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ABSTRACT: Artificial intelligence (AI) is a technology that
builds an artificial system with certain intelligence and uses
computer software and hardware to simulate intelligent human
behavior. When combined with drug research and development, AI
can considerably shorten this cycle, improve research efficiency,
and minimize costs. The use of machine learning to discover novel
materials and predict material properties has become a new
research direction. On the basis of the current status of worldwide
research on the combination of AI and crystal form and cocrystal,
this mini-review analyzes and explores the application of AI in
polymorphism prediction, crystal structure analysis, crystal
property prediction, cocrystal former (CCF) screening, cocrystal composition prediction, and cocrystal formation prediction.
This study provides insights into the future applications of AI in related fields.

■ INTRODUCTION

Artificial intelligence (AI) is a cutting-edge comprehensive
discipline that integrates various fields, such as computer
science, statistics, neurology, and social science. Research on
AI includes robotics, language or image recognition, natural
language processing and expert systems. It investigates the laws
of human intelligence activities, constructs artificial systems
with certain intelligence, and explores how computer software
and hardware can be used to simulate certain intelligent human
behaviors.
AI includes machine learning, deep learning, data analysis,

and data mining. Machine learning is an important application
of AI and a powerful tool for finding relevant patterns in high-
dimensional data. Computers can learn from empirical data
and use algorithms to simulate linear or nonlinear relationships
between material properties and related factors. Machine
learning can be classified to four types, supervised machine
learning, unsupervised machine learning, semisupervised
machine learning and reinforcement machine learning. Data
mining is a science of extracting useful information from large
data sets or databases and it overlaps with some machine
learning algorithms.
The studies of polymorphism and cocrystals are at the

frontier and a hotspot in the field of solid drugs. Polymorphism
is deemed as crystal systems of substances with different unit
cells and with the same elemental composition.1 Solvates and
amorphous forms are also included in the category of
polymorphism. Pharmaceutical cocrystals refer to the multi-
component crystals formed by the active pharmaceutical
ingredient (API) and the cocrystal former (CCF) through

hydrogen bonds or other noncovalent bonds with a fixed
stoichiometric ratio between them. Polymorphism can
influence many physical and chemical properties of solid
drugs, such as melting point, density, solubility, dissolution
rate, bioavailability, clinical efficacy, and toxicity. Pharmaceut-
ical cocrystals can improve physicochemical properties of solid
drugs as well. Meanwhile, the introduction of CCFs in
pharmaceutical cocrystals, such as drug−drug cocrystals, is
likely to produce the synergistic or complementary effects of
pharmacological activities. Moreover, polymorphs and cocrys-
tals of drugs can be the ways to protect intellectual property
rights and extend the patent protection period. In terms of
polymorphs and cocrystal screening, traditional experiments
and computer modeling consume a lot of time and resources
and are limited by experimental conditions and theoretical
foundations. Thus, the use of AI to predict material properties
and discover new materials has become a new research
direction. A combination of AI and drug polymorphism or
cocrystals can greatly shorten solid drug research and
development cycle and costs. In addition, raw material particles
of API with designed properties and functions are the research
trends of solid drugs. Studies combining AI and drug

Received: March 11, 2021
Accepted: May 28, 2021
Published: June 11, 2021

Mini-Reviewhttp://pubs.acs.org/journal/acsodf

© 2021 The Authors. Published by
American Chemical Society

15543
https://doi.org/10.1021/acsomega.1c01330

ACS Omega 2021, 6, 15543−15550

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tianyu+Heng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dezhi+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ruonan+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Li+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yang+Lu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Guanhua+Du"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.1c01330&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01330?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01330?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01330?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01330?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/acsodf/6/24?ref=pdf
https://pubs.acs.org/toc/acsodf/6/24?ref=pdf
https://pubs.acs.org/toc/acsodf/6/24?ref=pdf
https://pubs.acs.org/toc/acsodf/6/24?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.1c01330?rel=cite-as&ref=PDF&jav=VoR
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


polymorphism or cocrystals complement experimental studies,
can effectively assess the risk of polymorphism, provide a
deeper understanding of crystal structures, and make the
control of drug solid forms more probable.
This mini-review is divided into four sections. We

summarize previous work in Table 1. Section 1 introduces

concepts of common algorithms. Section 2 demonstrates
studies of AI applied to polymorphism, including poly-
morphism prediction, crystal structure analysis, and crystal
property prediction. Section 3 demonstrates combinations of
AI and cocrystal, including CCF screening, cocrystal
composition prediction, and cocrystal formation prediction.
Section 4 is the conclusion, and in this part we discuss the
challenges and future development trends in this field.

1. COMMON ALGORITHMS
Commonly used machine learning families are seen in Figure
1. Supervised machine learning utilizes knowledge from labeled
data to forecast events. It compares the obtained results with
the actual or expected results to identify errors to change the
model. Unsupervised machine learning analyzes how to explain
the hidden patterns from the unlabeled data and does not
identify the proper output.2 Supervised learning includes
classification and regression. Unsupervised learning includes
clustering and dimension reduction. Regression analysis is a
statistical method to find a correlation between the response
and predictors. Clustering divides data into groups based on a
similarity metric to uncover patterns and categories but does
not directly predict new values. Regression and classification
algorithms can predict material properties, and the clustering
algorithm can be adopted in discovering novel materials. The
steps of machine learning include first building data sets, then

establishing models, and finally evaluating models. The data
sources are from computer simulation and experimental
results.
Some of the common AI algorithms are random forest (RF),

artificial neural network (ANN), support vector machine
(SVM), and logistic regression.
Random forests are a combination of tree predictors such

that each tree depends on the values of a random vector
sampled independently and with the same distribution for all
trees in the forest. The right kind of randomness makes them
accurate classifiers and regressors. They are relatively robust to
outliers and noise and do not overfit easily.3 Prediction is done
by weighting votes (in classification) or averages (in
regression) of the ensemble outputs. They can also evaluate
the importance of input variables.
Artificial neural networks are mathematical models simulat-

ing biological nervous systems with strong self-learning and
adaptive capabilities. The basic processing elements of neural
networks are called artificial neurons. An artificial neural
network consists of an input layer, one or two (or even three)
hidden layers, and an output layer. The input layer receives
input information, and the output layer generates outputs
relating to the property to be predicted. ANN models work by
processing input values through networks of hidden layers.
Each connection in the network is called a synapse. ANN
models are trained by adjusting the weights of each synapse
until the output is close to the training data. Large data sets are
usually needed to adequately train ANNs due to their lack of
interpretability. ANNs are vulnerable to overfit, and there is
danger to learn the noise from the data set as well. So it is
required that the training processes are stopped close to the
optimal time.4

The support vector machine algorithm is a supervised
learning algorithm used for both data classification and
regression analysis. It maps the input vectors into some high-
dimensional feature space Z with a linear decision surface,
ensuring the high generalization ability of the network. To
construct such optimal hyperplanes, one only has to take into
account a small amount of the training data, the so-called
support vectors, which determine this margin. Characteristics
like capacity control and ease of changing the decision surface
render the support−vector network an extremely powerful and
universal learning machine.5

Logistic regression analysis is a statistical technique to
evaluate the relationship between various variables (either
categorical or continuous) and a binary outcome. Fitting a
logistic relation between a predictor x and a proportion of

Table 1. Application of AI on Polymorphism and Cocrystal
Prediction

field application algorithm

polymorphism polymorphism
prediction

random forest

crystal structure analysis artificial neural network
crystal property
prediction

support vector machine, logistic
regression

cocrystal CCF screening cluster analysis
cocrystal composition
prediction

principal component analysis

cocrystal formation
prediction

multivariate adaptive regression
splines

Figure 1. Commonly used machine learning algorithms.
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success y is done by fitting a linear relation between predictor x
and the logit of y.6

2. AI AND POLYMORPHISM
2.1. Polymorphism Prediction. The software for

predicting drug crystal form is divided into two categories:
one is based on molecular mechanics, and the other is based on
quantum mechanics to predict molecular crystal form. The
software based on molecular mechanics is mainly represented
by the Polymorph module in the Material Studio software. It is
a set of algorithms designed to determine low-energy forms in
polymorphs. For example, if the molecular structure is known,
the Polymorph module can be used to find all possible energy
crystal structures and molecular arrangement rules by
calculating the minimum lattice energy. The most likely crystal
form is calculated by cluster analysis and energy arrangement.
This method can be correlated with X-ray diffraction
experimental data or achieved by examining the molecular
structure of a drug. The software based on quantum mechanics
is mainly represented by the universal crystal structure
prediction software, that is, the evolutionary crystallography
software package (universal structure predictor: evolutionary
Xtallography). It can be used to predict both atomic and
molecular crystal structures. The stable and metastable
structures of drug molecular crystals can be predicted on the
basis of molecular structures only. They can also quickly
simulate and search for stable compositions and structures
according to experimentally obtained unit cell parameters,
fixed unit cell shapes, and unit cell volumes.7

Crystal structure prediction (CSP) is a part of crystal form
prediction. Ten international research institutes have organized
six worldwide crystal structure predictions in 1999, 2001, 2004,
2007, 2010, and 2015. The correctness of the prediction
algorithm is judged by evaluating the consistency between
several known but unpublished crystal structures and the
structures predicted by the software. The fourth time, software
with a prediction success rate of 100% appeared.17 The
following section elaborates on the application of AI to crystal
form prediction.
2.1.1. Data Mining and Polymorphism Prediction. Poly-

morphism prediction can help researchers understand and
evaluate the reliability of the crystal structure. The
combination of knowledge-based theoretical analysis and
existing experimental techniques can make a better judgment
of hidden threats related to solid form as soon as possible,
effectively reduce risks, and help people select better
commercial solid form. It can also rationalize the failed and
successful experiments. Thus, polymorphism prediction is
crucial from the perspective of drug production, drug
processing, property, and stability. Mining information from
existing solid forms can be used to evaluate the possibility of
the existence of material solid forms. The information
contained in the Cambridge Structural Database (CSD) has
been utilized to build training data sets for statistical modeling.
CSD has added a Python-based Application Programming
Interface (CSD Python API) to the search method. The CSD
Python API allows users to create custom scripts to perform
multifunctional searches. A series of software in the CSD
system can be used for molecular, intermolecular, and
supramolecular analysis. Some of the commonly used CSD
tools are ConQuest, Mogul, and IsoStar.10 The data of bond
length, valence angle, and torsion angle obtained from CSD
can be analyzed by Mogul. Isostar is used to analyze the

molecular interaction. It has been extended to generate a Full
Interaction Map (FIM), which can provide a qualitative
description of structural stability. The Materials module in
Mercury is used to analyze the intermolecular interaction and
packing order,as well as the crystal packing similarity. By
combining chemical data with crystallographic data like crystal
packing description, interaction frequency, interaction poten-
tial energy calculation, and hydrogen bond tendency, many
problems can be solved, such as the reliability of crystal
structure, the possibility of polymorphs, and the crystal
morphology of compounds. The hydrogen bond propensity
(HBP) tool is provided in Mercury’s Solid Form module,
which can quantitatively determine the possibility of hydrogen
bond formation between various functional groups from two-
dimensional aspects. It can be used to evaluate the possibility
of a polymorph. All possible combinations of hydrogen bond
donor and acceptor of target molecule can be plotted by graph
and ranked according to propensity and coordination score.
The disadvantage of the HBP algorithm is that it does not give
the properties of the predicted crystal form.
Nauha et al.8 applied the HBP algorithm to some

pharmaceutical compounds that do not yet have reported
polymorphic forms. They discovered polymorphic forms in
two drugs. Data mining is performed on over 600 000 entries
in the database to predict various chemical properties of
molecules, and the most likely hydrogen bonds are calculated
by statistical methods. In another study, Nauha et al.9

combined the HBP algorithm with experiments and found
three crystal forms of probenecid, which all showed the same
hydrogen bonding pattern. Feeder et al.10 used the Mogul
software to evaluate molecular conformations in the context of
CSD structures. Moreover, they used the Solid Form module
in Mercury and the Full Interaction Maps method to evaluate
polymorphic stability. They discovered an unusual supra-
molecular structure and determined the most stable poly-
morph in a follow-up study.

2.1.2. Machine Learning and Crystal Form Prediction.
Machine learning is presently applied to predict the different
crystal forms of solvates, especially to analyze the formation of
solvate crystal forms. The RF algorithm is the most dominant
among various multivariate data analysis tools. Johnston et al.11

were the first to apply machine learning to predict solvate
formation. By establishing an RF classification model that
includes solvent properties, experimental conditions, and
known crystallization results, they performed directional
crystallization experiments and obtained three new solvates
of carbamazepine. Takieddin et al.12 used molecular
descriptors and machine learning methods to extract over
19 000 molecular structures from CSD to predict solvates and
hydrates and determined the structural features that facilitate
solvate production. They compared ANN, SVM, and logistic
regression models. Xin et al.13 employed CSD Python API to
screen drug molecular structures. They compared RF and SVM
models and predicted solvate formation propensity for
pharmaceutical molecules with a prediction success rate of
86%. They also compared the importance of different driving
forces on the formation of different solvates. The challenge of
applying machine learning on crystal prediction is that the
influencing factors of a specific crystal form are uncertain, and
the relationship between the obtained crystals and exper-
imental conditions is unclear. The selection of descriptors
needs to be a priori and must be designed according to the
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actual situation of crystallization and the complexity of
molecular structure and crystal packing.
Predicting crystal structures is an important direction.

Predicting crystal structures can help design crystals with
specific properties. On the other hand, first-principles
calculations for CSP can be used to screen materials before
synthesis. Crystal structure prediction needs density functional
theory (DFT) calculation. Calculating the accurate lattice
energy of a large number of crystal structures is challenging
because of the high cost of calculation. Previous techniques
involved calculating and comparing the energy of crystal
structures in order to predict the most thermodynamically
stable crystal form. Machine learning can be used to work with
experiments and first-principles methods to rapidly provide
probabilistic predictions rather than calculations.
The implementation idea is to input the results of machine

learning into energy-based algorithms to create more accurate
predictions. Another idea is to apply energy-based algorithms,
such as the density functional method, to output data of
compounds to train the machine learning algorithm. Oliynyk et
al.14 devised an SVM model to predict the crystal structures of
binary and ternary inorganic compounds. They achieved 93.2%
prediction accuracy on a training set of 706 compounds.
David15 combined machine learning and CSP and offered a
means to expand the range of available energy models used in
CSP without largely increasing computational cost, which
benefited polymorphic screening and computer-guided materi-
al discovery. Their future applications are to predict larger
molecules with more flexible conformation.
The success in predicting crystal structure proves the

effectiveness of machine learning methods in exploring
chemical white space. Due to the need for large training sets
and knowledge of coding and algorithm deployment, there are
problems in physical science with machine learning algorithms.
Researchers should combine each technology to make up for
the shortcomings of each other. Generating reliable solid
structure details and properties from molecular descriptors by
the calculation method is also important. The challenge is that
there is still no general machine learning algorithm to predict
crystal structure from molecular structure.
2.2. Crystal Structure Analysis. Crystal packing has a

substantial influence on physiochemical properties and is at the
core of describing and understanding polymorphism. One of
the urgent needs of crystal engineering is to be able to compare
crystal structures. Ideally, people want to get the similarity
index between the two crystal structures. The combination
with machine learning can provide a new solution.
Collins et al.16 adopted a data mining method to combine

cluster analysis with a fingerprint of the Hirshfeld surface to
compare overall crystal structure similarities of a series of
compounds. They provided a simple method to obtain
information on the crystal packing trend. Bhardwaj et al.17

developed an RF classification model using calculated solvent
physicochemical properties and previous experimental crystal
packing analysis. They were the first to predict three-
dimensional crystal packing of different types of olanzapine
solvates. They obtained a new solvate and identified three
factors affecting the type of crystal packing.
Principal component analysis (PCA) is a statistical non-

parametric method for extracting relevant information from
redundant and noisy data sets. Gavezzotti et al.18 used the
TANAGRA data mining software and applied the PCA model
to obtain multivariate correlations between global descriptive

variables such as molecular mass, overall polarity, lattice
energies, and their Coulombic, polarization-dispersion compo-
nents. It provided and explained a lot of geometric and energy
data on the interactions between molecules. Yang et al.19

employed unsupervised machine learning methods to reveal
the effects of organic structure and crystal symmetry on lattice
energy diagrams.
In aspects of other algorithms, Phillips et al.20 combined

shape-matching and machine-learning algorithms to identify
simple and complex crystal structures and to discover new
crystal structures.

2.3. Crystal Property Prediction. 2.3.1. Crystallinity
Prediction. The crystallization process can be time-consuming
and expensive. Therefore, prediction tools have considerable
value and can be used in the early stage of development to
identify molecular systems with possible crystallization
problems. Molecular chemical descriptors related to crystal
formation are needed to build a crystallinity prediction model,
and a series of molecular descriptors are evaluated to select the
important ones.
Bernard et al.21 used the SIMCA-P software to evaluate the

influence of melting point, glass transition temperature, and
heat of fusion on crystallization behavior by using various
thermal and molecular input parameters preprocessed by
principal component analysis. Bhardwaj et al.22 were the first to
use the RF model to predict the crystallinity of organic
molecules with an accuracy rate of about 70%. The training set
includes two-dimensional and three-dimensional molecular
descriptors and experimental crystallization results. Further
development should include crystallization conditions and
improvement of the ability to remove uncertainty from training
data sets to enhance prediction capabilities. This method can
be promoted on salt and cocrystal systems to help understand
the crystallization tendency of multicomponent systems.
Wicker et al.23 used Python and the RDKit cheminformatics

toolkit to build models on the basis of chemical descriptors and
unsupervised machine learning methods. They predicted
whether the molecule will crystallize without considering
crystal growth mechanism or conditions. This method mainly
focused on the properties and interactions of individual
molecules. By comparing SVM and RF models, they found
that the SVM model had the highest prediction accuracy
(90.3%). This prediction can be used to find synthetic
modifications enhancing the crystallization tendency or to
find materials with large surface area and poor crystallization.
They created and optimized a new molecular descriptor which
captures the conformational flexibility of a molecule based on
its 2D chemical connectivity in 2016 and established an SVM
prediction model. The descriptor also has the potential to solve
other chemical problems where flexibility is a key factor, such
as prediction of polymorphism. On the basis of their work,
Pillong et al.24 established an RF model to evaluate the
solubility and crystallization tendency of 319 small molecules
in 18 different solvents. This model can guide the selection of
suitable crystallization solvent and effectively reduce the
workload to a third of the initial plan while ensuring the
crystallization success rate exceeds 92%. Their advantage is
having established a unified crystallization database for
machine learning.
One of the challenges in predicting crystallinity is that it

requires consistent conditions in terms of concentration,
evaporation rate, temperature, and pressure in crystallization
experiments. Combining data from inconsistent experimental
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methods will introduce a lot of noise into the data and mislead
machine learning methods. Researchers need to obtain enough
comprehensive data sets and relevant crystallinity data to
establish a durable crystallinity prediction model. It is of great
value to archive relevant data in accessible electronic database
format for further data processing.
2.3.2. Other Property Prediction. The physical properties of

the drug can affect drug safety, stability, and effectiveness.
Applying machine learning methods is another way to predict
crystal property, which can help people design and control
solid states.
Bryant et al.25 used CSD Python API to develop several

topology-based crystal structure descriptors to predict crystal
plasticity and compressibility. Salahinejad et al.26 used the
Gaussian software and ANN method to predict sublimation
enthalpy, lattice energy, and crystal melting point of small-
molecule organic compounds with diverse structures. They
used Bayesian regularized artificial neural networks to select
the most relevant molecular descriptors. They developed a
multiple linear regression model (MLR) for comparison. The
average melting point prediction error of ANN was 5 K lower
than that of the linear model, showing the former was more
accurate than the latter. Velaśco-Meji2́7 combined ANN and
the genetic algorithm to model the crystallization process by
considering temperature, water content, concentration, solvent
addition time, pH value, and stirring speed as input
parameters. They established a neural network model for
predicting crystal density. By optimizing the experimental
conditions, crystal density value increased from 0.61g·cm−3 to
0.737g·cm−3, indicating that the physical and crystallographic
properties substantially improved.
Perlovich et al.28 established a database of melting

temperatures and developed an algorithm for predicting the
melting point of cocrystals to guide cocrystal design. However,
these algorithms require high-cost calculations. Krishna et al.29

carried out quantitative structure−activity relationship
(QSAR) analysis using ANN to analyze the dependence of
API’s melting point on the properties of CCFs. Unlike the
previous work, this model uses molecular weight, functional
group type, melting temperature, etc. as input information and
does not require presynthesis of cocrystals to obtain measure-
ment data. Fathollahi et al.30 established a QSAR model by
ANN to predict the density of high-energy cocrystals. They
built an MLR model using the same molecular descriptors for
comparison. The results demonstrated that the ANN model
can more accurately simulate the relationship between
structure descriptors and cocrystal density.

3. AI AND COCRYSTAL
3.1. CCF Screening. Traditional cocrystal screening is

expensive in terms of time, energy, and laboratory resources.
Using machine learning can save time and resources, especially
in the early stage of CCF selection. It is valuable to reduce the
list of CCFs to the most likely ones.
Researchers can adopt CSD to screen cocrystal formers

(CCFs). By using the large amount of crystal structure data
and selection of supramolecular synthons, CCFs with suitable
conformation can be selected. Some of the methods proposed
for selecting knowledge-based CCFs are as follows. (1) The
HBP algorithm mentioned above, which is initially used to
predict possible polymorphs, can determine cocrystal for-
mation by evaluating the possibility of homogeneous and
heterogeneous interactions. (2) The molecular complemen-

tarity method, which was proposed by Fab́iań, evaluates the
possibility of cocrystal formation according to the analysis of
calculated descriptors of molecules. The method is based on
the idea that cocrystallization molecules tend to have similar
molecular properties and that some properties are more
strongly correlated than others. It has now been implemented
as a tool in a development version of Mercury for further
testing and validation. The future direction of virtual cocrystal
screening is to carry out multistage and automatic CCF
selection workflow.
Galek et al.31 used CSD to predict potential lamotrigine

CCFs and automatically selected the best coformers. Wicker et
al.32 utilized the SVM algorithm and the RDKit cheminfor-
matics toolkit to calculate descriptors of coformer molecules
and establish models that classify whether they can form
cocrystals with specific APIs. The disadvantage is that it needs
a lot of experiments to generate the initial training set with
successful and unsuccessful results.

3.2. Cocrystal Composition Prediction. The quantita-
tive prediction of cocrystal composition can improve the
online controllability of the production process and verify the
quality of the final products. Barmpalexis et al.33 quantitatively
analyzed cocrystal sol-based mixtures by applying ANNs and
partial least-squares (PLS) regression to spectral data
modeling. They examined the influence of structure (number
of hidden units) and training (number of iteration cycles)
parameters, spectral range, and data preprocessing on ANN’s
fitting performance. They also performed PCA to reduce the
dimension of input space and accelerate neural network
training. Results show that ANN performs better than PLS.

3.3. Cocrystal Formation Prediction. Some researchers
use classification and regression algorithms to predict the
cocrystal formation process to accelerate cocrystal screening
and gain high-quality cocrystals.
Multivariate adaptive regression splines (MARSplines) is an

effective nonlinear method to solve various quantitative
structure−property/activity problems. It is an effective
alternative to the ANN algorithm. Przybyłek et al.34 established
a dicarboxylic acid cocrystal screening model on the basis of
the MARSplines algorithm using 1D and 2D molecular
descriptors. The classification success rate of the cocrystal
was 91%. The advantage is that the descriptors can be
calculated in a few seconds using free software, and
professional knowledge is not necessary. The limitation is
that it cannot distinguish between typical cocrystals and salts.
The method can be used as a preliminary screening tool for
excluding the possible formation of immiscible solid states.
Devogelaer et al.35 introduced two neural network models that
accept a pair of molecules as input and classify whether they
can form a cocrystal. Two models differed in their input
molecular representations and initial preprocessing steps. They
used the link-prediction method to generate the invalid
cocrystal set and finally discovered a new drug−drug cocrystal.
Chabalenge et al.36 adopted a decision tree algorithm to

study the influencing factors of cocrystallization processes. By
using the open-sourced machine learning software WEKA, they
examined the effects of different experimental conditions on
the cocrystal conversion rate. This model can obtain high-
quality cocrystals by selecting the correct operating conditions
and shorten the development time of cocrystals. Wang et al.37

developed a machine learning model trained on the Cambridge
Structural Database. Taking 2D structures as input, the
probability of cocrystal formation is returned for two given
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molecules. All the cocrystal records in the CSD were used as
positive samples, while negative samples were constructed by
randomly combining different molecules into chemical pairs.
They also studied the impact of training set size on model
performance, which improved by increasing data size. The
ROC-AUC of the consensus model improved from 0.754 to
0.852 by increasing the size of the training set. They predicted
two cocrystals successfully by their model.

4. CONCLUSION

With the rapid development of AI, it can be applied to many
aspects of polymorphism and cocrystal research, such as
polymorphism prediction, crystal structure analysis, crystal
property prediction, CCF screening, cocrystal composition
prediction, and cocrystal formation prediction. It is a new
research direction that can save experimental costs and provide
a theoretical guidance for future studies. Nevertheless, there is
still plenty of room for improvement.
First, developing robust descriptors for crystalline solids is

challenging. The selection of descriptors should be meaningful
and universal, and the relationship with output should be
simpler. New descriptors should be developed to encode more
complex material data. Algorithms for generating descriptors
that can be used by experts in nonrelated fields are still lacking.
Second, there is a need to improve the quantity and quality

of machine learning data. A large database including both
positive and negative results is crucial for balanced model
training. It is also important that the data come from uniform
and comparable experiments. At present, databases are
independent and not unified in data format, which limits the
usage of machine learning. In addition, when using the CSD
and machine learning techniques in big-data analysis, it is likely
that the database errors bury so deeply to become impossible
to detect.
Third, new techniques have appeared to improve algorithm

efficiency such as parallel computing and cloud computing. No
single algorithm can fit for all applications. Comparison among
different algorithms is necessary to choose the best one.
In short, researchers should integrate the big data generated

in computational chemistry and crystallization experiments and
explore the hidden rules in complex data to promote the
development and application of AI in pharmaceutical crystals.
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