoter region. Information

regarding these differences should help understand the

mechanism underlying the acquisition of thermotolerance by

thermal conditioning and enable the utilization of thermal

conditioning in poultry production.

It is necessary to accelerate thermal conditioning-induced

heat tolerance in order to improve poultry production, such as

through nutritional supplementation. Methylation of DNA

requires a methyl donor. Folic acid is an important source of

methyl moieties, which are used to synthesize S-adenosyl

methionine, the methyl donor for DNA methylation (Fig. 1).

There are several studies on the interactions between folate

and folic acid status and DNA methylation (Crider et al.,

2012). However, there is no information about the effect of

folic acid on the methylation of the BDNF promoter region in

chicks.

This study aimed to investigate the effects of early thermal

conditioning and folic acid treatment on the methylation

levels of the avian BDNF promoter regions M3 and M9 in

Chunky chicks. In addition, we compared the effects of sex

on methylation levels after thermal conditioning in the

chicks.

Materials and Methods

Birds were handled in accordance with the Animal Ex-

periment Committee of Hiroshima University (authorization

No. C19-15) regulations and Law No. 105 and Notification

No. 6 of the Japanese government.

Animals

Day-old male and female broiler chicks (Chunky: Ross

308) were obtained from local hatcheries (Fukuda Hatchery,

Okayama, Japan). The chicks were maintained in a room

with 24-h lighting, at a temperature of 30±0.2℃, in poly-

propylene boxes with sawdust litter (36×40×30 cm), and at

a population density of six chicks per box during the ex-

perimental period. The chicks were given free access to a

commercial starter diet (Nichiwa Sangyo Co. Ltd., Kobe,

Japan) and water until the end of the experiment.

Preparations of Drugs

Folic acid (pteroylglutamic acid) was obtained from Wako

Pure Chemical Industries (Osaka, Japan) and suspended in a

0.25% methyl cellulose solution. The suspension was settled

on the stirrer with the heater kept at 38±0.5℃ during treat-

ment administration.

Experimental Design

In Experiment 1, male chicks (3 days old) were distributed

into four groups (n＝8 per group) based on their body

weight, so that the average body weight was similar in all

groups. The groups were as follows: 1) no thermal condi-

tioning group without folic acid (control), 2) thermal con-

ditioning group without folic acid, 3) no thermal condition-

ing group with folic acid, and 4) thermal conditioning group

with folic acid. Chicks were orally administered 0.1mL of a

0.25% methyl cellulose solution with or without folic acid

(50mg/kg) using a syringe with a silicone tube. The dose of

folic acid was determined based on a previous report (Gao et

al., 2017), and the average body weight. Immediately after

folic acid administration, the chicks in the treatment group

were exposed to a high ambient temperature (40±0. 5℃;

inner size of heat chamber: 90×90×115 cm; Ouchi et al.,

2020) for 12 h, and those in the control group were kept in the

thermoneutral zone (30±0.5℃). The duration of heat ex-

posure (12 h) was based on the report by Yossifoff et al.

(2008). In Experiment 2, female chicks (3 days old) grouped

similarly to those in Experiment 1 were orally administered

folic acid and transferred to the heat chamber for 12 h (n＝8

per group). After these treatments, chicks in all groups were

anesthetized with isoflurane (FUJIFILM Wako Pure Chemi-
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Fig. 1. Schematic chart of the relationship between folic acid and

DNA methylation. DHF: dihydrofolate; THF: tetrahydrofolate



cal Corporation, Osaka, Japan) and decapitated. Immedi-

ately after decapitation, the diencephalic tissues of the chicks

were removed and stored at −80℃ till DNA extraction was

performed.

DNA Methylation Analysis by Bisulfite Modification

DNA methylation analysis was performed for the BDNF

promoter region at positions M3 and M9, and a schematic

chart is presented in Fig. 2. DNA was extracted from di-

encephalic tissues using a commercial DNA isolation kit

(Takara Bio Inc., Shiga, Japan), and purified DNA was

measured using a spectrophotometer (NanoDrop ND-2000c,

Thermo Scientific, Inc.) at 260 nm. The purity of the DNA

was also analyzed by measuring absorbance at 260 and 280

nm. Bisulfite analysis of BDNF promoter methylation was

performed using the MethylEasy Xceed Rapid DNA Bisulfite

Modification Kit (Human Genetic Signatures Pty. Ltd., New

South Wales, Australia), according to the manufacturer’s

instructions. The methylation levels of the BDNF promoter

were determined by semiquantitative PCR. The primers

used for methylation-specific PCR are presented in Table 1.

Statistical Analysis

Data were analyzed using the commercially available

package, StatView (Version 5, SAS Institute, Cary, USA,

1998); two-way ANOVA was used to analyze the effects of

thermal conditioning and folate treatment. When effects

were found to be significant, a post-hoc test was performed

using the Tukey‒Kramer test. Statistical significance was

considered at P＜0.05. All data are expressed as mean±

standard error of the mean (SEM).

Results

DNA Methylation by Thermal Conditioning and Oral Ad-

ministration of Folic Acid in Male Chicks

Figure 3 shows the methylation levels of the avian BDNF

promoter region at the M3 and M9 positions in male chicks.

There were no significant differences in methylation levels at

M3 among groups (left panel; P＞0.05). At M9, the main

effects of treatments and interaction between thermal

conditioning and folic acid treatment were significant (right

panel; P＜0.05), and the methylation level in the thermal

conditioned group without folic acid was significantly lower

than those in the other groups.

DNA Methylation by Thermal Conditioning and Oral Ad-

ministration of Folic Acid in Female Chicks

The methylation levels of the avian BDNF promoter

region at the M3 and M9 positions in female chicks are

shown in Fig. 4. Although no significant changes in the

BDNF methylation levels at M3 in chicks after thermal

conditioning and folic acid treatment were detected (left

panel; P＞0.05), there were significant effects of both treat-

ments and interaction on the levels of BDNF methylation at

M9 (right panel; P＜0.05). Similar to male chicks, thermal

conditioning without folic acid decreased the methylation

level of the BDNF promoter region in female chicks.

Discussion

In this study, we measured the methylation levels of the

BDNF promoter region in the central nervous system of

chicks subjected to thermal conditioning and orally adminis-

tered folic acid. We also compared the effects of these treat-

ments between males and females. There were no signifi-

cant differences between groups in the level of methylation at

the M3 position in both males and females, and no effects of

thermal conditioning and folic acid were found. Interest-

ingly, there were significant differences between groups in

response to thermal conditioning, folic acid treatment, and

the interaction between thermal conditioning and folic acid

treatment at the M9 position. Heat exposure significantly

decreased BDNF methylation levels at M9, while folic acid

treatment suppressed demethylation in both male and female

chicks.
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Table 1. Primer sequences for methylation-specific PCR

CpG site F/R Sequence (5′-3′)

M3

Methylated F GTTGAAACGTTGTGTTGTTAAATAG

Unmethylated F GTTGAAATGTTGTGTTGTTAAATAG

M + U R AAATCAAATACTACATAAACTCCT

M9

Methylated F GTGTTGGTAGGAATGACGTTTTG

Unmethylated F GTGTTGGTAGGAATGATGTTTTG

M + U R AACACCAACTAACAACATCAATAAA

F, forward primer; R, reverse primer; M + U, methylated and unmethylated

Fig. 2. Schematic diagram of the CpG sites upstream of

the translational start site (ATG) of the BDNF coding

region. White characters with black backgrounds show the

sites analyzed for methylation level.



An epigenetic change is a change in the gene expression or

cell phenotype that is inherited by progeny cells without any

change in the DNA sequence; epigenetic changes include

histone modifications and DNA methylation (Kelly et al.,

2010; Meissner, 2010; Portela and Esteller, 2010). DNA

methylation, the focus of this study, regulates gene expres-

sion through the binding of methyl groups to the CpG islands

of the genome (Moore et al., 2013). In chickens, DNA

methylation levels of the BDNF promoter regions are

changed by thermal conditioning at an early age (Yossifoff et

al., 2008). Here, the methylation level of the M3 position of

the BDNF promoter region (Fig. 2) was not affected by

thermal conditioning; however, thermal conditioning down-

regulated the methylation level of the M9 position of the

BDNF promoter region (Fig. 2, 3, and 4). In a previous

report, thermal conditioning of Cobb chicken upregulated the

DNA methylation level of M3 and downregulated that of M9

(Yossifoff et al., 2008). The results of this study did not

match those of this previous report. In this study, Chunky

(Ross 308) chicks were used as the experimental model. The

results of the present study suggested that differences in

DNA methylation patterns and susceptibility to DNA meth-

ylation depend on the line of chickens. In humans, DNA

methylation patterns differ between Caucasians, African

Americans, and Hispanics (Adkins et al., 2011; Zhang et al.,

2011).

The effects of environmental factors, such as immune

response and thermoregulation (Cryan and Wolf, 2003;

Kelein and Flanagan, 2016), differ among genders, similar to

DNA methylation. In humans, the effects of prenatal fasting

on DNA methylation levels in metabolism-related genes,

such as the leptin and insulin growth factor 2 receptor genes,

vary between males and females (Tobi et al., 2009). In ad-

dition, the effects of environmental factors on DNA methyl-

ation differ between males and females in mammals, in-

cluding humans (Davegårdh et al., 2019; Maschietto et al.,

2017; Kippler et al., 2013; Gallou-Kabani et al., 2010; Liu et

al., 2010). In this study, changes in the DNA methylation

levels of the BDNF promoter region due to thermal con-

ditioning did not differ between male and female chicks (Fig.

3 and 4). DNA methylation is affected by gender; however,

some genes were affected, while others were not (Tobi et al.,
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Fig. 3. Methylation levels at the M3 (left panel) and M9 (right panel)

positions of the avian BDNF promotor region in 3-day-old male chicks.

Data are expressed as mean±SEM. Means with different letters are sig-

nificantly different at P＜0.05.

Fig. 4. Methylation levels at the M3 (left panel) or M9 (right panel)

position of the avian BDNF promotor region in 3-day-old female chicks.

Data are expressed as mean±SEM. Means with different letters are sig-

nificantly different at P＜0.05.



2009). Global DNA methylation patterns may differ among

genders in chickens. Thermal conditioning did not cause

changes in the methylation patterns of the BDNF promoter

region among genders.

Folic acid acts as a methyl group donor in the process of

DNA methylation (Fig. 1). Dietary folate is metabolized to

5-methyltetrahydrofolate (5-methyl THF) and is converted to

tetrahydrofolate (THF) in the gut and liver, where methyl

groups are simultaneously released to the methionine syn-

thesis reaction (Fig. 1). S-adenosyl methionine (SAM) is a

metabolite of methionine that is converted to S-adenosyl-

homocysteine (SAH). In this conversion, methyl groups are

released from SAM and are used for DNA methylation (Fig.

1). A relationship has been found between folate and global

DNA methylation (Cravo et al., 1994, 1998; Pufulete et al.,

2005). In general, demethylation has been confirmed in the

tumor tissues and blood of patients with cancer. Dietary and

supplementary folate have been reported to suppress the

demethylation of tumor-related genes (Levine et al., 2003;

Christensen et al., 2010; Wallace et al., 2010; Kim et al.,

2011); thus, folate affects, not only the global DNA meth-

ylation patterns but also the level of DNA methylation in

specific genes. In this study, the methylation level at M3 of

BDNF was not affected by folate; however, demethylation

was found at M9 due to the attenuation of the effect of

thermal conditioning by orally administered folate (Fig. 3

and 4). Folate has been used in patients with cancer and

suppresses DNA demethylation (Wallace et al., 2010; Kim et

al., 2011); these findings are consistent with those of the

present study. DNA methylation occurs through two mecha-

nisms: de novo methylation, which involves the methylation

of unmethylated genes, and inheritance methylation, which

involves the maintenance of methylation during DNA repli-

cation. DNA methyltransferases (DNMTs) bind a methyl

group to the cytosine in the base of SAM (Hervouet et al.,

2018). However, the mechanism of DNMT action during

thermal conditioning in chicks remains unclear. Future

studies on this topic are needed.

It has been suggested that the methylation of the BDNF

promoter region is involved in heat tolerance induction by

thermal conditioning in chicks (Yossifoff et al., 2008).

BDNF plays a pivotal role in neuronal development and

neurogenesis (Poo, 2001; Lee et al., 2002; Scharfman et al.,

2005) and in feeding regulation and energy metabolism in

animals (Nakagawa et al., 2000; Xu et al., 2003). There-

fore, thermotolerance in thermally-conditioned chickens can

be attributed to the epidemic regulation of BDNF gene

transcription. However, the present results regarding changes

in DNA methylation in response to thermal conditioning and

folic acid treatment did not coincide with the findings of

Yossifoff et al. (2008). It is unlikely that the methylation

levels of the avian BDNF promoter region are critical for the

acquisition of thermotolerance by early thermal conditioning

in chicks. Further study of epigenetic changes related to

thermal conditioning is necessary to elucidate thermotoler-

ance acquisition in chicks.

In conclusion, our findings indicate that the oral admini-

stration of folic acid partially affected DNA methylation

patterns in the central nervous system of chicks, regardless of

sex. Additionally, our findings suggest that changes in

BDNF promoter methylation at M3 may differ depending on

the genetic line of chicks.
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