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Abstract

Phylogenetic trees inferred from sequence data often have branch lengths measured in the expected number of sub-
stitutions and therefore, do not have divergence times estimated. These trees give an incomplete view of evolutionary
histories since many applications of phylogenies require time trees. Many methods have been developed to convert the
inferred branch lengths from substitution unit to time unit using calibration points, but none is universally accepted as
they are challenged in both scalability and accuracy under complex models. Here, we introduce a new method that
formulates dating as a nonconvex optimization problem where the variance of log-transformed rate multipliers is
minimized across the tree. On simulated and real data, we show that our method, wLogDate, is often more accurate
than alternatives and is more robust to various model assumptions.
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Introduction

Phylogenetic inference from sequence data does not reveal
divergence time (i.e., exact timing of evolutionary events)
unless paired with external timing information. Under stan-
dard models of sequence evolution, the evolutionary pro-
cesses, including sequence divergence, are fully determined
by the product of the absolute time and mutation rates in a
nonidentifiable form. Thus, these models measure branch
lengths in the unit of expected numbers of mutations per
site (since standard models like GTR [Tavar�e 1986] only allow
substitutions, focusing on these models, we use substitutions
and mutations interchangeably throughout this paper).
Nevertheless, knowing divergence times is crucial for under-
standing evolutionary processes (Hillis et al. 1996; Forest
2009) and is a fundamental need in many clinical applications
of phylogenetics and phylodynamics (Volz et al. 2013). A
commonly used approach first infers a phylogeny with branch
lengths in the unit of substitution per site and then dates the
phylogeny by translating branch lengths from substitution
unit to time unit; coestimation of topology and dates is
also possible (Drummond et al. 2006) though its merits
have been debated (Wertheim et al. 2010).

The fundamental challenge in dating is to find a way to
factorize the number of substitutions into the product of the
evolutionary rate and time. A common mechanism allowing
this translation is to impose soft or hard constraints on the
timing of some nodes of the tree, leaving the divergence times
of the remaining nodes to be inferred based on the con-
strained nodes. Timing information is often in one of two
forms: calibration points obtained from the geological record
(Kodandaramaiah 2011) and imposed on either internal
nodes or tips that represent fossils (see Donoghue and

Yang 2016), or tip sampling times for fast-evolving viruses
and bacteria. The constraints still leave us with a need to
extrapolate from observed times for a few nodes to the
remaining nodes, a challenging task that requires a mathe-
matical approach. Obtaining accurate timing information
and formulating the right method of extrapolation are both
challenging (see Rutschmann 2006).

Many computational methods for dating phylogenies are
available (see Rutschmann 2006; Kumar and Hedges 2016),
and a main point of differentiation between these methods is
the clock model they assume (Sanderson 1998). Some meth-
ods rely on a strict molecular clock (Zuckerkandl 1962) where
rates are effectively assumed to be constant (Langley and
Fitch 1974; Shankarappa et al. 1999). However, empirical ev-
idence has now made it clear that rates can vary substantially,
and ignoring these changes can lead to incorrect dating
(Bromham and Penny 2003; Kumar 2005). Consequently,
there have been many attempts to relax the molecular clock
and allow variations in rates. A main challenge in relaxing the
clock is the need for a model of rates, and it is not clear what
model should be preferred. As a result, many methods for
dating using relaxed molecular clocks have been developed.
Some of these methods allow rates to be drawn indepen-
dently from a stationary distribution (Drummond et al. 2006;
Akerborg et al. 2008; Volz and Frost 2017) whereas others
model the evolution of rates with time (Huelsenbeck et al.
2000) or allow correlated rates across branches (Thorne et al.
1998; Kishino et al. 2001; Sanderson 2002; Lepage et al. 2007;
Drummond and Suchard 2010; Snir et al. 2012; Tamura et al.
2012). Despite these developments, strict molecular clocks
continue to be used, especially in the context of intraspecific
evolution where there is an expectation of relatively uniform
rates (Brown and Yang 2011).
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Another distinction between methods is the use of explicit
models (Sanderson 1997). Many dating methods use a para-
metric statistical model and formulate dating as estimating
parameters in a maximum likelihood (ML) or Bayesian infer-
ence framework (Langley and Fitch 1974; Drummond et al.
2006; To et al. 2016; Volz and Frost 2017). Another family of
methods (Sanderson 2002; Tamura et al. 2012) formulate
dating as optimization problems, including distance-based
optimization (Xia and Yang 2011; Xia 2018), that avoid com-
puting likelihood under an explicit statistical model. When
the assumed parametric model is close to the reality, we
expect parametric methods to perform well. However, these
methods can be sensitive to model deviations, a problem that
may be sidestepped by methods that avoid using specific
models.

In this paper, we introduce (w)LogDate, a new method of
dating rooted phylogenies that allows variations in rates but
without modeling rates using specific distributions. We define
mutation rates necessary to compute time unit branch
lengths as the product of a single global rate and a set of
rate multipliers, one per branch. We seek to find the overall
rate and all rate multipliers such that the log-transformed rate
multipliers have the minimum variance. This formulation
gives us a constrained optimization problem, which although
is not convex, can be solved in a scalable fashion using the
standard approaches such as sequential least squares pro-
graming. While formulation of dating as an optimization
problem is not new (Langley and Fitch 1974; To et al.
2016), here we introduce log-transformation of the rate mul-
tipliers, which as we will show, results in more accurate dates.
Our observation is in line with a recent change to RelTime
(Tamura et al. 2018) where the switch from arithmetic means
to geometric means (between rates of sister lineages) has
improved accuracy. In extensive simulation studies and three
biological data sets, we show that a weighted version of
LogDate, namely wLogDate, has higher accuracy in inferring
node ages compared with alternative methods, including
some that rely on time-consuming Bayesian inference.
While wLogDate can date trees using both sampling times
for leaves (e.g., in viral evolution) or estimated time of ances-
tors, most of our results are focused on cases with sampling
times at the tips of the tree.

Materials and Methods

Definitions and Notations
For a rooted binary tree T with n leaves, we give each node a
unique index in ½0; . . . ; 2n� 2�. By convention, the root is
always assigned 0, the other internal nodes are arbitrarily
assigned indices in the range ½1; . . . ; n� 2�, and the leaves
are arbitrarily assigned indices in the range
½n� 1; . . . ; 2n� 2�. In the rest of this paper, we will refer
to any node by its index. If a node i is not the root node, we let
par(i) denote the parent of i and if i is not a leaf, we let clðiÞ
and crðiÞ denote the left and right children of i, respectively.
We refer to the edge connecting par(i) and i as ei.

We can measure each edge ei of T in either time unit or
substitution unit. Let ti denote the divergence time of node i,

that is the time when species i diverged into clðiÞ and crðiÞ.
Then for any node i other than the root, si ¼ ti � tparðiÞ is the
length of the edge ei in time unit. We measure divergence
time of a node with respect to a fixed reference point in the
past (i.e., time increases forward). Thus, we enforce ti > tparðiÞ
for all i. Let li be the substitution rate (per sequence site per
time unit) on branch ei; then, the expected number of sub-
stitutions per sequence site is bi ¼ lisi. Let s ¼ ½s1; . . . ;
s2n�2� and b ¼ ½b1; . . . ; b2n�2�.

From sequence data, b can be inferred using standard
methods such as maximum parsimony (Fitch 1971), mini-
mum evolution (Rzhetsky and Nei 1993), neighbor-joining
(Saitou and Nei 1987; Gascuel 1997), and ML (Felsenstein
1981; Guindon et al. 2010; Nguyen et al. 2015). Note that
inferred trees need to be rooted subsequently using an out-
group (that can be removed) or automatic methods such as
midpoint or minimum variance rooting (Mai et al. 2017). We

let bbi denote the estimate of bi by an inference method and

let bb ¼ ½bb1; . . . ;bb2n�1�.
In this paper, we are interested in computing s from bb. The

computation of s from bb is complicated by two factors: 1) the
possibility of change among rates, and 2) deviations of the
inferred edge length bbi from the true value bi. To better de-
scribe the mathematical formulation of the optimization
problem, we first do the following change of variables.
Assuming the mutation rates on the branches are distributed
around a global rate l, we define �i ¼ lsi=bbi. Let
x ¼ ½�1; . . . ; �2n�2; l�; our goal of finding s is identical to
finding x.

Dating as a Constrained Optimization Problem
We formulate dating as an optimization problem on 2n� 1
variables x ¼ ½�1; . . . ; �2n�2;l�, subject to the linear con-
straints defined by calibration points and/or sampling times.
Many existing methods, including LF (Langley and Fitch 1974)
and LSD (To et al. 2016), can be described in this framework,
with the choice of the objective function distinguishing them
from each other. We start by describing the setup of the
constraints enforced by a set of calibration points/sampling
times, and show that they can all be written as linear equa-
tions on x. We then give the formulation of both LF and LSD
in this framework and use their formulation to motivate our
own new approach. Finally, we describe strategies to solve the
wLogDate optimization problem.

Linear Constraints � from Sampling Times
For any pair of nodes (i, j) (where each of i and j can either be a
leaf or an internal node) with enforced divergence times (ti, tj),
the following constraint wði; jÞ must be satisfied

wði; jÞ : lðtj � tiÞ ¼
X

k2Pðm;jÞ
�k
bbk �

X
k2Pði;mÞ

�k
bbk; (1)

where m is the LCA of i and j and P(m, j) and P(i, m) are the
paths connecting m to j and i to m, respectively. Thus, given k
time points, kðk� 1Þ=2 constraints must hold. However,
only k � 1 of these constraints imply all others, as we show
below.
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Let t0 be the unknown divergence time at the root of the
tree. For k calibration points t1; . . . ; tk, we can setup k con-
straints of the form:

Ci : lðti � t0Þ ¼
X

k2Pð0;iÞ
�k
bbk; (2)

where node 0 is the root and P(0, i) is the path from the
root to node i. For any pair (i, j), the linear constraint
given in equation (1) can be derived by subtracting Ci

from Cj side by side. Also, we can remove t0 from the set
of constraints by subtracting C1 from all other con-
straints C2; . . . ; Ck. This gives us the k � 1 linear con-
straints on x, which we denote as W. We can build W
using supplementary algorithm 1, Supplementary
Material online.

Optimization Criteria
Since �i ¼ lsi=bbi, the distribution of �i is influenced by both
the distribution of the rates (li) and the distribution of bbi

around bi. In traditional strict-clock models (Zuckerkandl
1962), a constant rate is assumed throughout the tree
(8ili ¼ l). Under this model, the distribution of �i is deter-
mined by deviations of bbi from bi.

Langley and Fitch (1974) (LF) modeled the number of ob-
served substitutions per sequence site on a branch i by a
Poisson distribution with mean k ¼ lsi and treated sbbi as
if they were the total number of observed substitutions; as
such, they assume sbbi � PoissonðslsiÞ, where s is the se-
quence length. Therefore, by changing variable, we can write
the log-likelihood function as:

X2n�2

i¼1

�
sbbi logðsbbiÞ � logððsbbiÞ!Þ

�
þ
X2n�2

i¼1

sbbiðlog �i � �iÞ:

Given s andbbi, LF finds x that maximizes the log-likelihood
function and subject to the constraints W. As such,

x�P ¼ argminx

X2n�2

i¼1

bbið�i � log �iÞ subject to W: (3)

To et al. (2016) assume bbi follows a Gaussian model: bbi

� Gaussianðlsi; r2
i Þ and approximate the variance by bbi=s

(the method includes smoothing strategies omitted here).
Then, the negative log-likelihood function can be written as:

X2n�2

i¼1

ðbbi � lsiÞ2

r2
i

�
X2n�2

i¼1

sbbi

ðbbi � lsiÞ2 ¼
X2n�2

i¼1

sbbið1� �iÞ2:

Thus, the ML estimate can be formulated as:

x�G ¼ argminx

X2n�2

i¼1

bbið1� �iÞ2 subject toW: (4)

Both LF and LSD have convex formulations. Langley and
Fitch (1974) proved that their negative log-likelihood function
is convex and thus the local minimum is also the global

minimum. Our constraint-based formulation of LF also can
be easily proved convex by showing its Hessian matrix is
positive definite. To et al. (2016) pointed out their objective
function is a weighted least squares. Using our formulation,
we also see that equation (4) together with the calibration
constraints form a standard convex quadratic optimization
problem which has a unique analytical solution.

LogDate Method
Motivation
LF only seeks to model the errors in bb and ignore true rate
heterogeneity. Strict-clock assumption is now believed to be
unrealistic in many settings (Schwartz and Maresca 2006;
Pulqu�erio and Nichols 2007; Ho 2014), motivating relaxed
clocks, typically by assuming that lis are drawn i.i.d. from
some distribution (Drummond et al. 2006; Akerborg et al.
2008; Volz and Frost 2017). Most methods rely on presumed
parametric distributions (typically, LogNormal, Exponential,
or Gamma) and estimate parameters using ML (Volz and
Frost 2017), MAP (Akerborg et al. 2008), or MCMC
(Drummond et al. 2006; Drummond and Rambaut 2007).
The LSD method, which like LF directly models errors in bb,
is additionally justified under a Gaussian clock model. Choices
of specific distributions in these methods are not motivated
by the knowledge that real data follow them exactly (for
example, the Normal distribution has to be misspecified as
mutation rates cannot be negative).

Our goal is to avoid explicit parameter inference under a
model of rate multipliers. Instead, we follow the assumption
shared by existing methods like LSD and LF: we assume that
given two solutions of x both satisfying the calibration con-
straints, the solution with less variability in �i values is pref-
erable. Thus, we prefer solutions that minimize deviations
from a strict clock while allowing deviations. A natural way
to minimize deviations from the clock is to minimize the
variance of si=bbi. This can be achieved by finding l and all
�i such that �i is centered at 1 and

P2n�2
i¼1 ð�i � 1Þ2 is min-

imized. Interestingly, the ML function used by LSD (eq. 4) is a
weighted version of this approach.

The minimum variance principle results in a fundamental
asymmetry: multiplying or dividing the rate of a branch by the
same factor are penalized differently (fig 1a). For example, the
penalty for �i ¼ 4 is more than ten times larger than
�i ¼ 1=4. The LF model is more symmetrical than LSD but
remains asymmetrical (fig 1a). This asymmetry results from
the asymmetric distribution of the Poisson distribution
around its mean, especially for small mean, in log scale
(fig 1b). Because of this asymmetry, methods like LSD and
LF judge a very small bbi=bi to be within the realm of possible
outcomes, and thus penalize �i < 1 multipliers less heavily
than �i > 1.

Our method is based on a principle, which we call the
symmetry of ratios: the penalty for multiplying a branch by
a factor of � should be no different than dividing the branch
by �. Note that this assertion can only be applicable to true
variations of the mutation rate (i.e., ignoring branch length
estimation error). We further motivate this principle with
more probabilistic arguments below, but here we make the
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following case. If one considers the distribution of rate multi-
pliers for various branches, absent of an explicit model, it is
reasonable to assume that compared with an overall rate,

branches rates are as likely to increase by a factor of � as
they are to decrease by a factor of �. When this statement is
true, we shall prefer a method that penalizes � and 1=�

FIG. 1. (a) The penalty associated with multiplying a single edge i with multiplier �i in LSD, LF, and LogDate approaches, as shown in equations (3–
5). To allow comparison, we normalize the penalty to be zero at � ¼ 1 and to be 1 at � ¼ 4. (b) The CI of the ratio between estimated and true
branch length using the Poisson model. For this exposition, we assume that the estimated branch length equals the number of substitutions
occurring on the branch and follows a Poisson distribution (i.e., JC69 model), divided by sequence length. With these assumptions, the CI for
estimate length bbi is between 1=2v2

2sbi
and 1=2v2

2sbiþ2; we draw the CI for a=2 ¼ 0:05 and a=2 ¼ 0:2 to get 0.2–0.8 and 0.05–0.095 intervals for
0:0001 � bi � 0:4. (c) and (e): Density and histograms of penalty terms (without square) used by LSD (lsi=bbi � 1) and LogDate (log lsi=bbi)
under different clock models. (c) Fixing lsi ¼ 0:1, we draw 500,000 rate multipliers (ri) from LogNormal, Gamma, or Exponential distributions with
mean 1 and variance 0.16 for LogNormal and Gamma. For strict clock, ri¼ 1. We then draw estimated branch length for each replicate i from the
Normal distribution with mean bi ¼ rilsi and variance bi=s for s¼ 200. (e) The branch lengths are estimated from the sequences using PhyML
from simulated sequences of To et al. (2016), as explained in the text. Parameters of rate multiplier distributions match part (c). We omit extremely
short branches (<0.001) for better visualization. (d) and (f) The penalty of LSD and LogDate versus the empirical log-likelihood of estimated length
for the models described in (c) and (e), respectively. To compute the empirical likelihood, we divide estimated branch lengths into small bins and
the empirical likelihood of each bin is estimated as the frequency of the data assigned to it. Ideally, increasing likelihood should monotonically
decrease the penalty and two points with similar likelihood should have similar penalties. See supplementary figure S2, Supplementary Material
online for extended results.
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identically. To ensure the symmetry of ratios, we propose
taking the logarithm of the multipliers �i before minimizing
their variance. Minimizing the variance of the rates in log-
scale is the essence of our method. It achieves the symmetry,
and, as we show below, a better correspondence between
penalty and data likelihood.

Log-transformation has long been used to reduce data
skewness before applying linear regression (Stynes et al.
1986; Keene 1995; Xiao et al. 2011; Clifford et al. 2013). In
molecular dating, it can be argued that log-transformation is
implicitly applied in the new version of RelTime (Tamura
et al. 2018) where the geometric means between sister line-
ages replaced the arithmetic means in its predecessor. The
improvement in the accuracy of RelTime encourages a wider
use of log-transformation in molecular dating. Note that log-
transforming the rate multipliers before minimizing their least
squares penalty is identical to applying linear least squares
after log-transformation of both time and the number of
substitutions. In other fields, log-transformation has been
used to make the least-squares method more robust to highly
skewed distributions (Aban and Meerschaert 2004; Meaney
et al. 2007).

LogDate Optimization Function
We formulate the LogDate problem as follows. Given bb and
the set of calibration constraints described earlier, we seek to
find

x� ¼ argminx

X2n�2

i¼1

log 2ð�iÞ subject toW: (5)

This objective function satisfies the symmetry of ratio
property (fig. 1a). Since �i values are multipliers of rates
around l, if we assume l is the mean rate, the LogDate
problem is equivalent to minimizing the variance of the
log-transformed rate multipliers (around their mean 1). The
objective function only depends on �i; however, note that l is
still included in the constraints and therefore is part of the
optimization problem. This setting reduces the complexity of
the objective function and speeds up the numerical search for
the optimal solution. Since the values of �i close to 1 are
preferred in equation (5), the optimal solution would push
l towards the mean rate.

Justification as a Relaxed-Clock Model. After log-
transformation, LogDate, similar to LSD, constructs the ob-
jective function using the least squares principle (for ease of
exposition, here we discuss ordinary least-squares without
weights). We can rewrite the objective function of LSD as

P
i

ðlsi=bbi � 1Þ2 and that of LogDate as
P

iðlogðlsi=bbiÞÞ2 and
see that both seek to find a global rate l and the time si for
each branch to minimize the total deviations of the estimated
branches from lsi. This observation may motivate viewing
both LSD and LogDate as strict-clock methods. However, the
following result justifies viewing LogDate as a relaxed clock
method.

We can prove that if the mutation rates li are drawn i.i.d.
from a LogNormal distribution with any parameters with

mode l and the branches are estimated without error (i.e.,bbi ¼ bi for all i), then �i follows a LogNormal distribution
with mode 1 and the LogDate optimization problem is equiv-
alent to finding � values that have maximum joint probabil-
ity, subject to the constraints. The proof is given in
supplementary claim 1, Supplementary Material online.

Justification for Symmetry of Ratios. Having shown that
LogDate has a justification under the LogNormal distri-
bution, we now compare LogDate and LSD objective
functions under a wider range of clock models. Recall
that the objective functions of LSD and LogDate
are the sum-of-squares of their penalty terms, which
are lsi=bbi � 1 for LSD and logðlsi=bbiÞ for LogDate.

Following the likelihood principle, an ideal objective func-
tion must assign equal penalties to data values that are equally
likely to occur. Therefore, for an objective function that is
written as sum-of-squares of the penalty terms, ideally the
probability distribution of its penalty terms (before square)
under the model that generates the data should be symmetric
around 0 (because of the square). The true distribution of the
penalty terms is a function of both clock rate variations and
branch length estimation error. Although no objective func-
tion can be ideal for all compound models of the rates and the
estimation error, a robust objective function should remain
close to symmetric and maintain a low skewness under a wide
range of models. We now present several theoretical and
empirical results comparing LogDate and LSD in terms of
the skewness of the distributions of their penalty terms.

First, consider a relaxed clock model of the rates and
assume no branch estimation error (i.e., bbi ¼ lisi). If li

follows a LogNormal distribution parameterized by h and
r then it is easy to see that lsi=bbi ¼ l=li (penalty of
LSD) also follow a LogNormal distribution and the skew-
ness depends on r. In contrast, logðlsi=bbiÞ (the penalty
of LogDate) follows a Normal distribution, which has
skewness 0, and for which least square estimation is the
ML estimator. Thus, as stated before, log-transforming is
the ML solution if rate multipliers are log-normally
distributed.

Now assume li follows a Gamma distribution with mean
l. Then lsi=bbi ¼ l=li follows an Inverse Gamma distribu-
tion whereas its log-transformation follows a Log-Gamma
distribution. We can analytically compute the skewness of
the penalty terms of LSD and LogDate and compare them
(see supplementary materials for the equations). As shown in
supplementary fig. S1, Supplementary Material online, the
skewness of LSD is much higher than that of LogDate, espe-
cially for higher variance of the gamma rates. Higher skewness
of penalty terms violates the likelihood principle mentioned
before. Thus, for the two models where we could compute
analytical formulas for skewness, we have grounds to prefer
LogDate.

Next, we consider the compound impacts of branch
length estimation error and rate variation, and we study
the question in two ways. One approach is to measure the
combined effect of error and true variation by simulating
sequence data and measuring bbi for known bi empirically;
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here, we use simulations by To et al. (2016) with 1,000 sites
and PhyML-inferred trees (details are provided in the
Experiments section). The other approach is modeling the
compound effect. Although it is hard to know generally how
estimated branch length is distributed around its expected
value, here, we can follow To et al. (2016) and assumebbi � Nðbi; bi=sÞ. The other challenge is that the compound
distribution of estimation error and rate multipliers is hard to
compute analytically. However, we can easily generate a very
large number of samples from compound distributions and
analyze the empirical distribution to approximate the true
distribution.

Inspecting the empirical density of the penalty terms of
LSD and LogDate across different clock models result in con-
sistent patterns using both approaches, modeling the com-
pound distribution (fig. 1c) and using simulated sequence
data (fig. 1e). Across three models of rates, Exponential,
LogNormal, and Gamma, the distributions of the LogDate
penalty terms are always more symmetric than that of LSD.
Results are similar for other rate models such as Log-Uniform
and are further amplified when the variance is increased (sup-
plementary fig. S2a, Supplementary Material online).

To further explore that relationship between the likelihood
and the penalty assigned by LogDate and LSD, we plot the
penalty (with square terms) versus the empirical log likeli-
hood of the rate multipliers (fig. 1d and f and supplementary
fig. S2b, Supplementary Material online). Ideally, increasing
likelihood should monotonically decrease penalty, and points
with similar likelihood should have similar penalties. In both
modeled and simulated branch lengths and across models,
LSD assigns two sets of widely different penalties (one for
increased and one for decreased rates) to data with similar
likelihood. LogDate, while far from perfect, is much closer to
the ideal mapping between likelihood and penalty. Also, for
LogNormal with median rate multipliers set to 1, we empir-
ically observe a perfectly monotonic relationship between the
penalty and likelihood (supplementary fig. S2b,
Supplementary Material online), as theory suggested.

wLogDate Optimization Function
The simple LogDate formulation, however, has a limitation:
by allowing rates to vary freely in a multiplicative way, it fails
to deal with the varied levels of relative branch error; that is,
the ratio of the estimated branch length to the true branch
length (bbi=bi). As bbi is estimated from the sequences, the
error of bbi is directly related to the variations in the number
of substitutions occurred along the branch bi. Let us assume
sequences follow the Jukes and Cantor (1969) model, and let
Ni be the total number of substitutions occurred along
branch i on a sequence with length s. Under Juke-Cantor
model, we have Ni � PoissonðslsiÞ and therefore,
varðNiÞ ¼ slsi. Therefore, the variance of the expected num-
ber of substitutions around the true branch length is
varðNi=sbiÞ ¼ slsi=s2b2

i ¼ 1=bis. As figure 1b shows, when
bi is small, Ni=s can easily vary by several orders of magnitude
around bi. Furthermore, the distribution is not symmetric:

drawing values several factors smaller than the mean is
more likely than drawing values above the mean by the
same factor. These analyses predict that the distribution ofbbi

=bi depends strongly on bi—with smaller bi gives higher var-
iance—and is not symmetric.

The variances of the relative error bbi=bi is difficult to com-
pute analytically due to the involvement of the sequence
substitution model and the method to estimate bbi, which
are both unknown. Therefore, we instead use empirical anal-
yses of the estimated branch lengths by PhyML to demon-
strate our arguments. Consistent with our prediction,
supplementary figure S7a and c, Supplementary Material on-
line illustrate that the relative error bbi=bi varies more in small
branches and the distribution is not symmetric. These prop-
erties of the branch length estimates are not modeled in our
LogDate formulation and we seek to incorporate them in a
refined version of LogDate which will be described below.

Since the true branch length bi is unknown, a common

practice is to use the estimatedbbi in place of bi to estimate its

variance as 1=bbis. This explains why both LF and LSD objec-

tive functions (eqs. 3 and 4) have a weight of bbi for each term
of �i. Following the same strategy, we propose weighting each
log 2ð�iÞ term in a way that reduces the contribution of short
branches to the total penalty, and thus allows more devia-
tions in the log space if the branch is small (and is thus subject
to higher error). Since we log-transform �i and pursue a
model-free approach, explicitly computing the weights to
cancel out the variations of relative error among the branches
is challenging. However, since the weights should reflect the

variance of bbi=bi (logarithmic scale), they should monotoni-

cally increase with bbi (fig. 1b) to allow more variance for the
relative errors in short branches than in long branches. We

use

ffiffiffiffibbi

q
as weights, a selection driven by simplicity and em-

pirical performance (shown in the Results section).
The shortest branches require even more care. When the

branch is very short, for a limited-size alignment, the evolu-
tion produces zero mutations with high probability. For these
no-event branches, tree estimation tools report arbitrary
small lengths (see supplementary fig. S7, Supplementary
Material online), rendering bbi values meaningless for very
small branches. To deal with this challenge, the r8s’s imple-
mentation of LF Sanderson (2003) collapses all branches with
lengthbbi < 1=s. To et al. (2016) proposed adding a smooth-
ing constant c=s to each bbi to estimate the variance of bbi,
where c is a parameter that the user can tune. Following a
similar strategy, we propose adding a small constant ~b to eachbbi. We choose ~b to be the maximum branch length that
produces no substitutions with probability at least 1� a
for a 2 ½0; 1�. Recall that N is the total number of actual
substitutions on a branch. Under the Jukes and Cantor
(1969) model, it is easy to show that
argmax~b PrðN ¼ 0jb ¼ ~bÞ � 1� a ¼ � 1

s logð1� aÞ. We
choose this value as ~b and set a ¼ 0:01 by default. Thus,
we define the wLogDate as follows:
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x� ¼ argminx

X2n�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
~b þ bbi

q
log 2ð�iÞ

subject to W:

(6)

Solving the Optimization Problem
Both LogDate and wLogDate problems (eqs. 5 and 6) are
nonconvex, and hence solving them is nontrivial. The prob-
lem is convex if 0 � �i � e. For small clock deviation and
small estimation error in bbi, the �i values should be small so
that the problem becomes convex with one local minimum.
However, as �i � e convexity is not guaranteed, we have to
rely on gradient-based numerical methods to search for mul-
tiple local minima and select the best solution we can find. To
search for local minima, we use the SciPy solver with trust-
constr Lalee et al. (1998) method. To help the solver work
efficiently, we incorporate three techniques that we next
describe.

Computing Jacobian and Hessian matrices analytically helps
speedup the search. By taking the partial derivative of each �i,
we can compute the Jacobian, J, of equation (6). Also, since
equation (6) is separable, its Hessian H is a ð2n� 2Þ 	 ð2n
�2Þ diagonal matrix. Simple derivations give us:

J¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
~bþbb1

q
log�1

�1
;...;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~bþbb2n�2

q
log�2n�2

�2n�2

� �T

and Hii¼2

ffiffiffiffiffiffiffiffiffiffiffi
~bþbbi

q
1�log�i

�2
i

:

Sparse matrix representation further saves space and com-
putational time. The Hessian matrix is diagonal, allowing us to
store only the diagonal elements. In addition, the constraint
matrix defined by W is highly sparse. If all sampling times are
given at the leaves, the number of nonzero elements in our
ðn� 1Þ 	 ð2n� 1Þ matrix is Oðn log nÞ (supplementary
claim 3, Supplementary Material online). If the tree is either
caterpillar or balanced, the number of nonzeroes reduced to
HðnÞ. Thus, we use sparse matrix representation imple-
mented in the SciPy package. This significantly reduces the
running time of LogDate.

Starting from multiple feasible initial points is necessary
given that our optimization problem is nonconvex.
Providing initial points that are feasible (i.e., satisfied the cal-
ibration constraints) helps the SciPy solver work efficiently.
We designed a heuristic strategy to find multiple initial points
given sampling times t1; . . . ; tn of all the leaves (as is com-
mon in phylodynamics).

We first describe the process to get a single initial point.
We compute the root age t0 and l using root-to-tip regres-
sion (RTT) (Shankarappa et al. 1999). Next, we scale all
branches of T to conform with W as follow: let m ¼ argmini

ti (breaking ties arbitrarily). Let d(r, i) denote the distance
from the root r to node i and P(r, m) denote the path
from r to m. For each node i in P(r, m), we set
si ¼ bbiðtm � t0Þ=dðr;mÞ. Then going upward from m to r
following P(m, r), for each edge (i, j) we compute tj ¼ ti � si

and recursively apply the process on the clade i. At the root,
we set tm to the second oldest (second minimum) sampling
time and repeat the process on a new path until all leaves are
processed. Since RTT gives us l, to find � we simply set
�i ¼ lsi=bbi.

To find multiple initial points, we repeatedly apply RTT
to a set of randomly selected clades of T and scale each
clade using the aforementioned strategy. Specifically, we
randomly select a set S of some internal nodes in the tree
and add the root to S. Then, by a postorder traversal, we
visit each node u 2 S and date the clade under u using the
scaling strategy described above. We then remove the entire
clade u from the tree but keep the node u as a leaf (note
that the age of u is already computed) and repeat the
process for the next node in S. The root will be the last
node to be visited. After visiting the root, we have all the si

for all i. After having all the branches in time unit, we find x
to minimize either equation (5) or (6), depending on
whether LogDate or wLogDate is chosen. In a tree of n
leaves, we have 2ðn�1Þ � 1 ways to select the initial non-
empty set S, giving us enough room for randomization.

Computing Confidence Interval
With the ability of wLogDate to work on any combination of
sampling times/calibration points on both leaves and internal
nodes (as long as at least two time points are provided), we
design a method to estimate the CIs for the estimates of
wLogDate. We subsample the sampling times/calibration
points given to us repeatedly to create N replicate data sets
(where N is 100 by default, but can be adjusted). Note that
our subsampling is not a bootstrapping procedure as node
sampling times cannot be resampled with replacement. We
then compute the time tree for each replicate to obtain N
different estimates for the divergence time of each node, from
which we can compute their CIs (95% as default). This sam-
pling would work best when we have a fairly large number of
calibration points, which is the case in phylodynamic settings
where all (or nearly all) sampling times for the leaves are given,
or in large phylogenies where abundant calibration points can
be obtained from fossils. Although we refer to the resulting
intervals as CIs, it is important to recognize that the resam-
pling procedure is not strictly justified via bootstrap theory
because subsampling is necessarily without replacement and
sampled nodes are not independent of each other.

Experiments on Simulated Data
Phylodynamics Setting
To et al. (2016) simulated a data set of HIV env gene. Their
time trees were generated based on a birth–death model
with periodic sampling times. There are four tree models,
namely D995_11_10 (M1), D995_3_25 (M2), D750_11_10
(M3), and D750_3_25 (M4), each of which has 100 replicates
for a total of 400 different tree topologies. M1 and M2 sim-
ulate intra-host HIV evolution and are ladder-like whereas M3
and M4 simulate inter-host evolution and are balanced. Also,
M4 has much higher root-to-tip distance (mean: 57) com-
pared with M1–M3 (22, 33, and 29). Starting from conditions
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simulated by To et al. (2016), we use the provided time tree to
simulate the clock deviations. Using an uncorrelated model of
the rates, we draw each rate from one of three different
distributions, each of which is centered at the value l
¼ 0:006 as in To et al. (2016). Thus, we set each li to xil
where xi is drawn from one of three distributions: LogNormal
(mean : 1.0, std: 0.4), Gamma (a ¼ b ¼ 6:05), and
Exponential (k¼ 1). Sequences of length 1,000 were simu-
lated for each of the model conditions using SeqGen
Rambaut and Grass (1997) under the same settings as To
et al. (2016).

Calibrations on Autocorrelated Rate Model. We used the
software NELSI and the same protocol as in (Ho et al. 2015)
to simulate a data set where the rates are autocorrelated. The
data set has 10 replicates each containing 50 taxa. The time
trees were generated under birth–death model and the rate
heterogeneity through time is modeled by the autocorrela-
tion model (Kishino et al. 2001) with the initial rate set to 0.01
and the autocorrelated parameter set to 0.3. DNA sequences
(1,000 bases) were generated under Jukes–Cantor model. We
used PhyML (Guindon et al. 2010) to estimate the branch
lengths in substitution unit from the simulated sequences
while keeping the true topology. These trees are the inputs
to wLogDate, RelTime, LF, and DAMBE (Xia 2018) to infer
time trees.

Real Biological Data
H1N1 2009 Pandemic
We reanalyze the H1N1 biological data provided by To et al.
(2016) which includes 892 H1N1pdm09 sequences collected
worldwide between March 13, 2009 and June 9, 2011. We
reuse the estimated PhyML (Guindon et al. 2010) trees, 100
bootstrap replicates, and all the results of the dating methods
other than wLogDate that are provided by To et al. (2016).

San Diego HIV
We study a data set of 926 HIV-1 subtype B pol sequences
obtained in San Diego between 1996 and 2018 as part of the
PIRC study. We use IQTree (Nguyen et al. 2015) to infer a tree
under the GTRþC model, root the tree on 22 outgroups,
then remove the outgroups. Because of the size, we could not
run BEAST.

West African Ebola Epidemic
We study the data set of Zaire Ebola virus from Africa, which
includes 1,610 near-full length genomes sampled between
March 17, 2014 and October 24, 2015. The data were collected
and analyzed by Dudas et al. (2017) using BEAST and rean-
alyzed by Volz and Frost (2017) using IQTree to estimate the
ML tree and treedater to infer node ages. We run LSD, LF, and
wLogDate on the IQTree from Volz and Frost (2017) and use
the BEAST trees from Dudas et al. (2017), which include 1,000
sampled trees (BEAST-1000) and the Maximum clade credi-
bility tree (BEAST-MCC). To root the IQTree, we search for
the rooting position that minimizes the triplet distance (Sand
et al. 2013) between the IQTree and the BEAST-MCC tree.

Methods Compared
For the phylodynamics data, we compared wLogDate with
three other methods: LSD (To et al. 2016), LF (Langley and
Fitch 1974), and BEAST (Drummond and Rambaut 2007). For
all methods, we fixed the true rooted tree topology and only
inferred branch lengths. For LSD, LF, and wLogDate, we used
phyML (Guindon et al. 2010) to estimate the branch lengths
in substitution units from sequence alignments and used
each of them to infer the time tree. LSD was run in the
same settings as the QPD* mode described in the original
paper (To et al. 2016). LF was run using the implementation
in r8s (Sanderson 2003). wLogDate was run with ten feasible
starting points. For the Bayesian method BEAST, we also fixed
the true rooted tree topology and only inferred node ages.
Following To et al. (2016), we ran BEAST using HKYþC8 and
coalescent with constant population size tree prior. We used
two clock models on the rate parameter: the strict-clock (i.e.,
fixed rate) model and the LogNormal model. For the strict-
clock prior, we set clock rate prior to a uniform distribution
between 0 and 1. For the LogNormal prior, we set the ucld.-
mean prior to a uniform distribution between 0 and 1, and
ucld.stdev prior to an exponential distribution with parame-
ter 1=3 (default). We always set the length of the MCMC
chain to 107 generations, burn-in to 10%, and sampling to
every 104 generations (identical to To et al. [2016]).

For the autocorrelated rate model, we compared
wLogDate with LF and RelTime (Tamura et al. 2018), which
is one of the state-of-the-art model-free dating methods. We
randomly chose subsets of the internal nodes (10% on aver-
age) as calibration points and created 20 tests for each of the
10 replicates (for a total of 200 tests). We also compared
wLogDate with DAMBE using this data set. Because
DAMBE can only be run in interactive mode where each
calibration point has to be manually placed onto the tree,
we could not run DAMBE on the 200 tests with hundreds of
calibration points in total. Therefore, we instead ran DAMBE
only once on each of the ten trees and infer a unit time tree
for each of them (i.e., calibrate the root to be at 1 unit time
backward) and compared the results to that of wLogDate.
DAMBE does not accept identical sequences so we removed
identical sequences from the simulated alignments and trees
before running DAMBE and ran wLogDate using these re-
duced trees to have a fair comparison.

Evaluation Criteria
On the simulated phylodynamics data set where the ground
truth is known, we compare the accuracy of the methods
using several metrics. We compute the RMSE of the true and
estimated vector of the divergence times (ss) and normalize it
by tree height. We also rank methods by RMSE rounded to
two decimal digits (to avoid different ranks when errors are
similar). In addition, we examine the inferred divergence
tMRCA and mutation rate. The comparison of methods
mostly focuses on point-estimates of these parameters and
the accuracy of the estimates (as opposed to their variance).
In one analysis, we also compare the CIs produced by
wLogDate and BEAST on one model condition (M3 with
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LogNormal rate distribution). Finally, we examine the corre-
lation between variance of the error in wLogDate and diver-
gence times and branch lengths.

On the simulated data with autocorrelated rate, we show
the distributions of the divergence times estimated by
wLogDate, LF, and RelTime and report the RMSE normalized
by tree height for each replicate. To compare with DAMBE in
inferring unit time trees, we report the average relative error
of the inferred to the true divergence times. After removing
identical sequences, there are 438 internal nodes in total
across the 10 tree replicates. For each internal nodes, we
compute the relative error of its divergence time inferred
by either DAMBE or wLogDate to its true divergence time
in the normalized true time tree, which is jbti � tij=ti where bti

and ti are the inferred and true divergence times of node i,
respectively. We report the average relative error per tree
replicate and the average of all 438 nodes for DAMBE and
wLogDate.

On real data, we show LTT plots (Nee et al. 1994), which
trace the number of lineages at any point in time and com-
pare tMRCA times to the values reported in the literature. We
also compare the runtime of wLogDate to all other methods
in all analyses.

Results

Simulated Data for Phylodynamics
We first evaluate the convergence of the ScipPy solver across
ten starting points (supplementary fig. S3a, Supplementary
Material online). LogDate and wLogDate converge to a stable

result after 50–200 iterations, depending on the model con-
dition. Convergence seems easier when rates are Gamma or
Lognormal and harder when the rates are Exponential. Next,
to control for the effect of the starting points on the accuracy
of our method, we compare the error of these starting points
with the wLogDate optimal point (supplementary fig. S3b,
Supplementary Material online). In all model conditions, the
optimal point shows dramatic improvement in accuracy
compared with the starting point. We then compare different
weighting strategies for LogDate (supplementary table S4,
Supplementary Material online). In all model conditions,

the weighting

ffiffiffiffiffiffiffiffiffiffiffiffibbi þ ~b

q
, is one of the two best, so it is chosen

as the default weighting for wLogDate. Moreover, wLogDate
is never worse than LogDate, and under exponential clock
models, appropriate weighting results in dramatic improve-
ments (supplementary table S4, Supplementary Material
online).

Next, we study the properties of wLogDate estimates in
relation to: 1) the age of the node (fig. 2a), 2) the length of the
true branch in time unit (fig. 2b), and 3) the error of the
branch lengths (in substitution unit) estimated by PhyML
(supplementary fig. S6, Supplementary Material online).
Overall, we do not observe a substantial change in the
mean estimation error of wLogDate as the node age and
the branch length change. The variance, however, can vary
with node ages (fig. 2a), especially in M3 and M4 model
conditions. Moreover, longer branches have a tendency to
have higher variance in absolute terms (fig. 2b). However,
note that the relative error (i.e., log-odds error) dramatically
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FIG. 2. Analyses of wLogDate on inferring branch lengths on simulated data. (a) Error normalized by tree height versus divergence time (i.e., the
time of the midpoint of each branch); both axes are normalized by the tree height. (b) Error versus branch length (in time unit); both axes are
normalized by the maximum branch length. For both (a) and (b), the x-axis is discretized into ten bins of equal size. We label the bins by their
median values, relative to either the tree height for (a) or the maximum branch length for (b). We also show the number of points in each bin in
parentheses. Note the small number of points in the final bins in panel (b). For each bin, the blue dot represents the mean, the red cross represents
the median, and the bar represents one standard deviations around the mean.

LogDate . doi:10.1093/molbev/msaa222 MBE

1159



reduces as branches become longer (supplementary fig. S6,
Supplementary Material online). In studying the effect of the
error in branch length estimation, we see that wLogDate can
underestimate the branch time if the branch length in sub-
stitution unit is extremely underestimated (supplementary
fig. S6a, Supplementary Material online). In some cases
wLogDate underestimates branch times by two order of mag-
nitude or more; all of these cases correspond to super-short
branches with substitution unit branch length underesti-
mated by three or four orders of magnitude. As mentioned
previously, extremely short estimated branch lengths are of-
ten the zero-event branches (supplementary fig. S7,
Supplementary Material online), which are unavoidable for
short sequences.

We next compare wLogDate with alternative methods,
namely LF, LSD, and BEAST with strict-clock and
LogNormal clock. Measured by root-mean-square error
(RMSE), the accuracy of all methods varies substantially across
model trees (M1–M4) and models of rate variation (fig. 3).
Comparing methods, for many conditions, wLogDate has the
lowest error, and in many others, it is ranked second best
(table 1). Across all conditions, wLogDate has a mean rank of
1.75, followed by BEAST with strict clock with a mean rank 2;
mean normalized RMSE of wLogDate, LF, BEAST-strict,
BEAST-LogNormal, and LSD are 0.072, 0.074, 0.077, 0.087,
and 0.116, respectively. In contrast to wLogDate, LSD seems
to often underestimate branch times for many short
branches even when they are estimated relatively accurately

Table 1. Ranking of the Dating Methods under Different Model Conditions.

Model Clock Model B_lnorm B_strict LF LSD wLogDate

M4 LogNormal 1 3 4 5 1
Gamma 2 4 3 5 1
Exponential 4 3 2 5 1

M3 LogNormal 2 3 3 5 1
Gamma 4 2 2 5 1
Exponential 5 3 2 4 1

M2 LogNormal 5 1 3 4 2
Gamma 4 1 3 5 2
Exponential 4 1 2 5 3

M1 LogNormal 4 1 2 4 2
Gamma 5 1 1 4 1
Exponential 2 1 3 3 5

Average rank 3.5 2 2.5 4.5 1.75

NOTE.—For each model condition, the average RMSE of all internal node ages is computed and ranked among the dating methods (rounded to two decimal digits). The best
method is shown in bold.
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in substitution units (supplementary fig. S6b, Supplementary
Material online). For all methods, errors are an order of mag-
nitude smaller for the LogNormal and Gamma models of rate
variations compared with the Exponential model. In terms of
trees, M4, which simulates inter-host evolution and has the
largest height, presents the most challenging case for all meth-
ods. Interestingly, wLogDate has the best accuracy under all
parameters of the M4 tree and also all parameters of M3
(thus, both inter-host conditions). On M1, all methods
have very low error and perform similarly (fig. 3).

Among other methods, results are consistent with the
literature. Despite its conceptual similarity to wLogDate,
LSD has the worst accuracy. On M1 and M2, LSD is com-
petitive with other methods; however, on M3 and M4, it
has a much higher error, especially with the Exponential
model of rate variation. With the LogNormal clock model,
BEAST-LogNormal is better than BEAST-strict only for M4
but not for M1–M3; in fact, BEAST-LogNormal has the
highest error for the M2 condition. This result is surprising
given the correct model specification. Nevertheless, BEAST-
LogNormal is competitive only under the LogNormal
model of rate variation and is one of the two worst meth-
ods elsewhere. Thus, BEAST-LogNormal is sensitive to
model misspecification. In contrast, BEAST-strict is less sen-
sitive to the model of rate variation and ranks among the
top three in most cases. In particular, BEAST-strict is always
the best method for intra-host ladder-like trees M1 and
M2.

Accuracy of time of the Most Recent Common Ancestor
(tMRCA) follows similar patterns (fig. 4). Again, the
Exponential rate variation model is the most difficult case
for all methods, resulting in biased results and highly variable
error rates for most methods. In all conditions of M3 and M4,
wLogDate has the best accuracy and improves on the second
best method by 9–66% (table 2). For M1 and M2, BEAST-
strict is often the best method. The mean tMRCA error of
wLogDate across all conditions is 4.83 (years), which is sub-
stantially better than the second best method, BEAST-strict,
with 6.21 (years).

In terms of the mutation rate, the distinction between
methods is less pronounced (supplementary table S1,
Supplementary Material online). wLogDate is the best
method jointly with the two strict clock models BEAST-
strict and LF. Overall, even though LF and wLogDate tend
to overestimate mutation rates, both have less biased results
compared with other methods (fig. 4). LSD and BEAST-
LogNormal have the highest errors; depending on the condi-
tion, each can overestimate or underestimate the rate but
LSD tends to underestimate whereas BEAST-LogNormal
tends to overestimate. On M1, wLogDate and LF have a clear
advantage over BEAST-strict, which tends to overestimate the
rate. On M2, the three methods have similar accuracy. For M3
and M4, BEAST-strict underestimates the rate under the
Exponential model of rate variation, and wLogDate and LF
are closer to the true value. For all methods, M4 is the most
challenging case.

We also compare confidence intervals (CIs) obtained
from wLogDate and BEAST (fig. 5). Although wLogDate

intervals are on average 2.7 times larger than BEAST, 33%
and 12% of the true values fall outside the 95% CI for
BEAST and wLogDate, respectively. Thus, whereas both
methods underestimate the CI range, wLogDate, with its
larger intervals, is closer to capturing the true value in its
CI at the desired level.

Finally, we compared all methods in terms of their running
time (supplementary table S2, Supplementary Material on-
line). LSD and LF are the fastest methods in all conditions,
always taking tens of seconds (less than a minute) on these
data. The running time of wLogDate depends on the model
condition and can be an order of magnitude higher for
Exponential rates than the other two models of rate variation.
Nevertheless, wLogDate finishes on average in half a minute
to 12 min, depending on the model condition. In contrast,
BEAST took close to 1 h with strict clock and close to 2 h with
the LogNormal model and even more if run with longer
chains; see supplementary table S5, Supplementary Material
online.

Simulated Data with Autocorrelated Rate
In simulations with the autocorrelated rate model, we com-
pare wLogDate with LF and RelTime (fig. 6 and supplemen-
tary table S7, Supplementary Material online) and wLogDate
to DAMBE (supplementary table S8, Supplementary Material
online). The distribution of the estimated divergence time of
uncalibrated internal nodes does not show any clear sign of
bias in divergence time estimation for either method. All
methods seem to give less varied estimates for the younger
nodes (i.e., those with higher divergence times) and have
more varied estimates for older nodes. In addition, the esti-
mates of wLogDate are more concentrated around the true
values than that of LF and RelTime, indicating a better accu-
racy. In two test cases (out of 200), LF had extremely high
error (supplementary fig. S9, Supplementary Material online).
Once those two cases are removed, the average RMSE nor-
malized by tree height is 0.09 for wLogDate, 0.10 for LF, and
0.13 for RelTime (supplementary table S7, Supplementary
Material online). Comparing with LF and wLogDate,
RelTime gives wider distributions of the estimates for a large
portion of the nodes. Finally, the comparison in running time
of wLogDate and RelTime is shown in supplementary fig. S8,
Supplementary Material online.

Comparing with DAMBE in inferring unit time trees,
wLogDate has lower error in 6/10 replicates and DAMBE
has lower error in the remaining 4 replicates (supplementary
table S8, Supplementary Material online). Overall, the average
error of wLogDate is 9.40%, which is slightly lower than that of
DAMBE at 9.66%.

Biological Data
On the H1N1 data set, the best available evidence has sug-
gested a tMRCA between December 2008 and January 2009
(Lemey et al. 2009; Rambaut and Holmes 2009; Hedge et al.
2013). wLogDate inferred the tMRCA to be December 14,
2008 (fig. 7a), which is consistent with the literature. LF and
LSD both infer a slightly earlier tMRCA (November 10, 2008),
followed by BEAST-strict and BEAST-LogNormal (October
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2008 and July 2008), and finally BEAST runs using the phyML
tree (February 2008 for strict and July 2007 for LogNormal).
Although the exact tMRCA is not known on this real data, the
results demonstrate that wLogDate, on a real data, produces
times that match the presumed ground truth.

On the HIV data set, wLogDate inferred a tMRCA of 1958
with only a handful of lineages coalescing in the 1950s and
most others coalescing in 1960s and early 1970s (supplemen-
tary fig. S5, Supplementary Material online). The recovered
tMRCAs is within the range postulated in the literature for
subtype B (Gilbert et al. 2007; Wertheim et al. 2012) and the
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FIG. 4. The inferred (top) tMRCA and (bottom) expected mutation rate on different tree models and clock models. Distributions are over 100
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method under each model condition. We remove 6 outlier data points (2 LF, 1 LSD, 2 BEAST-LogNormal, 1 BEAST-Strict) with exceptionally
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Table 2. Mean Absolute Error of the Inferred tMRCA of BEAST_strict, BEAST_lognorm, LF, LSD, RTT, and wLogDate.

Tree Clock Model B_strict B_lnorm LF LSD RTT wLogDate

M4 LogNormal 6.99 9.50 6.66 7.38 9.28 6.11 (9% #)
Gamma 7.83 10.48 7.02 8.48 8.24 6.28 (12% #)
Exponential 43.5 140.9 116.2 62.2 31.5 32.5 (3% ")

M3 LogNormal 1.37 2.60 1.21 1.39 1.46 1.03 (17% #)
Gamma 1.60 3.14 1.23 1.67 1.42 0.97 (27% #)
Exponential 5.76 34.67 4.87 8.35 3.39 2.94 (66% #)

M2 LogNormal 1.40 1.41 1.50 1.63 2.19 1.47 (5% ")
Gamma 1.54 1.44 1.75 1.92 2.56 1.66 (15% ")
Exponential 3.39 4.59 4.28 5.27 5.23 3.72 (10% ")

M1 LogNormal 0.28 0.28 0.30 0.37 0.78 0.30 (7% ")
Gamma 0.27 0.29 0.32 0.35 0.80 0.30 (11% ")
Exponential 0.60 1.11 0.79 0.82 1.37 0.69 (15% ")

Average 6.21 17.54 12.17 8.13 5.68 4.83

NOTE.—For wLogDate, parenthetically, we compare it with the best (") or second best (#) method for each condition. We show percent improvement by wLogDate, as
measured by the increase in the error of the second best method (wLogDate or the alternative) divided by the error of the best method. Bold indicates the lowest error for each
model condition.
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fact that randomly sampled HIV lineages across US tend to
coalesce deep in the tree is a known phenomenon. LF and
LSD recovered the tMRCA of 1952 and 1953, respectively.
Comparing with wLogDate, these two strict-clock methods
postulate an earlier burst of subtype B (fig. 7c). We were not
able to run BEAST on this data set.

On the Ebola data set, the BEAST-1000 trees obtained
from Dudas et al. (2017) inferred the tMRCA to be between

September 13, 2013 and January 26, 2014 (95% credible in-
terval) and the BEAST-MCC inferred the tMRCA to be
December 5, 2013 as reported by Volz and Frost (2017).
Here, wLogDate inferred a tMRCA on December 7, 2013,
which is very close to the estimate by BEAST. Both LF and
LSD inferred an earlier tMRCA: October 29, 2013 for LF and
October 2, 2013 for LSD, but still within the 95% credible
interval of BEAST-1000. Lineage-through-time (LTT) plots
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times of uncalibrated internal nodes whereas the x-axis shows the true divergence time. Each bar shows the 2.5% and 97.5% quantiles of the
estimates of a single node’s divergence time across 20 tests, each of them with different random choices of calibration points (thus, these are not
CIs for one run). There are 10 replicate trees, each with 44 uncalibrated nodes (thus, 440 bars in total). This figure discards 2 tests (out of
10	 20¼ 200) where LF produced extremely erroneous time trees (supplementary see fig. S9, Supplementary Material online) for the full results.
The RMSE of the uncalibrated internal node ages, normalized by the tree height averaged across all replicates were 0.09, 0.1, and 0.13, respectively,
for wLogDate, LF, and RelTime (see supplementary table S7, Supplementary Material online).
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showed a similar reconstruction by all methods for this data
set (fig. 7d).

We also compare running times of dating methods on the
three real biological data sets (supplementary table S3,
Supplementary Material online). LSD was always the fastest,
running in just seconds, compared with minutes for LF and
wLogDate. LF is faster than wLogDate on the H1N1 and HIV
data, whereas on Ebola data, wLogDate is faster. We report
the running time for wLogDate as the sequential run of ten
independent starting points and note that wLogDate can
easily be parallelized. We further tested the scaling of
wLogDate with respect to the number of species by subsam-
pling the HIV data set to smaller numbers of species (supple-
mentary fig. S4, Supplementary Material online). The results
show that the running time of wLogDate increases slightly
worse than quadratically with the incrased number of species.

Discussion and Future Work
We introduced (w)LogDate, a new method for dating phy-
logenies based on a nonconvex optimization problem. We
showed that by log-transforming the rates before minimizing
their variance, we obtain a method that performs much bet-
ter than LSD, which is a similar method without the log
transformation. In phylodynamics settings, our relatively sim-
ple method also outperformed other existing methods, in-
cluding the Bayesian methods, which are much slower. The
improvements were most pronounced in terms of the esti-
mation of tMRCA and individual node ages and less so for the
mutation rate. Moreover, improvements are most visible un-
der the hardest model conditions, and are also observed
when data are generated according to autocorrelated model
of rates.

The log transformation results in a nonconvex optimiza-
tion problem, which is harder to solve than the convex prob-
lems solved by LSD and LF. However, we note that the
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problem is convex for rate multipliers between 0 and e. In
addition, given the advances in numerical methods for solving
nonconvex optimization problems, insistence on convex
problems seems unnecessary. Our results indicate that this
nonconvex problem can be solved efficiently in the varied
settings we tested. The main benefits of the log transforma-
tion is that it allows us to define a scoring function that
assigns symmetrical penalties for increased or decreased rates
(fig. 1a); as we argued, this symmetry is a desirable property of
the penalty function for several clock models that deviate
from a strict clock.

The accuracy of LogDate under varied conditions we
tested is remarkable, especially given its lack of reliance on
a particular model of rate evolution. We emphasize that
the parametric models used in practice are employed for
mathematical convenience and not because of a strong
biological reason to believe that they capture real varia-
tions in rates. Even assuming biological realism of the rate
model, the performance of the relaxed clock model used
in BEAST was surprisingly low. For example, when rates
are drawn from the LogNormal distribution, BEAST-strict
often outperformed BEAST-LogNormal, especially in terms
of the estimates of tMRCA and the mutation rate. We
confirmed that the lower accuracy was not due to the
lack of convergence in the MCMC runs. We reran all
experiments with longer chains (supplementary table S5,
Supplementary Material online) to ensure ESS values are
above 300 (supplementary table S6, Supplementary
Material online). These much longer runs failed to im-
prove the accuracy of the BEAST-LogNormal substantially
and left the ranking of the methods unchanged (supple-
mentary fig. S10, Supplementary Material online).

The LogDate approach can be further improved in several
aspects. First, the current formulation of LogDate assumes a
rooted phylogenetic tree, whereas most inferred trees are
unrooted. Rooting phylogenies is a nontrivial problem and
can also be done based on principles of minimizing rate var-
iation (Mai et al. 2017). Similar to LSD, LogDate can be gen-
eralized to unrooted trees by rooting the tree on each branch,
solving the optimization problem for each root, and choosing
the root that minimizes the (w)LogDate objective function.
We leave the careful study of such an approach to the future
work. Beyond rooting, the future work can explore the pos-
sibility of building a specialized solver for LogDate to gain
speedup. One approach could be exploiting the special struc-
ture of the search space defined by the tree, which is the
strategy employed by LSD to solve the least-squares optimi-
zation in linear time. Divide-and-conquer may also prove ef-
fective. The weighting scheme used in LogDate is chosen
heuristically to deal with the deviations of estimated branch
lengths from the true branch length. In future, the weighting
schema should be studied more carefully, both in terms of
theoretical properties and empirical performance.

We described, implemented, and tested LogDate in the
condition where calibrations are given as exact times (for
any combinations of leaves and internal nodes). While the
current settings fit well to phylodynamics data, its application
to paleontological data with fossil calibrations is somewhat

limited due to the requirements for exact time calibrations (in
contrast to the ability to allow minimum or maximum con-
straints on the ages, or a prior about the distribution of the
ages as in BEAST and RelTime). Although the mathematical
formulation extends easily, treatment of fossil calibrations
and uncertainty of times is a complex topic (Ho and
Phillips 2009; Heath 2012) that requires the expansion of
this work. Applying LogDate for deep phylogenies would
need further tweaks to the algorithm, including changing
equality to inequality constraints and the ability to setup
feasible starting points for the solver.

In the studies of LogDate accuracy, we have explored
various models for rate heterogeinety, including parametric
models where rates are drawn independently and identically
(i.i.d.) from a distribution (LogNormal, Exponential, and
Gamma) and an autocorrelated model where the rates of
adjacent branches are correlated. Overall, none of the meth-
ods we studied is the best under all conditions. In phylody-
namics data, our simulations showed that it is more
challenging for all the dating methods to date the phylog-
enies of the inter-host evolution (M3 and M4) than the
intra-host (M1 and M2). wLogDate outperforms other
methods for the inter-host phylogenies, regardless of the
model of rate heterogeneity. Although all methods have
lower error for intra-host trees, BEAST with strict-clock prior
is often the best method. However, the differences between
BEAST and wLogDate are small and wLogDate is often the
second best. Thus, wLogDate works well for virus phyloge-
nies, especially in inter-host conditions. Despite the fact that
RelTime explicitly optimizes the rate for each pairs of sister
lineages, wLogDate is more accurate than both LF and
RelTime on the data where the rates are autocorrelated
between adjacent branches. These results show that
wLogDate is applicable to a fairly large number of models
of the trees and the rates.

Nevertheless, the approach taken by wLogDate suffers
from its own limitations. By including a single mean rate
around which (wide) variations are allowed, wLogDate is
expected to work the best when rates have distribution
that are close to being unimodal. However, rates on real phy-
logenies may have sudden changes leading to bimodal (or
multimodal) rate distributions with wide gaps in between
modes. For example, certain clades in the tree may have local
clocks that are very different from other clades. Such a con-
dition has been studied by Beaulieu et al. (2015) for a data set
of seed plants. The authors setup a simulation where there are
local clocks on the tree and the mean values of these clocks
are different by a factor varying from 3 to 6. Beaulieu et al.
(2015) point out that under such condition, especially when
the rate shift occurs near the root, BEAST usually overesti-
mates the tMRCA of the Angiosperms (i.e., gives older time)
by a factor of 2 (BEAST results from Beaulieu et al. [2015] are
reproduced in supplementary fig. S11, Supplementary
Material online). We also tested wLogDate, LF, and RelTime
on this data set (supplementary fig. S11, Supplementary
Material online). In scenario 2 of the simulation, where the
rate shift between the two local clocks is extreme (a factor of
6), wLogDate clearly overestimates the age of Angiosperms
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(by a median of 55%). In this same scenario, RelTime slightly
underestimate the age (by 5%). In the other 4 scenarios where
the rate shifts are more gentle, wLogDate continue to over-
estimate the age but by small margins (by 6%, 1%, 2%, and
5%), whereas RelTime underestimates ages also by small mar-
gins (3%, 5%, 4%, 3%, and 3%). LF has similar patterns to
wLogDate. These results point to a limitation of wLogDate
(and the other dating methods) in phylogenies with multiple
local clocks.

In addition to multiple clocks, future works should test
LogDate under models where rates continuously change with
time and have a direction of change. Finally, to facilitate the
comparison between different methods, we used the true
topology with estimated branch lengths. Future work should
also study the impact of the incorrect topology on LogDate
and other dating methods.

Software Availability
The LogDate software is available on https://github.com/
uym2/wLogDate (last accessed: September 28, 2020) in
open-source format. The command-line python tool is avail-
able through PyPI (pip) and conda for easy installation. A link
to a web sever making wLogDate available as a web-server is
also available from the github page.

Data Availability
All the data are available on https://github.com/uym2/
LogDate-paper (last accessed: September 28, 2020).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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