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Spinocerebellar ataxia (SCA-2) type-2 is a rare neurological disorder among the

nine polyglutamine disorders, mainly caused by polyQ (CAG) trinucleotide repeats

expansion within gene coding ataxin-2 protein. The expanded trinucleotide repeats

within the ataxin-2 protein sequesters transcriptional cofactors i.e., CREB-binding protein

(CBP), Ataxin-2 binding protein 1 (A2BP1) leading to a state of hypo-acetylation and

transcriptional repression. Histone de-acetylases inhibitors (HDACi) have been reported

to restore transcriptional balance through inhibition of class IIa HDAC’s, that leads to

an increased acetylation and transcription as demonstrated through in-vivo studies on

mouse models of Huntington’s. In this study, 61 di-aryl cyclo-propanehydroxamic acid

derivatives were used for developing three dimensional (3D) QSAR and pharmacophore

models. These models were then employed for screening and selection of anti-ataxia

compounds. The chosen QSAR model was observed to be statistically robust with

correlation coefficient (r2) value of 0.6774, cross-validated correlation coefficient (q2)

of 0.6157 and co-relation coefficient for external test set (pred_r2) of 0.7570. A

high F-test value of 77.7093 signified the robustness of the model. Two potential

drug leads ZINC 00608101 (SEI) and ZINC 00329110 (ACI) were selected after a

coalesce procedure of pharmacophore based screening using the pharmacophore

model ADDRR.20 and structural analysis using molecular docking and dynamics

simulations. The pharmacophore and the 3D-QSAR model generated were further

validated for their screening and prediction ability using the enrichment factor (EF),

goodness of hit (GH), and receiver operating characteristics (ROC) curve analysis. The

compounds SEI and ACI exhibited a docking score of −10.097 and −9.182 kcal/mol,

respectively. An evaluation of binding conformation of ligand-bound protein complexes

was performed with MD simulations for a time period of 30 ns along with free energy

binding calculations using the g_mmpbsa technique. Prediction of inhibitory activities of

the two lead compounds SEI (7.53) and ACI (6.84) using the 3D-QSAR model reaffirmed

their inhibitory characteristics as potential anti-ataxia compounds.

Keywords: spinocerebellar ataxia type-2, polyglutamine disorder, HDAC inhibitors, 3D-QSAR, pharmacophore
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INTRODUCTION

Ataxia is a term indicating the lack of coordination and
movement as a result of degeneration of cerebellum, the
coordination center of brain. Molecular pathology behind
spinocerebellar ataxia type-2 (SCA-2) is the expansion of
cytosine-adenine-guanine (CAG) repeat. Normal allele of SCA2
comprises of 13–37 repeats of CAG whereas the mutant allele
comprises of 38–53 repeats (Armstrong et al., 2005). SCA2 is
characterized through progressive gait and limb in-coordination,
muscle weakness, slurring of speech, decreased vibration sense,
and dysarthria. The onset of symptoms occurs in mid-40s and
with the progression of diseased state, the patient is confined to
wheel chair within a time span of 5–7 years. Till date there is
no treatment available for SCA-2. Recent studies on SCA-2 have
reported that the mutant protein having expanded trinucleotide
(CAG) repeat sequesters the transcriptional factors affecting the
expression of gene through transcriptional de-regulation (Brusco
et al., 2004).

Expression of gene is regulated through alteration in
chromatin. Chromatin has a high level complex structure
that arises from the assembly of nucleosomes, an octamer
of histone proteins viz., H2A, H2B, H3, and H4 enclosing
150 base pair of DNA. Regulation of gene transcription is
controlled by interaction between the Histone and DNA.
Chemical modifications particularly the N-e-acetylation of
lysine residues is found in histone proteins (Bassett and
Barnett, 2014). Acetylation is a widely investigated translational
modification in comparison to other modifications which
include phosphorylation and methylation. It involves the
transfer of –COCH3 group from acetyl CoA to lysine side
chain and is revamped through Histone acetyl transferases
(HAT) and Histone de-acetylase (HDAC’s). HAT functions by
promoting acetylation of histone proteins thereby increasing
gene transcription while HDAC’s remove the acetyl group from
the histone resulting in the repression of gene transcription.
In disease state, the expanded polyQ repeats within the
mutant ataxin-2 protein sequesters transcriptional cofactors
i.e., CREB, A2BP1, TDP43 resulting in the state of hypo-
acetylation. Excessive de-acetylation of the histone proteins has
been associated to polyglutamine disorders esp. Spinocerebellar
ataxia’s and Huntington’s. Although the definite molecular
pathology for de-regulation has not been fully decoded till date,
it has been well-documented that transcriptional repression due
to hypo-acetylation is one of the main reasons for spinocerebellar
ataxia (Butler and Bates, 2006).

HDAC’s superfamily consists of 18 sub-types that have been
branched in four classes (Class I–IV), classified in accordance
with phylogenetic comity, catalytic mechanism, expression
pattern and similarity with yeast de-acetylase (Bertrand, 2010).
HDAC’s are structurally and functionally distinct as class I, II, and
IV are termed classical HDAC’s (cofactor is Zn2+) while class III
are homologs of the yeast silent information regulator2 (SIR2),
an NAD+ dependent histone de-acetylase. Class II HDAC’s are
sub-classified into class IIa and class IIb consisting of HDAC
4, 5, 7, and 9, and HDAC 6 and 10, respectively (Bottomley
et al., 2008). Class IV consists of single member HDAC 11.

Class III HDAC’s, structurally distinct from classical HDAC’s,
comprises of Silent-Information-Regulator (SIRT’s 1–7). Class IIa
HDAC demonstrates tissue specific presence in brain indicating
their significance toward gene transcription in neurons through
transcription cofactors in comparison to class I HDAC’s that are
expressed globally. Present study focuses on Class IIa HDAC’s
as they have nuclear localization signal (NLS) and nuclear
export signal (NES) which is a prerequisite for the histone
de-acetylation. This leads to phosphorylation of the serine
residue resulting in the export of HDAC’s from nucleus into the
cytoplasm where it binds to protein 14-3-3 and then shuttle back
to nucleus with the loss of phosphorylation and dissociation with
protein 14-3-3 (Didonna and Opal, 2015). HDAC’s active site
comprises of two domains, a C terminal catalytic domain and
an N terminal regulatory domain (Di Giorgio et al., 2015). These
domains are involved in charge relay system through removal of
acetyl group, and surrounds the Zn2+ ion having two histidine
aspartic dyads [His802-Asp838 and His803-Asp845].

HDAC inhibitors (HDACi) comprise of diverse array of
natural and synthetic compounds, broadly classified into four
classes in accordance with their potency, namely, Hydroxamic
acids, Cyclic peptides, Benzamides and Aliphatic acids (Juvale
et al., 2006). HDACi functions by binding to Zn2+ ion thereby
dysfunctioning the charge relay system involved in the de-
acetylation of lysine residue. Basic structure of HDACi comprises
of a metal binding group, a hydrophobic cap and an aliphatic
chain which links the hydrophobic cap to the metal binding
group. Variation in the length of aliphatic chain is known to
have consequent effect on inhibitory potential of the compounds.
This study focuses on the hydroxamate moiety based HDACi
and their class specificity toward class IIa HDAC i.e., HDAC4.
HDACi such as suberoylanilidehydroxamic acid (SAHA), TSA,
FSK-228, Phenyl butyrate, and Valproic acid (VPA) have
been reported under clinical trials, many of which do not
demonstrate class specific selectivity. TSA has been reported as
pan-HDAC inhibitor whereas inhibitors like Valproic acid, FK-
228, SAHA, exhibit class II specific inhibition. HDACi possessing
hydroxamtemoiety have been widely investigated toward various
polyglutamine disorders (Price et al., 2007). In-vivo studies have
shown that SAHA and Phenyl butyrate improves the motor
deficit in R6/2 and N171-82Q transgenic mouse model of
Huntington’s respectively (Voet and Zhang, 2012). Structural
studies have also revealed the binding association of HDACi
like TSA and SAHA with histone de-acetylase protein through
interning its aliphatic chains and co-ordinating with the Zn2+ ion
(Hockly et al., 2003).

In this study, we selected a congeneric series of 61 hydroxamic
acid derivatives exhibiting histone de-acetylase inhibitory
properties toward spinocerebellarataxia type-2; which has not
been reported till date to the best of our knowledge. In order to
search for novel compounds possessing anti-HDAC therapeutic
properties, we selected 1,2 di-arylcyclo-propanehydroxamic acid
derivatives for 3D-QSAR studies that co-relates the biological and
physiochemical properties of the compounds against HDAC4.
A combined screening methodology involving pharmacophore
screening along with prediction of inhibitory potential of
screened compounds using 3D-QSARwas adopted. The potential
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lead compounds were validated through an extensive structural
analysis performed with molecular docking and dynamics
simulations study. Present study provides valuable insight toward
the role of di-aryl cyclo-propane hydroxamic acids as an ataxia
agents and evaluation of lead compound identified through
pharmacophore modeling and 3D-QSAR model.

MATERIALS AND METHODS

Protein Selection and Preparation
HDAC’s superfamily has been classified into four groups
consisting of 18 members on the basis of phylogeny and sequence
homology. Class IIa HDAC4 protein (PDB ID: 4CBY) was
selected owing to its various novel features. Firstly, they possess
a N and a C terminal region comprising of glutamine rich
domain and catalytic de-acetylase domain, known to be involved
in various signaling pathway through specific post translational
modifications including nuclear and cytoplasmic shuttling. This
domain also consists of catalytic domain in a “closed-loop” form,
reported necessary for the enzymatic activity (Bürli et al., 2013).
The second novel feature of class IIa HDAC is that it possesses a
bigger active site in comparison to class I HDAC, due tomutation
of a tyrosine into histidine, Y967H in HDAC4 (Bottomley et al.,
2008). The selected HDAC4 structure was prepared using the
protein preparation wizard in the Schrodinger package. The
protein was optimized using the OPLS all atom force field using
gromacs version 4.6.5.

Hydroxamate Dataset for 3D-QSAR and
Pharmacophore Modeling
A series of 61 di-arylcyclo-propanehydroxamicacid derivatives
with inhibitory properties against histone de-acetylase (HDAC’s)
were selected for 3D-QSARmodel-generation (Bürli et al., 2013).
The alignment of compounds with a common template resulted
in a total of 44 compounds with lower RMSD-values (Schreiber
and Keating, 2011). Compounds possessing higher RMSD form
alternative modes of binding in comparison to the one having
lower RMSD. Compounds exhibiting lower RMSD have similar
orientation as the crystallographic structure indicating optimal
alignment (Kundrotas and Vakser, 2013). 2D structures of the
template (a common substructure of the congeneric series)
along with the other hydroxamic derivatives were drawn using
the Marvin Sketch (MarvinSketch)1. VLife Sciences Software
(MDS)2 was used for converting 2D structures into 3D (Goyal
S. et al., 2014). The structures were analyzed utilizing force field
batch minimization using selected default parameters for the
model generation except the final equation consisting of four
descriptors and value of 1.0 as variance cut-off.

Force Field Computation
The biological activity of 44 di-aryl cyclo-propanehydroxamic
acid derivatives were input in form of negative logarithm
of IC50 i.e., pIC50 for force field calculations. Force field
computation was carried out having default grid dimensions
including steric, electrostatic and hydrophobic descriptors while
1https://www.chemaxon.com/products/marvin/marvinsketch/
2Mds, V. VLife MDS software package, version 3.5, Pune, India 411007.

with dielectric constant as 1.0. Gasteiger-Marsili was chosen
as charge type for computation (Kumar et al., 2016). Out
of 7148 descriptors calculated, only 1233 were selected after
eliminating the static rank. Static properties are statistically
similar for each point thus evidently not involved in affecting the
inhibitory property of the compounds. Hence, these invariable
descriptors were eliminated during QSAR model generation
(Goyal M. et al., 2014).

3D-QSAR Model Generation
In this study, we selected molecular field analysis along with PLS
regression technique for generating 3D-QSAR model. Molecular
properties such as electrostatic and steric descriptors were
selected as independent variable whereas the activity pIC50 as
dependent variable. Statistical external validation was performed
in which the dataset was classified into the test and training
set. Eighty-five percent of the dataset molecules were classified
as training set using random selection procedure, in order
to accomplish the diversity of the training set for the whole
descriptor space of the overall dataset (Martin et al., 2012). This
was achieved using the following criteria: firstly, the training set
molecules were structurally diverse enough to cover the whole
descriptor space (Ajay and Bedadurge, 2013) and secondly, the
representative points in the training and test set were close to each
other (Jain et al., 2011).

Validation of 3D-QSAR Model
The predictive power of the QSAR model generated is defined
as the ability to predict the biological activity of the molecules
that were not used for model generation. Thus, a QSAR model
is required to be checked for various quality measures before
it can be employed for screening of new chemical entity. This
makes validation a significant part of QSAR modeling prior to
the predictions. The acceptability of a regression based QSAR
model relies upon different statistical parameters such that
the value of predicted activity does not differ much from the
experimentally defined biological activity i.e., the net residual
between the predicted and experimental activities is zero or close
to zero. Validation of the selected models was ascertained by
statistical parameters such as r2, q2, pred_r2, Z-score, n (no
of compounds), k (variables), best_ran_q2, best_ran_r2, F-test
(Fischer’s value). Further, for a QSAR model to be statistically
significant and robust it must fulfill the following criteria i.e.,
q2, r2 > 0.6, pred_r2 > 0.5 (Sinha et al., 2016) and F-test > 30,
along with low standard error values. Validation of the QSAR
model is performed using the test set, since they do not contribute
to the model development and are considered as the part of
external validation. On the other hand, training set forms a part
of internal validation. Receiver-operating characteristics curve
(ROC; Speck-Planche et al., 2012) analysis was performed for
the QSAR model for validating its ability to predict the identified
HDAC active compounds from a large testing list of actives and
decoy (Verdonk et al., 2004; Kirchmair et al., 2008). The ROC
curve demonstrates the sensitivity (Se, true positive rate) for any
possible change in the number of compounds (n) as function of
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(1−Sp), Sp is defined as specificity or false negative rate.

Sensitivity (Se) =
Number of selected actives

Total number of actives

Se =
TP

TP+ FN

Specificity (Sp) =
Number of discarded inactives

Total number of inactives

Sp =
TN

TN+ FP

Here, TP is defined as number of active compounds selected
and FN is the number of active compounds discarded. Whereas,
TN is the number of discarded decoys while FP is the number
of selected decoys (inactive). ROC curve was plotted by setting
the score of the active molecules as thresholds and consequently
the number of active and decoy with the dataset was counted
for calculated of senstivity and specificity. This calculation was
repeated for the active molecules with second and third highest
score for all the actives (Table 3B).

Internal and External Validation
Internal validation (q2) of the QSARmodel is calculated using the
given equation:

q2 = 1−

∑
(

yi − ŷi
)2

∑
(

yi − ymean

)2

where yi and ŷi are the actual and predicted activities of the ith
molecule, respectively, and ymean is the average activity of all
molecules in the training set.

External validation (pred_r2) defines the co-relation between
the actual and predicted activity; calculated through using the
given equation:

pred_r2 = 1−

∑
(

yi − ŷi
)2

∑
(

yi − ymean

)2

where yi and ŷi are the actual and predicted activities of the ith
molecule respectively, and ymean is the average activity of all the
molecules in the test set.

Y randomization test was performed through contemplating
linear model with the one derived from data set (Rucker
et al., 2007), several different models were generated through
rearranging the training set in order to measure them with the
3D-QSAR model on the basis of Z-score (Samal et al., 2013).
Value of Z-score is given as:

Z score =
h− µ

σ

where, h is the q2-value calculated for the actual dataset, µ is the
average q2 and σ is the standard deviation calculated for various
models built on different random data sets.

Pharmacophore-Modeling
Pharmacophore hypothesis consists of aggregation of the
conceivable models having steric and automated electronic
features required for the atomic interactions with its target.
Pharmacophore modeling was performed using PHASE 3.0
module of Schrödinger (Dixon et al., 2006) constituting
of 44 hydroxamic derivatives. PHASE comprises of six
pharmacophoric features which are [1] hydrogen bond
acceptor, [2] hydrogen bond donor, [3] positively ionizable,
[4] negatively ionizable, [5] hydrophobic group, [6] aromatic
ring. The pharmacophore is created on the basis of theses
identified features and is further utilized for searching anti-
ataxia compounds having similar characteristics to that of
the developed pharmacophore; as the calibration is placed on
pharmacophoric features over the atomic interactions (Koushik
Kumar et al., 2015) thereby resulting in a better representation of
the binding pattern interaction of the identified compounds with
the catalytic dyad of the HDAC4.

Common Pharmacophore Hypothesis
Generation
Structures of inhibitors were pre-processed using ligprep
(Ligprep, 2015) with OPLS_2005 force field. Pharmacophore
from all conformations of the inhibitors were examined using the
common pharmacophore features. Pharmacophore exhibiting
identical features in terms of spatial arrangements were clustered
together and were then examined by scoring procedure for
ranking all the hypotheses. The pharmacophore that yielded
the best alignment of the chosen inhibitors and thus possessing
highest score was identified. The chosen hypothesis was then
used to search for compounds in a dataset of known chemical
libraries with a must match criteria of four out of five features.

Screening of Database Using the Selected
Pharmacophore Hypothesis
Database prepared from a large dataset consisting of chemical
compounds from FDA approved drugs, Zinc database etc.,
was screened for structures matching the hypothesis of the
pharmacophore model. The search methodology comprised of
two steps. The first step involved searching of the database for
3D arrangement of pharmacophoric sites with similar site types
and intersite distances in comparison to the selected hypothesis.
After finding relevant structure, its informationwas written to the
match file. In the second fetch step, themost relevant conformers,
i.e., hits, were retrieved from the database with the help of the
match file and were then aligned to the hypothesis. All the hits
above a fitness score of 1.0 or close to 1.0 were fetched and
analyzed further (Kaur et al., 2012).

High Throughput Virtual Screening (HTVS)
of the Hits Generated through In-silico

Molecular Docking Studies
The compounds having anti-ataxia properties identified on the
basis of similarity with generated pharmacophoric hypothesis
were analyzed in terms of their binding affinity and mode of
interaction with HDAC4 using high throughput virtual screening
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(HTVS) along with extra precision (XP) protocol of molecular
docking in Glide, Schrodinger (Friesner et al., 2004).

Virtual screening in recent times has emerged as one of the
pioneer technique in order to identify potent leads toward the
selection of potential drugs. Here the protein crystal structure
(PDB ID:4CBY) obtained from protein data bank (www.rcsb.org)
was docked with top scoring compounds selected on the
basis of the pharmacophoric features such as survival and
fitness score. The compounds were first docked with HDAC4
through high throughput virtual screening protocol (HTVS), the
compounds possessing a binding energy greater than threshold
value of−8.0 kcal/mol (in magnitude) were re-docked with extra
precision (XP) module in order to check the veracity of the
result. Protein was prepared with protein preparation wizard
where the crystal water molecules and non-bonded heteroatoms
were removed. It also involved hydrogen bond addition, creation
of disulfide bonds and conversion of selenomethionine to
methionine. The structures of potent inhibitors were prepared
using the Ligprep module of Schrödinger. The post docking
interaction studies for the inhibitor-enzyme complex was
performed using UCSF chimera (Pettersen et al., 2004) and
ligplot (Wallace et al., 1995).

Molecular Dynamics Simulations of the
Top Scoring Compounds
A 20 ns long dynamic simulation was carried for the inhibitor-
enzyme complex. Gromacs version 4.6.5 (Berendsen et al., 1995)
was used to carry out the simulations for identifying druggable
sites in the class IIa HDAC4 (PDB ID: 4CBY). PRODRG2 server
(Schüttelkopf and van aalten, 2004) was utilized for creating the
gromacs topology of the inhibitors for the simulation studies.
The force field selected was OPLS-AA/L all-atom (van der Spoel
et al., 2005; Sehrawat et al., 2015). The inhibitor-protein complex
was at the center of 100 × 100 × 100 Å cubic grid, which was
solvated with 10980 TIP3P water molecules and neutralized with
8 Na+ ions (Hess and van der Vegt, 2006). Equilibration of the
inhibitor-enzyme complex along with energy minimization was
carried out at constant pressure of 1 atm and temperature (NPT)
of 298K with time interval of 2 femto second (fs; Tandon and
Sinha, 2011). A 20 ps simulation was carried out at constant
volume and temperature (NVT) with pressure 1 atm. Finally,
20 ns long molecular dynamics simulations was performed at
temperature of 298K and pressure 1 atm.

Free Energy Calculations through
g_mmpbsa
Molecular mechanics Poisson-Boltzmann surface area (MM-
PBSA) analysis was performed through GROMACS version
4.6.5 for the analysis of the conformational changes in
the biomolecular protein-inhibitor complex (Aldeghi et al.,
2016). The free energy calculations of the protein-inhibitor
binding ∆Gbind is defined as the difference between the free
energies of protein–ligand complex (∆Gcpx) and the unbound
receptor/protein (∆Gprotein) and ligand (∆Glig) given as follows:

∆Gbinding = Gcomplex − (Gprotein + Gligand)

TABLE 1A | Unicolumn statistics for the training and test set.

Average Maximum Minimum Standard deviation Sum

Training 6.9721 8.0000 5.0400 0.6669 271.9100

Test 6.7920 7.5200 6.2600 0.4850 33.9600

The binding of the each inhibitor is to be evaluated through
following parameters: the molecular mechanics potential energy
comprising the bonded and non-bonded interactions such as
angle, dihedral, electrostatic, and van der Waals; the free energy
of solvation comprising of non-polar and polar energies (Kumari
et al., 2014). The free binding energy for the particular ligand can
be given with the following equation:

∆Gbind = ∆E+ ∆Gsolv + ∆GSA

∆E = Ecomplex − Eprotein − Eligand

where, Ecomplex, Eprotein, and Eligand are the minimized energies
of the protein-inhibitor complex, protein, and inhibitor,
respectively.

∆Gsolv = Gsolv(complex) − Gsolv(protein) − Gsolv(ligand)

where, Gsolv(complex), Gsolv(protein), and Gsolv(ligand) are the salvation
free energies of the complex, protein and inhibitor, respectively.

Evaluation of ADME Properties
The QikProp (Suite, 2014) package in Schrödinger suite was
utilized for the evaluation and estimation of adsorption,
distribution, metabolism, and elimination properties for two
anti-ataxia compounds reported (Goyal S. et al., 2014). The
modules predicts over 50 molecular properties such as molecular
weight, central CNS, skin permeability (QPlogkp), free energy
solvation, etc. indicating the safe assessments of these compounds
in comparison with parity indicator for 90% drugs (Natarajan
et al., 2015).

RESULTS

Segmentation of Data Set and Its Validation
The hydromaxic based dataset comprising of the 44 derivatives
(Table S1, Supplementary File) have been classified using the
contingent culling method with the measure of 85% compounds
in the training set. Thus, seven compounds viz., 8, 15, 26, 30,
32, 41, 43 (additional file 1) constitutes the test set (Golbraikh
and Tropsha, 2002) and remaining 37 compounds represents
training set. The test set was selected based on the criteria (Oprea
et al., 1994) that all the representative compound points of the
test set in the multidimensional descriptor space must be close
to those of the training set (Dubey et al., 2008). Unicolumn
statistics demonstrates the robustness of the selected training
and test set (Table 1A). Data statistically demonstrated that the
maxim of training set was greater than the maxim of test set
and min of the training set was less than min of the test set,
a condition which is prerequisite for a good QSAR model. The
result showed that test set is interpolative i.e., derived within
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TABLE 1B | Statistical parameters for the 3D-QSAR model.

Dep

Variable

Z-score

r2
Z-score

q2
Best rand

r2
Best rand

q2
Alpha rand

r2
Alpha rand

q2
Z-score

pred r2
Best rand

pred r2
Alpha rand

pred r2

pIC50 7.15928 3.21294 0.27393 0.01881 0.00000 0.00100 2.94453 0.27293 0.01000

the max-min range of the training set. Further the mean and
standard deviation of the training and test set points toward the
relative difference of mean and point density distribution of the
two sets.

3D QSAR Model
Partial least square (PLS) analysis was employed in order to
analyze the co-relation between the structure-activity having a
pragmatic and rationale approach. PLS analysis is one of the
standard statistical methods used for generation of predictive
3D-QSAR model. Gasteiger-Marsili charges were selected for
computing force-field. Out of a total of 7148 3D molecular
descriptors, 1233 obtained after eliminating the static rank
contributed to the model generation. Since static strings are
statistically similar and inefficient, hence they do not contribute
to the model building. Only electrostatic and static descriptors
contributed to the model generation (Potshangbam et al., 2011).
Partial least square (PLS) regression analysis along with stepwise
forward variable selection method was applied to build the 3D-
QSAR model. Model obtained has been represented below with
the equation:

pIC50 = 2.83451 (E_1657) + 2.68845 (S_1911)

− 3.97667 (S_1696) + 2.80171 (1)

Here, three descriptors namely E_1657, S_1696, and S_1911
were selected, with E and S representing the electrostatic and
steric field interactions respectively. As given in Equation (1)
above, each of the electrostatic and steric molecular properties
are associated with their respective statistical adjuvant and the
regression coefficient has been shown as last statistical parameter.
Internal and external validation of the developed model was
performed through the leave-one-out (LOO) method. Validity of
the QSARmodel was ascertained through the following statistical
factors:

Co-relation coefficient r2 = 0.6774, Pred_r2 = 0.7570,
Cross-validated correlation coefficient q2 = 0.6157, Pred_r2_se = 0.2589,
Low standard error value r2_se = 0.3839, q2_se = 0.3190,
F-test = 77.7093.

A high F-test value of 77.7093 confirmed that model is 99%
statistically significant having one in 10000 probability of failure
while other relevant statistical parameters such as Z-score for
r2, q2, and pred_r2 have been specified of its importance in
QSAR-model in Table 1B. Z-score is the relative measure of the
respective score deviation from the mean (µ) along with the
robustness of model which can be ascertain with Z_score_r2,

Z_score_q2, and Z_score_pred_r2-value of 7.15, 3.21, and 2.944,
respectively.

We also scaled the contribution of the molecular properties
i.e., 3D descriptors as percentage contribution in the developed
model. The grid points E_1657 and S_1696 have a positive
contribution (28.538 and 37.189%) whereas the third descriptor
S_1911 has a negative contribution (−15.748%) toward the
inhibitory potential (Figure 3). Generally, steric descriptors are
regarded as the bulky descriptors which relates to both size,
shape, and fragments of the compounds. Thus, a steric descriptor
having positive contribution represents the significance of a
bulky group at that grid location. Steric descriptor S_1696
having its closeness with the bulky hydroxamic acid moiety
signifies its presence at the active site as it enhances the anti-
HDAC activity. The electrostatic descriptor on the other hand
highlights the importance of electropositive and electronegative
groups at a grid location. Electrostatic descriptors having positive
contribution represents the importance of electropositive group
whereas the one having negative contribution represents
electronegative group (Alabed et al., 2016). E_1657 and S_1696
contribute positively, and are located near to the hydroxamic
moiety. Thus, the presence of the electropositive group at R1
hydromaxic site is required as compared to electronegative
group. The descriptor S_1911 has negative contribution thus
the presence of bulky group decreases the activity (Figure 4).
R1 aromatic ring must have non-bulky groups attached in
order to enhance the activity, for which compounds 14 and
28 have 2-cyclopentyl and 2-hydroxy amino methyl attached
at the 2nd position. Compounds 12 and 39 with non-
bulky group 3-pyridazin-4-yl and 6-cyclopropyl pyridazin-
4-yl at 3rd and 6th position, respectively, are few other
examples.

Pharmacophore Hypothesis Generation
Pharmacophore hypothesis applies the procedure of torsion
sampling, through which the conformers minimized during

the sampling are eliminated, having insignificant statistical
parameters such as potential energy surface (Patel et al., 2002).
Least Square Procedure (LSP) was applied for scoring the
pharmacophore where the ligands were classified as per the
alignment between the actives and pharmacophore features.
Pharmacophore model was generated considering the inhibitors
within the pIC50 activity threshold range of 6.5–7.5. Phase
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FIGURE 1 | (A) Fitness plot for the training and test set. (B) Receiver Operating Characteristic (ROC) curve for 3D-QSAR model.

module of Schrödinger was used for the development of
pharmacophore hypothesis. The module provides a variety
of options in order to explore an array of models that are
in line with the selected dataset. The models are generated
through conformational sampling and scoring techniques. The
scoring function comprises of a site score, vector score and
volume score obtained with collective features for each aligned
pharmacophore. Thus, the collective features of these separate
lists yield vector score for each non-reference pharmacophore
that have been aligned to the reference pharmacophore (Sun,
2008). Each compound is represented by separate site points
or features which facilitates non-covalent binding between
the compounds and its target receptor. Phase comprises of
six build in pharmacophoric features—[1] Hydrogen bond
acceptor (A), [2] Hydrogen bond donor (D), [3] Hydrophobic
group (H), [4] Negatively ionizable group (N), [5] Positively
ionizable group (P), [6] Aromatic ring (R). Apart, from
these six pharmacophoric features the module provides three
custom features in order to accommodate the characteristics

that does not fit in the default build in categories (Jones
et al., 1995). A total of 28 variants were generated keeping
five as maximum and four as minimum number of sites.
The pharmacophore hypothesis generated along with their
survival scores and selectivity are reported in Table 2A. The
scoring of each of these hypotheses was carried out using
the ligand classification as per the alignment between the
reference and non-reference pharmacophore. A score is assigned
to pharmacophore from confined box regarded as reference
and further all non-reference pharmacophore are aligned to
the reference pharmacophore. The alignments are measured by
two criteria, Root-mean-square deviation (RMSD) in site point
position and Average cosine of angles formed by corresponding
vectors such as acceptor, donor, and ring aromatic. The
corresponding vector score and site score can be derived through
following equation:

Site_Vector_Scorei = wSiteSiteScorei + wvectorVectorScorei
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FIGURE 2 | Radar plots demonstrating actual and predicted value for (A) Training (B) Test set.
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FIGURE 3 | Contribution plot for the selected molecular properties in

3D-QSAR model.

Where

Site_Scorei = 1−
RMSD

cut − of fRMSD

Vector_Scorei = 1/nv +
nv

∑

j= 1

cosθij

The parameters wsite, wvector , and cut-offRMSD are
user defined with default values of 1.0, 1.0, and 1.2,
respectively. nv is the number of vector features in
the hypothesis and θij is the angle between the jth
vector feature in the non-reference pharmacophore
and the corresponding vector feature in the reference
pharmacophore.

The reference hypothesis is the one with the highest
score which represents the confined box having all the
pharmacophores. Consequently, the ligand which contributes to
the reference pharmacophore is referred to as reference ligand;
once the scoring hypothesis is selected the low scoring ones
are eliminated, such that only hypotheses in the top 10% are
retained (Debnath, 2002). They are refined through volume
scoring, selectivity scoring and number of actives matched based
on Vander Waals model of structure through the alignment of
reference and non-reference ligand.

A common pharmacophore hypotheses is defined as
pharmacophore derived from all conformations of the active
ligand having resemblance to the bound ligand features
and spatial arrangement. Thus, the hypothesis for each box
(representing a common pharmacophore) was chosen. After
selecting the hypothesis for the each box, final scoring was
computed, and the resultant score known as survival score of
hypothesis which determines its validity and potential was used
for given set of molecules as can be seen below:

S = WsiteSsite +WvecSvec +WvolSvol +WselSsel +Wm
rev

−WE∆E +WactA

Here,W is weight and S is score.

FIGURE 4 | Depiction of aligned congeneric set of molecules and 3D

descriptors marked in the cubic grid.

On the basis of survival scores for actives and inactive we
identified a pharmacophoric hypothesis demonstrating maxim
five and minim four sites aligned with that of active compounds
of the congeneric dataset. ADDRR.20, a pharmacophore
hypothesis implies the presence of one hydrogen acceptor,
two hydrogen donor and two ring aromatics. ADDRR.20 had
an optimum alignment with active set of compounds and
demonstrates high selectivity along with a survival score of 3.846,
survival inactive score of 1.230, active score of 0.9940, vector
score of 1.0000, and volume score of 0.8544.

The selected pharmacophore hypothesis (ADDRR.20)
indicates the presence of two hydrogen donors (D), two ring
aromatics (R), and one hydrogen acceptor (A). All these features
signify the mode of binding and in screening of compounds
through various chemical libraries. Figure 5A represents the
alignment of compounds in the selected pharmacophore along
with pharmacophoric features such as, the hydrogen donors
(blue), spherical with arrows indicating toward the H-bond.
The aromatic rings are presented through orange rings with the
centroid of the atoms and the single hydrogen acceptor has been
demonstrated in light red. Figure 5B demonstrates the alignment
of active compounds for the chosen hypothesis ADDRR.20 and
the inter-site distance among the pharmacophoric features,
respectively.

Model Validation of Selected
Pharmacophore and 3D-QSAR Model
The model generated was validated before employing it for
screening the combinatorial drug libraries and predicting their
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FIGURE 5 | Hydroxamic based HDAC inhibitors marked with

pharmacophore features of ADDRR.20. (A) Alignment of molecules along

with pharmacophore features. (B) Intersite distance between pharmacophore

sites.

activities. Thus, both models were validated based on different
statistical parameters. The selected pharmacophore model was
validated to check its ability to identify known actives from the
dataset of the known inactive i.e., GH and EF score (Table 3A). In
order to do this, the selected pharmacophore model was imputed
to screen the dataset of known active (A, 4930) and inactive
molecules (77324). The selected model retrieved 5689 hits
including 4437 known actives (78.18%, yield). The enrichment
factor (EF) of this screening protocol was calculated to be 13.012,
which indicated that selected model has 13 times more stability
to identify active molecules than inactive. The goodness of hit
score (GH) of this screening protocol was calculated to be 0.796
which indicates the significance of selected pharmacophore to
identify active molecules. Further, an external dataset comprising
of the known HDAC inhibitors (Librizzi et al., 2016; Patel
et al., 2016; Wen et al., 2016; Zhu et al., 2016) that were not
included in QSAR model generation and were used as external

TABLE 2A | Different pharmacophore hypothesis generated for virtual

screening.

Row ID Survival Survival-inactive Selective Matches

1 DDHHR.2 3.789 1.220 1.564 25

2 DDHHR.37 3.584 1.162 1.595 25

3 ADDRR.5 3.712 1.161 1.598 25

4 ADDRR.8 3.789 1.220 1.564 25

5 ADDRR.20 3.846 1.230 1.597 25

6 ADDRR.53 3.832 1.242 1.594 25

7 ADDRR.55 3.695 1.175 1.593 25

8 ADDRR.67 3.832 1.242 1.594 25

9 ADDRR.70 3.695 1.175 1.593 25

10 DHHRR.15 3.846 1.230 1.597 25

11 DHHRR.19 3.712 1.161 1.598 25

12 ADHRR.42 3.675 1.195 1.594 25

13 ADHRR.51 3.813 1.263 1.596 25

test set were selected for validating the predictive power of the
developed QSAR model. The robustness of the developed QSAR
model was analyzed by performing “Y-randomization” test, the
low value of R2

scramble
(0.629) as compared to R2train of selected

model, described the real regression correlation of the selected
model. In addition, the calculated values of k (1.003), k′ (0.951),
R2o (0.984) and R’2o (0.993) were also within the recommended
range that strength the external predictive ability of the selected
3D-QSAR model. The developed QSAR model was further
validated through receiver-operating characteristic (ROC) curve
(Table 3B). The curve analyses the ability of a particular model
to correctly classify a list of compounds as actives or inactive
and is indicated by the area under the curve. The area under the
curve (AUC; Figure 1B) was calculated as 0.8157. Thus, we can
conclude that our model is not randomly classified considering
area under the ROC curve is statistically significant from those
obtained by random classifier (area= 0.5).

Pharmacophore Based Virtual Screening
Using Docking and Molecular Dynamics
for Predicting Their Inhibitory Activity
against HDAC4
The generated pharmacophore hypothesis ADDRR.20
comprising of five pharmacophoric sites was utilized for
screening a repository of∼82,000 compounds, resulted in a total
of 4930 hits, with four out of five must match criteria. These
screened compounds were further analyzed for their binding
pattern and mode of interaction with HDAC4 (PDB ID: 4CBY)
using HTVS and XP docking protocol of Glide. The compounds
demonstrating the binding affinity of more than –8.0 kcal/mol
(in magnitude) through HTVS were docked again with HDAC4
(PDB ID: 4CBY) in order to re-affirm the binding pattern and
its affinity between the docked position of the selected molecules
and naïve X-ray crystal structure using the XP protocol (Halgren
et al., 2004). The XP-score signifies the binding affinity of
the respective lead compounds with HDAC4 catalytic dyad
consisting of two histidine aspartic dyads. Thus, on the basis of
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TABLE 2B | Predicted activity of the top scoring compound using the selected pharmacophore hypothesis.

Compound ID XP-score Align score Vector score Volume score Fitness Predicted activity (through

3D-QSAR model)

Binding interaction

Zinc 00608101 −10.09761 1.949571 0.829256 0.347826 1.179391 7.53 (His802-Asp838) catalytic dyad

Zinc 19702930 −10.02283 1.251246 0.738099 0.415301 1.084544 7.22 Pro676, Arg681

Zinc 20464210 −10.07625 1.203255 0.673085 0.42716 1.115548 6.94 Asp934, His976

Zinc 00329110 −9.182012 1.037448 0.612613 0.420593 0.938919 6.84 (His803-Asp840) catalytic dyad

Zinc 00897385 −9.182680 1.401166 0.816804 0.335443 1.102823 6.82 No interaction

Zinc 20465875 −9.769430 1.591722 0.669213 0.41623 0.718525 6.81 His131-Asp166

Zinc 00518218 −9.769608 1.081293 0.507579 0.431319 1.298446 6.08 No interaction

The bold values represent the selected entity.

binding affinity and mode of interactions, two compounds, the
first compound [1-((2S)-2-[(2-chlorothiophen-3-yl)methoxy]-

2-(2,4-dichlorophenyl)ethyl)-2,3-dihydro-1H-imidazole]

(Figure 6A) (SEI, ZINC 00608101) possessed a docking
score of -10.097 kcal/mol and the second compound
[3-((2S)-2-amino-3-[(furan-2-ylmethyl)amino]-3-oxopropan-

3-ium-1-yl]indol-1-uide (Figure 6B) (ACI, ZINC 00329110)
demonstrated a docking score of –9.182 kcal/mol were selected
for further study. The generated QSAR model was utilized for
predicting the activities of top scoring compounds screened
through common pharmacophore hypothesis. High predicted
activities of SEI (7.53) and ACI (6.84) further re-assert the
inhibitory potential of these compounds against HDAC4.
The predicted activities of the screened compounds from
database where scored through the 3D-QSAR model and
re-ranked accordingly as shown in Table S2 (Supplementary
Data). The docking scores and predicted activities of the top
scoring compounds have been further summarized in Table 2B.
We observed the interaction pattern for the other screened
compounds such as ZINC 518218 and ZINC 00897385 as
shown in Figure 7. The interactions of the two top scoring
compounds were analyzed with the catalytic dyad (His802-
Asp838 and His803-Asp840) through molecular dynamics
simulations for a time period of 30 ns (Figure 7B). The first
compound SEI (Figure 7A-a) having a bulky ring structure
showed hydrophobic interaction with the catalytic dyad along
with other residues: Leu943, Asp934, His802, Pro800, Arg681.
The structure demonstrated stability for a time period between
5 and 15 ns during MD simulations. The complex again
stabilizes around 20 ns in accordance with the apo-form of
the HDAC4 protein up to 30 ns. The second compound ACI
(Figure 7A-b) demonstrated hydrophilic interactions with
catalytic dyad apart from Asp936, His976, Pro676, Glu677,
Phe812, Asp759, His803, and His842. The inhibitor was not
in the common plane of the His131-Asp166 pair and aligned
to a horizontal position being 3.5 Å from the imidazole ring
resulting in the open conformation. However, around 15 ns the
inhibitor exhibits a closed conformation through interactions
with the loop regions between the residues Pro676, His842,
Phe812 as well as Leu943 and Asp936. The complex HDAC-SEI
demonstrated having stable orientation and binding pattern
with respect to HDAC4-ACI complex. The RMSD graph
(Figure 8A) demonstrates the molecular dynamics simulations

TABLE 3A | Statistical parameters for the calculation of Goodness of hit

score (GH) and Enrichment Factor (EF).

S.No Parameters Values

1 Total molecules in database (D) 82254

2 Total Number of Actives (A) 4930

3 Total hits (Ht) 5689

4 Active hits (Ha) 4437

5 % Yield of Actives [(Ha/Ht) × 100] 78.01

6 % Ratio of Actives [(Ha/A) × 100] 90.05

7 Enrichment Factor (E) [(Ha × D) / (Ht × A)] 13.012

8 False negatives [A − Ha] 493

9 False positives [Ht − Ha] 1252

10 Goodness of hit score (GH)a 0.796

a [(Ha/4HtA) (3A + Ht) × (1 − ((Ht − Ha) / (D − A)))]; GH score of >0.7 indicates a

statistically good model.

course performed with respect to RMSD vs. time for HDAC4
crystal structure (apo-form) shown in purple, the HDAC4-SEI
complex shown in blue, and the HDAC4-ACI complex shown
in orange. The large scale fluctuations in the RMSD graph (Guo
et al., 2010) represents the absence of steric influence due to
non-bulky aromatic group resulting in loose interaction of ACI
with the catalytic dyad throughout up to 30 ns. Analysis of
the post dynamics interactions of hydroxamic acid derivatives
with HDAC4 revealed that the binding orientation of both the
docked complexes was different with each other i.e., the complex
HDAC4-SEI demonstrated similar binding orientation as the
experimental binding mode (PDB ID: 4CBY) while HDAC4-ACI
complex exhibited deviation in comparison to the experimental
binding mode (Goodford, 1985). We also analyzed the potential
energy map for the protein-inhibitor complex along with the
apo-form of the HDAC4 protein for a time period of 30 ns
(Figure 8B). It was observed that SEI inhibitor complex was
stable in comparison to the ACI inhibitor complex as it was in
accordance with the apo-form of HDAC4 protein with respect to
conformational changes as well as in terms of energy.

Free Energy Calculation for SEI and ACI
Molecular dynamics simulations were used to calculate binding
free energy using MM/PBSA method. Snapshots were extracted
at every 10 ns of stable intervals from 11 to 12 ns MD trajectory.
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TABLE 3B | ROC curve cut-off values along with their respective true

positive rate and false positive rate.

S.No Cut-off True positive rate

sensitivity (Se)

Specificity

(Sp)

False positive rate

(1-specificity)

1 6 0.66 0.89 0.11

2 7 0.89 0.71 0.29

3 8 0.97 0.50 0.50

The binding free energy and its corresponding components
obtained from theMM/PBSA calculation of the protein-inhibitor
complexes are listed in Table 4. The results indicated that
SEI possessed negative binding free energy value of −1683.55
kcal/mol followed by ACI with value of −1591.90 kcal/mol.
Moreover, van der Waals and electrostatic interactions and
non-polar solvation energy negatively contribute to the total
interaction energy while only polar solvation energy positively
contributes to total free binding energy (Wang et al., 2016).
In terms of negative contribution, van der Waals interaction
gives much larger contribution than electrostatic interactions for
all the cases. The non-polar free energy contributes relatively
less as compared to the total binding energy (Verma et al.,
2016). This indicates that non-polar solvation energy, van der
Waals, and electrostatic interaction together contribute to the
SEI-HDAC4 complex stability. The solvation energy comprising
of the polar and non-polar free energies were found to increase
while the electrostatic energy contributes to the enhanced
binding affinity (Genheden and Ryde, 2015) of SEI compared
to the ACI. In class IIa HDAC4 protein tyrosine is mutated
to histidine Y967H with longer side chain resulting in the
closeness of the interacting residue and increasing electrostatic
interactions thereby enhancing the electrostatic energy. Further,
calculation of the binding energies elucidated that the protein-
ligand interactions for SEI was better thanACI. SEI demonstrated
interactions with His803, Pro800, Glu677, Asp934, and Phe812
residues of the catalytic dyad whereas ACI was observed to
interact with Asp936, Pro942, Phe871 and Arg861. This further
illustrates that SEI-HDAC4 complex showed better free binding
energies and higher interactions than ACI complex.

ADME Evaluation for the Compounds
Selected i.e., SEI and ACI
A total of 50 properties were analyzed using the QikProp
module of Schrodinger software. Over the time, it has been
referred that staunch prognosis of ADME properties acts as
precursor screening tool for screening drugs and designing de-
novo combinatorial libraries. In current study we chose a total
of 50 descriptors having physio-chemical and pharmacokinetic
molecular properties. These properties such as #star, CNS,
blood-brain barrier coefficient (QplogBB), solvent accessible
surface area (SASA), FISA, FOSA, skin permeability (Qplogkp),
solubility (logP), molecular weight, free energy of solvent
in hexadecane and water as QPlogPC16 and QPlogPoct
respectively, ionization potential and others have been reported
along with their respective values for SEI and ACI in Table S3

(Supplementary Data) and were found to be well within the
reference range. Both the anti-ataxia compounds demonstrated
drug like features with SEI being less toxic in comparison to
ACI.

DISCUSSION

In current study, we applied 3D-QSAR model generation along
with common pharmacophore hypothesis approach toward 61
diarylcyclo-propane hydroxamic dataset having anti-HDAC4
activity. Despite of the fact that computational approaches
toward the role of HDACi against ataxia is relatively young,
sufficient data are present to indicate the possibility to discover
and design novel HDAC inhibitors using pharmacophore based
virtual screening approaches. An increasing large number of
HDACi are being reported, chemo-informatical analyses of these
reported HDACi allows researchers to analyze the chemical
space occupied by HDAC’s and to create filters that can
be included in virtual screening experiments together with
pharmacophores (Tang et al., 2009; Ganai et al., 2015; Zhou et al.,
2015).

Analysis of 3D-QSAR Model
3D-QSAR model aims to statistically co-relate the alternatives
in chemical structures and their respective biological activity
through considering the molecular properties i.e., steric,
electrostatic and hydrophobic shown on the spatial grid location.
It thereby correlates the non-bonded interactions fields with
that of the biological activity (Akamatsu, 2002). The equation
of the developed QSAR model had three physicochemical
descriptors, one electrostatic, and two steric descriptors. The first
descriptor, E_1657, belonged to electrostatic class. It signifies the
presence of electropositive groups as compared to electronegative
groups. The contribution plot showed a positive contribution
of 28.538% for this descriptor, which indicated that compounds
should have electropositive substitution at R1 grid location so
as to have an improved inhibitory activity. Next descriptor,
S_1911 is a type of steric descriptor which in this model has
a positive contribution of 37.189%. This implied that presence
of a bulky group at R2 grid location increases the inhibitory
activity of the lead molecule. Hence, a compound without steric
hindrance at its R2 grid location would not have a better
inhibitory effect in comparison to a group having a bulky group
causing steric hindrance. The third descriptor, S_1911, is a type
of steric descriptor with a negative contribution of 15.748%
signifying the presence of steric hindrance with bulky groups as
limiting factor toward the inhibitory activity. Descriptors signify
the molecular properties essential for the increased inhibitory
activity of the compounds (Almerico et al., 2010). Thus, the
descriptors with positive contribution enhance the inhibitory
effect while the descriptor with negative contribution decreases
the inhibitory effect. The statistical values obtained in the 3D-
QSAR model showed 67.74% variance in the observed activity
values of the compounds in training set, and low standard
error of r2_se = 0.2589 demonstrated the accuracy of the
model. The F-test value of 77.7093 represented a good overall
statistical significance level, which means that the probability
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FIGURE 6 | Interactions between HDAC4 protein and selected compounds (A) ACI (B) SEI.

of failure of model is very less. Cross-validated correlation
coefficient (q2) judged by leave-one-out method had a value
of 0.6157 and indicated a good internal prediction power of
the model. Furthermore, a good external predictive potential of
the model was estimated by high pred_r2, in this case 0.7570.
Low standard error values indicated absolute quality of the
model. Thus, it can be deduced that the model is reliable and
predictive.

From the above observations, we can conclude that the
substitution of electropositive groups at R1 grid location
enhances the inhibitory activity, whereas the presence of

non-bulky group at R2 would lead to lower inhibitory
activity. Further, graphical representation between the actual
and predicted activities of the 44 compounds has been
demonstrated through the data fitness plot (Figure 1A), whereas
the graphical representation for the test and training set
has been shown through the radar plots. Data fitness plot
represents the co-relation between the actual and the predicted
values as greater the deviation from the regression line,
more is the difference between the actual and the predicted
values (Cramer et al., 1988). On the other hand, radar
plot (Figure 2) depicts the extent of overlapping between
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FIGURE 7 | (A) Chemical structures of (a) SEI (b) ACI. (B) Interactions pattern between the HDAC4 protein for the screen molecules (b) ZINC 00897385 and (a) ZINC

005182189, respectively.

the test and the training set through the overlap between
the blue (actual activity) and red (predicted activity). Radar
plot statistically validates the robust nature of the developed
QSAR-model i.e., a radar plot showing high value for r2 and
pred_r2 for training and test set respectively demonstrates
good overlap between actual and predicted activities. Another
reliable metric to evaluate the performance of the 3D-
QSAR model is the AUC of the ROC curve (Figure 1B).
The present model achieved a good value of 0.815719 AUC
thereby concluding that the model is not randomly classified
(Table 3B).

Pharmacophore and Structural Analysis of
Selected Leads with HDAC4
The pharmacophore model ADDRR.20 comprising of five
pharmacophoric features i.e., a hydrogen bond acceptor (HBA),
two hydrogen bond donor (HBD), and two ring aromatic (RA)
was utilized for identifying potential new actives through ligand
alignments (Hu and Lill, 2014) for subsequent database screening
with minimum four out of five features (Caporuscio and Tafi,
2011). The identified leads (SEI and ACI) having the fitness
score of 1.0 or above based on pharmacophore screening were
investigated for further structure activity insights. The binding
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FIGURE 8 | (A) RMSD graph for the selected compounds for SEI and ACI for a time period of 20 ns. (B) Potential energy graph for selected compounds SEI and ACI

for a time period of 30 ns.

TABLE 4 | The binding free energies for SEI and ACI complex.

S.no Anti-ataxia

leads

MM P.E. (kcal/mol) (Electrostatic and

van der Waal’s)

Solvation Energy (kcal/mol) Free binding energy

(kcal/mol)

Polar Non-polar ∆Gbinding

1 SEI −2229.795 560.762 −14.522 −1683.555

2 ACI −2173.816 595.772 −13.857 −1591.901

mode for compound SEI with active site residues showed that
mapped on hydrogen bond donor (HBD) feature of ADDRR.20
it formed interactions with Arg681, Pro676 whereas hydrogen

bond acceptor (HBA) feature of ADDRR.20 forms interaction
with His802, His 803, Phe812, and Pro800. Further, binding
mode analysis for SEI demonstrated that HBD feature mapped
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on NH, HBA mapped on O along with imidazole and thiopene
mapped on ring aromatic (RA) forming interactions with
active site residues. The compound ACI formed hydrogen bond
interactions with Asp759, Phe871, His803, Leu943, and Pro942
as shown in Figure 6. The binding mode and pharmacophore
overlay of the ACI demonstrates that O mapped on the HBA,
NH mapped on HBD along with 1H-indole and furan mapped
on RA features forming interaction with amino acid residues.
Thus, the study indicates that His 802, Asp934, His802, Leu943,
Arg681, Phe812 were the key amino acids residues in the active
site involved in hydrogen bond interactions of HDAC4 with
selected molecules (SEI and ACI) which aligns with recent
studies on HDACi binding pattern (Ragno et al., 2006). Our
pharmacophore model ADDRR.20 was also in alignment with
the previous developed models toward histone de-acetylases
(HDAC’s) with known hydroxamic acids and cyclic peptides
having four pharmacophore features i.e., one hydrogen bond
acceptor, one hydrophobic group, and two aromatic rings
(Vyas et al., 2016) and also with known hydroxamic acids,
benzamides, and biphenyl derivatives on HDAC8 (Vadivelan
et al., 2008) having three pharmacophore features i.e., hydrogen
bond acceptors, hydrogen bond donors, and hydrophobic
aromatic ring. Thus, our developed pharmacophore model with
known hydroxamide derivatives toward HDAC4 having five
pharmacophore features i.e., one hydrogen acceptor (HBA),
two hydrogen donor (HBD), and two aromatic rings (RA)
correlates with the previous studies (Thangapandian et al.,
2010a). The pharmacophore model ADDRR.20 comprises of
features for inhibitor-protein interaction, crucial for its binding
and biological activity which is evident through its binding
mode and pharmacophore overlay of the selected molecules
(SEI and ACI), validating the significance of its features and
the model. Further, to validate the discriminatory ability of the
ADDRR.20 model, we retrieved 82,000 decoy molecules from
chemical databases. ADDRR.20 model was able to find 100%
of active compounds in the hit list. We calculated EF for the
generated models to estimate the contribution of the active
molecules ranking. For the hypothesis ADDRR.20, EF-value was
13.012 indicating the superiority of the pharmacophore model
(Thangapandian et al., 2010b) ranking over random distribution
(Table 3A).

We also analyzed ADME properties of SEI and ACI through
Qik prop, we have mainly focused on CNS, QPlogBB, QPlogkp,
QPlogPo/w, and others (Table S3). If the molecules demonstrated
the value as 0,−3.0 to 1.2,−1.7 to 1.6,−2 to 6.5, then it represents
that the molecules have good central nervous system activity,
blood-brain partition coefficient, skin permeability factor and
predicted octanol/water partition indicating hydrophobic nature
of the chemical compounds. Lipinski rule of five suggested
that a chemical compounds could be an orally active drug in

humans. The rule states that the most “drug-like” compounds
should have the value of clogP ≤ 5, molecular weight ≤

500, and number of hydrogen bond acceptor ≤ 10 and
donors ≤ 5. The molecules SEI and ACI were found to
be satisfactory in all the parameters, when evaluated on the
grounds of Lipinski rule-of-five and Jorgensen rule-of-three
violation.

CONCLUSION

HDAC inhibitors comprising of hydroxamic moiety have been
validated to be a promising novel targets for the treatment of
solid tumors and hematological cancers but off-late their role
has also been established toward polyglutamine disorders such
as Huntington’s. Thus, our study is guided with the ongoing
effort toward the discovery and selection of the Hydroxamic
based HDACi against ataxia. The purpose of this study was
to utilize the generated five point pharmacophore model for
identification and selection of the lead molecules from chemical
databases as potential HDAC4 inhibitors. Thus, on the basis of
3D-QSAR, pharmacophoremodeling, virtual screening, docking,
and MD simulation study the molecules SEI and ACI were
selected as novel leads for effective HDAC4 inhibition. Further,
SEI can be examined as an anti-ataxia agent as it shows high
binding affinity and stable dynamics, high free energy binding
and has been found to be less toxic compared to ACI. One of
the major limitation of the study is the experimental validation
of the selected leads i.e., SEI and ACI, which we strongly believe
can be achieved as the study provided valuable insights for
further investigation through fluorescence spectroscopy/HDAC
screening kit.
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