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Abstract: Individuals with Autism Spectrum Disorder (ASD) typically present difficulties in engaging
and interacting with their peers. Thus, researchers have been developing different technological
solutions as support tools for children with ASD. Social robots, one example of these technological
solutions, are often unaware of their game partners, preventing the automatic adaptation of their
behavior to the user. Information that can be used to enrich this interaction and, consequently, adapt
the system behavior is the recognition of different actions of the user by using RGB cameras or/and
depth sensors. The present work proposes a method to automatically detect in real-time typical and
stereotypical actions of children with ASD by using the Intel RealSense and the Nuitrack SDK to
detect and extract the user joint coordinates. The pipeline starts by mapping the temporal and spatial
joints dynamics onto a color image-based representation. Usually, the position of the joints in the
final image is clustered into groups. In order to verify if the sequence of the joints in the final image
representation can influence the model’s performance, two main experiments were conducted where
in the first, the order of the grouped joints in the sequence was changed, and in the second, the joints
were randomly ordered. In each experiment, statistical methods were used in the analysis. Based on
the experiments conducted, it was found statistically significant differences concerning the joints
sequence in the image, indicating that the order of the joints might impact the model’s performance.
The final model, a Convolutional Neural Network (CNN), trained on the different actions (typical
and stereotypical), was used to classify the different patterns of behavior, achieving a mean accuracy
of 92.4% ± 0.0% on the test data. The entire pipeline ran on average at 31 FPS.

Keywords: human action recognition; human computer interaction; autism spectrum disorder;
convolutional neural network

1. Introduction

Autism Spectrum Disorder (ASD) is a lifelong disability that affects people’s ability
to communicate and to understand social cues. Consequently, individuals with ASD are
unable to interact socially with their peers successfully. It affects 1 in 54 children and it
is four times more common among boys than girls [1]. Furthermore, individuals with
ASD demonstrate stereotypical behaviors that are defined as restricted and repetitive
patterns that appear to the observer to be invariant in form and without any obvious
eliciting stimulus [2]. Stereotypical actions are defined as being repetitive and sometimes
inappropriate in nature [3]. They are highly heterogeneous in presentation, being verbal or
non-verbal, fine or gross motor-oriented, as well as simple or complex. Frequent examples
of stereotyped behaviors are hand flapping/wave, body rocking, among others. They
manifest in different ways, depending on individuals, settings, and time conditions [3].

Different technological tools with various shapes and features have been employed in
supporting sessions with children with ASD. Indeed, the use of technological devices was
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already proven to provide a stimulus for children belonging to this spectrum, promoting
social interaction [4,5]. Furthermore, in general, most of the works are focused on exploring
the interaction between children and robots on tasks such as imitation and collaborative
interaction [6,7]. Conversely, in general, these studies use non-humanoid robots or sys-
tems with no (or at least low) ability to adapt to the activity. In this sense, some of the
interactions with robots may be rigid, ambiguous, and confusing since most of the systems
are teleoperated or controlled via the Wizard of Oz method [8–10]. Additionally, these
approaches can impose an additional cognitive load on the researcher/therapist during
the supporting sessions.

Conversely, successful human-human communication depends on the ability of both
partners to read affective and emotional signals. Therefore, in order to enrich the interaction
between a robot and a user, it is paramount for the robot to receive some form of feedback
from its peer actions in order to better adapt its behavior to the user. Affective computing
tries to create a link between the emotionally expressive human and the emotionally
lacking computer [11]. It can be used to understand emotional communication in typically
developing children and children with ASD [12–14]. Furthermore, it allows the introduction
of some adaptation to these platforms, enriching the interaction with the user and reducing
the cognitive burden on the human operator. A supervised behavioral system architecture
using a hybrid approach to allow the detection of the child’s behavior was proposed in [15]
by the research team. This method has the main goal of enabling a more natural interaction
by adapting the robot’s behavior to the child’s action. This framework takes into account
children’s movements, such as typical or stereotypical behaviors, in order to determine, for
example, the child’s interest in the activity.

Following this idea, the present work proposes a method to automatically detect
in real-time typical and stereotypical actions of children with ASD. The system uses the
Intel RealSense and the Nuitrack SDK to detect and extract the user joints coordinates.
Then, a Convolutional Neural Network (CNN) learning model trained with different
behavior actions is used to classify the different patterns of behavior. The principal novelty
lies in applying this methodology to stereotypical behaviors of the ASD target group.
A dataset, Typical and Stereotypical Behaviours Dataset (TSBD), containing typical and
stereotypical behaviors was developed with 32 children. Furthermore, the recognition
pipeline operates on 3D sensor data in real-time, being lightweight enough to run on lower
resources hardware. Additionally, some of the current approaches that use CNN first
convert the joints data that are obtained from a 3D sensor into an image representation,
i.e., the spatial and temporal information are mapped into a 2D image that then is used
as input to a CNN model. The order of the joints data in the final image usually follows
the human body configuration, meaning that the joints are grouped together in limbs, and
one trunk as the human body is composed of four limbs and one trunk, for example, the
right shoulder, elbow, and hand are grouped into the right arm limb [16–19]. Therefore, as
an additional novel contribution, the present work analyzed if the joints’ sequence could
influence the model’s performance. To verify this, two experiments were conducted, and
statistical methods were used in the analysis.

This paper is organized as follows: Section 2 presents the related work; Section 3
shows the proposed approach; the experimental results are presented and discussed in
Section 4; the conclusions and future work are addressed in Section 5.

2. Related Work

Human Action Recognition (HAR) is a broad key field in computer vision. It is
employed in video surveillance, human-machine interactions, and robot vision. There are
numerous research directions in HAR. Traditionally, studies in HAR have mainly focused
on the use of hand-crafted features [20,21] that can be provided by 2D cameras (RGB data)
or 3D sensors (RGB + Depth information). Works with RGB data only, usually start by
foreground extraction to detect the action region, to then extract features, by employing
techniques such as Cuboids [22] or HOG/HOF [21]. Probabilistic graphical models such
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as Hidden Markov Models (HMM) or the Dynamic Time Warping (DTW) algorithm,
which measures the similarity between two temporal sequences, are used to classify the
action [22,23]. Afsar et al. [22] proposed a method to automatically detect a subject and
perform action recognition using a Hidden Markov Model and a bag of Words from RGB
images from surveillance cameras. The Gaussian mixture model was used to perform
background subtraction. The model achieved an accuracy of 97.02% on their dataset
with two classes (‘Sit’ and ‘Walk’). The authors in [24] applied a novel method for action
recognition using trajectory-based feature representation, tracking spatial-temporal interest
points (STIPs) using a Cuboid detector to then build trajectories using SIFT-matching
between STIPs in consecutive frames. A Support Vector Machine (SVM) was used to
classify the actions. The method was tested on the UCF sports dataset [25], achieving an
accuracy of 89.97%. Nonetheless, one of the major drawbacks of the 2D data is the absence
of 3D structure from the scene [16]. Furthermore, by only using the RGB information, these
approaches tend to be more influenced by the environment lighting conditions.

With the rapid development of 3D sensing technology, several works propose the
use of this hardware for different approaches [26] in order to tackle the HAR problem.
Furthermore, devices such as Microsoft Kinect [27] and Orbec Astra [28] offer, through
their SDKs, real-time skeleton detection, and tracking algorithms, an effective way to
accurately describe actions. The main advantage of skeleton-based representations is the
lower dimensionality of the data in comparison with representations based on RGB/RGB-
D, allowing the action recognition systems to be computationally faster and less complex.
Thus, several skeleton-based action recognition methods have been proposed [29,30], being
a promising research direction. The authors in [31] proposed an approach that consisted
of computing hand-crafted features by combining 3D joints moving trend and geometry.
These features were used as input to a Linear SVM classifier. In that case, the method
achieved an overall accuracy of 91.3% on a public dataset. Following this trend, some
works in the literature have been using skeleton-based methods in order to detect some
stereotypical behaviors in children with ASD [32]. The authors in [32] used the Microsoft
Kinect V1 and the DTW algorithm to detect the hand flapping or hand wave gesture,
achieving an overall test accuracy of 51.0%. However, these approaches suffer from a
lack of automation because of the dependency on hand-crafted features, requiring pre-
processing the input data.

More recently, approaches based on Deep Learning techniques have been used and
have yielded remarkable results in many recognition tasks. Most popular approaches
use Recurrent Neural Networks with Long Short-Term Memory units (RNN-LSTM) for
skeleton-based action recognition [33–35], achieving high-level performance and showing
superior results when compared to classical hand-crafted approaches. However, they
tend to overemphasize the temporal information and lose the spatial information of skele-
tons [36]. Additionally, the amount of training time is considerably more when training
LSTMs than CNN models, mainly because GPUs are optimized to process 2D data with
extreme parallelism and speed, which CNNs utilize. Bai et al. [37] show that a CNN could
achieve similar or even better performance than an RNN in many tasks such as speech
recognition [38], some tasks of NLP [39], among others. Following this trend, recent works
in the literature have been employing Convolutional Neural Networks (CNNs) to tackle
the HAR problem [40]. Many studies also indicate that CNNs are better than hand-crafted
approaches since they have the ability to learn complex motion features [33,41,42]. How-
ever, most existing CNN-based methods use only the RGB component, only the depth
component, or a combination of both components (RGB-D) as the input to learning models.
Indeed, RGB-D images are informative for action recognition, but due to the large dimen-
sion of the input features, their use increases the computation complexity of these models
rapidly. Additionally, the computational burden can be increased by adding more layers,
partially affecting the real-time response during the test and training phases, especially
when fine-tuning the CNN models. Thus, resulting in more complex and slower models,
less practical for solving large-scale real-time problems. In order to tackle the dimension-
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ality problem and computation complexity, works in [16,17,36,43] use a skeleton-based
representation with deep learning techniques for the recognition of different behaviors.
The work proposed by [17] consists of using skeleton-based representation data obtained
from a 2D camera by using OpenPose [44] for skeleton detection in order to recognize
three main actions: Idle, Wave, and Walking. The pipeline consists of first detecting the
human by using a YOLO V3 [45] followed by skeleton detection and tracking to finally
recognizing the action. The method achieved an overall accuracy of 97.1% in their use
case, recognition of three actions in a parking lot scenario to be employed in automated
vehicles. Although it is a step forward to reduce the model complexity and running time,
this approach requires dedicated hardware (a dedicated GPU to run the models was used).
Thus, future improvements in the pipeline configuration are necessary to optimize system
performance. Another approach [16] consisted of using a 3D sensor, the Microsoft Kinect
V2, to extract the user joints coordinates. Then, the 3D data was converted into image
space. This method speeds up the overall pipeline since the Kinect SDK detects and extracts
in real-time the user joints coordinates. The authors used different configurations of the
ResNet architecture by varying the deepness of the model. The architecture was evaluated
on a dedicated NVIDIA GTX 1080 Ti GPU achieving an overall accuracy of 99.9% and 99.8%
on the MSR action 3D [46] and KARD [47] datasets, respectively. Although the accuracy is
high and the classification time for a skeleton sequence is around 0.128 s, it requires the use
of a dedicated GPU with a final model configuration of 44 layers. The solutions proposed
in [16,17,36,43] used dedicated hardware, having a considerable computational burden in
both training and testing phases, compromising real-time performance.

Table 1 summarizes some recent approaches that employ skeleton-driven
action classification.

Table 1. Some approaches of the state of the art that employs skeleton-driven action classification.

Author Type of
Camera Hardware Real-Time Classification

Algorithm Nº of Actions Application
Area

Recognition
Rate

Goncalves et al.
2012 [32] Kinect V1 —– Yes DTW 1 stereotyped

action HCI and ASD 51.0%

Li et al. 2017 [41] Kinect V1 —- —- CNN 60 actions [34]
27 actions [48] HCI 76.2%

88.1%

Liu et al. 2017
[31] Kinect V2 ——- ——- Three sets of 8

actions each

Human
Computer
Interaction

(HCI)

91.3%

Ke et al. 2017 [49] Kinect —- —– CNN + MTLN
60 actions [34]
8 actions [50]

45 actions [51]
HCI

79.6%
93.6%
93.2%

Pham et al. 2018
[16] Kinect V2 NVIDIA GTX

1080 Ti GPU Yes ResNet
20 actions [46]
18 actions [47]
60 actions [34]

HCI
99.9%
99.8%
78.2%

Jazouli et al. 2019
[52] Kinect V1 —— Yes $P Point-Cloud

Recognizer
5 stereotyped

actions HCI and ASD 94.0%

Ludl, Gulde and
Curio 2019 [17] RGB Camera

Intel i7-8700 6
core CPU

NVIDIA GTX
1080 GPU

Yes CNN 3 actions Autonomous
Driving 97.1%

Laraba et al. 2019
[18] Kinect V2

Intel i7-7800X
2 × NVIDIA
GTX 1080 Ti

—-

Pre-trained
architectures of

CNN and
RNNs

49 actions [34] HCI 82.1%

Junwoo and
Bummo 2020 [19] RGB camera

NVIDEA
JETSON

XAVIER with
dedicated
Volta GPU

Yes (14 fps) CNN 15 actions [34]
Human Robot

Interaction
(HRI)

71.0%
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3. Methodology

One of the goals of this work is to enrich the interaction between children with ASD
and a robotic platform by recognizing user behavior intentions and adapting the robot
behavior accordingly. One way to recognize different actions of the user is through skeleton
pose data from depth sensors. To recognize in real-time the typical and stereotypical
behaviors of children with ASD, it is important to take into account the hardware to be
used as well as to select the behaviors to be detected. Thus, it was also analyzed if the
sequence of the joints may influence classifier accuracy. This section presents the proposed
system and the pipeline, as well as the construction of the dataset used.

3.1. Proposed System

The presented approach to be used in the solution was proposed by the authors in [15].
Thus, the hardware was selected, taking into account the portability of the final system
and the real-time requirements. Following this idea, the proposed system consists of an
Intel RealSense 3D sensor [53] and a computer. The Intel RealSense depth camera used in
the present work is the D435, which enables capturing stereo depth up to 90 frames per
second (fps), with a wide field of view (depth diagonal FOV > 90◦), by using the active
IR stereo depth technology. The camera includes a dedicated vision processor that allows
for computing stereo depth data in real-time. It has a 1080p RGB camera, global shutter
technology, and long-range capabilities (up to 10 m). The D435 version was mainly chosen
because of its small size (90 mm × 25 mm × 25 mm) in comparison to other 3D sensors. It
is easily portable and connects to a computer with a single cable (offering power and data)
over USB 3.0 Type-C.

In order to track the user and detect the joints in real-time, it was used the Nuitrack
SDK [54]. Nuitrack is a 3D tracking cross-platform middleware capable of full-body skeletal
tracking (up to 19 joints) (Figure 1), with an agnostic 3D sensor independent by supporting
the Microsoft Kinect V1 and V2, Orbbec Astra, Intel RealSense, among other 3D devices.
The solution can track up to 6 skeletons at a time.
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Figure 1. The overall system pipeline. It starts by detecting and tracking the user joints through the Nuitrack SDK. Then,
the data is served as an input to the learning model to classify the action. The joints used are highlighted in orange (left arm,
shoulder, elbow, and wrist joints), yellow (right arm, shoulder, elbow, and wrist joints), light blue (left leg hip, knee, and
ankle joints), dark blue (right leg hip, knee, and ankle joints), and red (head, neck, and spine joints).

The hardware used consisted of a notebook equipped with an Intel(R) Core (TM)
i7-8650 quad-core CPU with 16 GB of RAM.

3.2. Pipeline and Processing

The overall system pipeline is presented in Figure 1. It starts by detecting the user
and tracking the body joints. This process is done by using the Nuitrack SDK and the data
from the Intel RealSense depth device. From the 19 joints that are returned by the SDK,
15 are selected: the right and left arm shoulder, elbow and wrist joints, the right and left
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leg hip, knee, and ankle joints, and the head, neck, and spine joints. The hand joints were
excluded due to some inaccuracy when tracking them.

The selected joints are highlighted in orange (4, 5, and 6), yellow (7, 8, and 9), light
and dark blue (10, 11, and 12 and 13, 14, and 15), and red (1, 2, and 3) in Figure 1. Finally,
the joints data obtained over several frames were used as input for the action recognition
model to classify the action.

To explore skeleton-based action recognition with CNN methods, it is necessary to
represent a temporal skeleton sequence in an effective way to then feed it into a CNN
model. Thus, the idea relies on encoding the spatial and temporal dynamics of skeleton
sequences onto a 2D image structure. By using the static postures and their temporal
dynamics, they can be shaped into a static color image structure [16]. This color image
representation can be fed into a CNN, enabling it to learn image features and classify them
into classes to recognize the original sequence of skeleton data.

The encoding process of a skeleton sequence (S) with N frames into an image space
representation takes place in this way: each 3D joint coordinate (x, y, and z) available for
a skeleton sequence in a given frame (f ) is normalized into the range of 0–255, k( f )′, by
applying Equation (1):

k( f )′ = 255× k( f )−min{c}
max{c} −min{c} (1)

where k is the coordinate (x, y, or z) to be normalized, and min{c} and max{c} are the
minimum and maximum values of all coordinates in the sequence, respectively. The
encoding process can be seen in Figure 2. In this new image representation, the three
components (R, G, B) of a color pixel are the transformed skeleton joints coordinates (x, y,
z)—x = R; y = G; z = B, i.e., the raw skeleton data of sequences are converted in 3D tensors,
which is used as the input features for the learning model.
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All skeleton sequences in image space has a 32 × 15 × 3 size, where 32 is the number
of frames and the width of the image, 15 is the number of joints representing the height of
the image, and 3 is the number of channels. The sequence size of 32 frames was chosen to
analyze one to two seconds of movements to estimate an action.

The human body is composed of four limbs and one trunk. This defines how actions
are performed—a simpler action can use one limb, where more complex actions involve the
coordination of two or more limbs and the torso. Following what is proposed in [16], each
skeleton frame is divided into five groups—two arms (P1, left arm, and P2, right arm), torso
(P3), and two legs (P4, left leg, and P5, right leg)—which allows to keep the local motion
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characteristics, generating more discriminative features in image-based representations
(Figure 3).
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TSBD dataset, detailed in Section 3.3.2.
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3.3. Datasets

In the present work, two datasets were used: the KARD dataset [47] and the TSBD
dataset developed with typical and stereotypical behaviors based on the previous works of
the research team with children with ASD [9].

3.3.1. KARD Dataset

The KARD (Kinect Activity Recognition Dataset) [47] contains 18 activities, where
each activity is performed 3 times by 10 different subjects. The activities are horizontal arm
wave, high arm wave, two hand wave, catch cap, high throw, draw x, draw tick, toss paper,
forward kick, side kick, take umbrella, bend, hand clap, walk, phone call, drink, sit down,
and stand up. The skeleton joints used were head, neck, torso, right shoulder, right elbow,
right hand, left shoulder, left elbow, left hand, right hip, right knee, right foot, left hip, left
knee, and left foot.

3.3.2. TSBD Dataset

The Typical and Stereotypical Behaviours Dataset (TSBD) used includes typical and
stereotypical behaviors that children with ASD usually present. The stereotypical actions
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are usually manifested when they are exposed to new environments or when there is a
change in their daily routine and, as a result, they have a tendency to block the excessive
feelings by exhibiting stereotyped behaviors, as hand-flapping (or hand wave), rocking,
covering the ears, among others [2]. Based on a previous work of the research group [9]
with 15 children interacting with a humanoid robot, three stereotyped behaviors (hand
wave, covering the ears, and rocking) were selected as the basis to develop the TSBD dataset,
together with other 6 typical actions—idle, standing, clap, hand raise, pointing, and turn.
These behaviors are also usually expressed by children with ASD during activity [9].

An experimental setup was developed to collect the data. The Intel RealSense device
was placed in three different configurations, as seen in Figure 5.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 21 
 

 

In the present work, two datasets were used: the KARD dataset [47] and the TSBD 
dataset developed with typical and stereotypical behaviors based on the previous works 
of the research team with children with ASD [9]. 

3.3.1. KARD Dataset 
The KARD (Kinect Activity Recognition Dataset) [47] contains 18 activities, where 

each activity is performed 3 times by 10 different subjects. The activities are horizontal 
arm wave, high arm wave, two hand wave, catch cap, high throw, draw x, draw tick, toss 
paper, forward kick, side kick, take umbrella, bend, hand clap, walk, phone call, drink, sit 
down, and stand up. The skeleton joints used were head, neck, torso, right shoulder, right 
elbow, right hand, left shoulder, left elbow, left hand, right hip, right knee, right foot, left 
hip, left knee, and left foot. 

3.3.2. TSBD Dataset 
The Typical and Stereotypical Behaviours Dataset (TSBD) used includes typical and 

stereotypical behaviors that children with ASD usually present. The stereotypical actions 
are usually manifested when they are exposed to new environments or when there is a 
change in their daily routine and, as a result, they have a tendency to block the excessive 
feelings by exhibiting stereotyped behaviors, as hand-flapping (or hand wave), rocking, 
covering the ears, among others [2]. Based on a previous work of the research group [9] 
with 15 children interacting with a humanoid robot, three stereotyped behaviors (hand 
wave, covering the ears, and rocking) were selected as the basis to develop the TSBD da-
taset, together with other 6 typical actions—idle, standing, clap, hand raise, pointing, and 
turn. These behaviors are also usually expressed by children with ASD during activity [9]. 

An experimental setup was developed to collect the data. The Intel RealSense device 
was placed in three different configurations, as seen in Figure 5. 

 
Figure 5. The experimental configuration used to extract the data for the dataset. The data was ex-
tracted by placing the Intel RealSense in three configurations: in front of the children, on his/her left, 
and his/her right. 

The participants considered for the dataset construction were 32 typically developing 
children aged between 6 and 9 years old. Each child was seated in front of the Intel Re-
alSense device and, for each action, performed 3 frontal samples and two side samples 
(from the left and right side). A total of 1440 samples were collected (160 samples per 
class). 

3.4. Deep Learning Network Architecture 
The DL network architecture chosen, depicted in Figure 6, consisted of six convolu-

tional layers, each with a 3 × 3 kernel, as well as padding p = 1 and stride S = 1. The archi-
tecture used was based on the work proposed by [17]. Although a large spatial filter (such 
as 5 × 5 or 7 × 7) can provide an advantage in terms of their expressiveness and ability to 
extract features at a larger scale, it comes with a high computation cost. It has been shown 

Figure 5. The experimental configuration used to extract the data for the dataset. The data was
extracted by placing the Intel RealSense in three configurations: in front of the children, on his/her
left, and his/her right.

The participants considered for the dataset construction were 32 typically developing
children aged between 6 and 9 years old. Each child was seated in front of the Intel
RealSense device and, for each action, performed 3 frontal samples and two side samples
(from the left and right side). A total of 1440 samples were collected (160 samples per class).

3.4. Deep Learning Network Architecture

The DL network architecture chosen, depicted in Figure 6, consisted of six convo-
lutional layers, each with a 3 × 3 kernel, as well as padding p = 1 and stride S = 1. The
architecture used was based on the work proposed by [17]. Although a large spatial filter
(such as 5 × 5 or 7 × 7) can provide an advantage in terms of their expressiveness and
ability to extract features at a larger scale, it comes with a high computation cost. It has been
shown [55] that a 5 × 5 convolution can be more computationally efficient, represented by
two stacked 3 × 3 filters. Therefore, the network architecture implemented has three times
two stacked convolutional layers in order to extract features at a larger scale, followed
by a batch normalization layer [56], and the rectified linear unit (ReLU) was used as the
activation function in the convolutional layers. A max-pooling layer with kernel size 2 × 2
was used after the second and fourth convolutional to reduce the spatial resolution by a
factor of two. Then, after the last convolutional layer, a Global Average Pooling (GAP)
layer was used. Since Fully Connected (FC) layers are susceptible to overfitting, which
can compromise the generalization ability of the network, it was suggested to use global
averaging of pooled layers to counteract this effect [57]. They have the advantage of having
no parameter to optimize; thus, overfitting is avoided at this layer. Moreover, global
average pooling sums out the spatial information. So, it is more robust regarding spatial
translations of the input.
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Finally, an FC layer was placed at the end to perform the final action classification.
By being a small architecture, the training was fast due to few parameters with a short
inference time, resulting in an overall small model while maintaining high accuracy. The
network was trained on KERAS using a TensorFlow backend.

4. Experimental Results and Discussion

To infer if the joints sequence might impact the classifier performance, several skeleton
configurations were evaluated based on the classifier accuracy achieved for the two datasets
(KARD dataset and the TSBD dataset developed with typical and stereotypical actions).

Two main experiments were conducted:

• E1 compares the accuracy of the skeleton configuration B1 (control group) with other
five skeleton combinations (B2, B3, B4, B5, and B6), where the sequence of the group
(P1 to P5) was changed;

• E2 considered the joints of four skeleton combinations (C2, C3, C4, and C5), each with
15 joints randomly sequenced and again compared with the skeleton configuration B1.

The joints were grouped according to the representation displayed in Table 2, where
the groups are shown with the numbered joints following the same configuration presented
in Figures 1 and 3. For E1, the skeleton configurations used are shown in Table 3. For E2,
the sequence of the joints was randomly obtained for each skeleton configuration as shown
in Table 4. The goal was to see if the sequence of the joints in the image representation
impacted the model performance.

Table 2. Grouped joints in four limbs. (P1, P2, P4, and P5) and one trunk (P3) following the convention
presented in Figures 1 and 3.

P1 P2 P3 P4 P5

LA 1 (4, 5, and 6) RA 2 (7, 8, and 9) Torso (1, 2, and 3) LL 3 (10, 11, and 12) RL 4 (13, 14, and 15)
1 LA: Left arm; 2 RA: Right arm; 3 LL: Left leg; 4 RL: Right leg.

Table 3. Skeleton configurations of groups of joints used where B1 is the control group. Here the
order of the joint groups is changed for each skeleton configuration.

SC 1 Joint Groups Sequence

B1 P1 P2 P3 P4 P5
B2 P1 P3 P2 P4 P5
B3 P1 P4 P3 P2 P5
B4 P5 P2 P4 P3 P1
B5 P3 P1 P2 P4 P5
B6 P5 P4 P3 P2 P1

1 Skeleton configuration.
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Table 4. Skeleton configurations used where B1 is the control group. Here the sequence of the joints
was randomly changed for each skeleton configuration.

SC 1 Joint Number

B1 4 5 6 7 8 9 1 2 3 10 11 12 13 14 15
C2 5 13 11 8 3 6 2 9 15 10 7 12 1 4 14
C3 2 9 14 12 5 11 8 6 3 7 13 4 15 1 10
C4 15 7 6 13 4 12 3 1 2 11 8 14 5 10 9
C5 11 10 1 12 15 2 5 6 14 3 9 4 13 8 7

1 Skeleton configuration.

In order to verify if the skeleton configuration could impact the accuracy of the model,
a statistical analysis was performed based on the ANOVA (F-statistics). Then a pair-wise
analysis was conducted using independent Student’s t-test (t-statistics), when necessary, to
understand the direction of the difference between the control group (B1) and the other
skeleton configurations.

The results concerning the classifier performance are also addressed. Cross-subject
evaluation was performed in both stages of the present work.

The model was trained for 200 epochs, with a batch size of 64 and a learning rate of
0.05. A weight decay (L2 regularization) of 1 × 10−4 was used to counteract overfitting.
Stochastic Gradient Descent (SGD) was used as an optimizer. The learning rate starts at
0.01, and it was reduced by a factor of ten every 50 epochs. The network was trained
over 20 runs to ensure the reproducibility of the results and exclude random effects due
to the training process (random initialization of layer weights, random shuffling of data,
and batch creation). Therefore, results are reported in terms of mean value with standard
deviation (mean value ± s.d.%).

4.1. KARD Results

The KARD dataset was randomly divided into two datasets: the data of seven subjects
were selected for training and three subjects for the validation data. The experiments E1
and E2 were conducted. Figure 7 shows the skeleton-based image representations for B2,
B4, C2, and C4 for the class ‘two-hand wave’.
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are displayed.

For all skeleton configurations evaluated in E1, the differences are statistically signif-
icant in terms of accuracy (F(5) = 418.41, p < 0.001), where B1 had the highest accuracy
(94.0% ± 0.4%) (based on a pair-wise evaluation between B1 and the other five skeleton
configurations). Additionally, for skeleton configurations evaluated in E2 a similar con-
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clusion was obtained (F(4) = 432.67, p < 0.001), where B1 presented the highest accuracy
(94.0% ± 0.4%).

Since the skeleton configuration B1 presented the highest mean accuracy (94.0% ± 0.4%),
Figure 8 shows the training accuracy over the 20 runs, and Figure 9 shows the error plot bar of
the mean accuracy per class as well as the standard deviation for each of the 18 classes over
20 runs.
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Figure 9. The error plot bar of the mean accuracy per class as well as the standard deviation for the
model trained with the skeleton configuration B1.

In general, the classes achieved mean accuracies of 100.0% (Figure 9) on the test data.
Only 6 out of the 18 classes achieved a lower mean accuracy, namely: Horizontal arm wave
(92.0% ± 4.0%), High arm wave (88.3% ± 3.2%), Draw tick (82.1% ± 3.6%), Take umbrella
(92.8% ± 5.3%), Phone call (73.8% ± 2.6%), and Drink (74.1% ± 2.1%).

The Matthews Correlation Coefficient (MCC) was also used to assess the classifier
performance. The model achieved an MCC of 93.7% ± 0.0%.

4.2. TSBD Dataset Results

The original dataset was randomly and balanced divided into three datasets: 20 subjects
were selected for training, 5 subjects were selected for validation, and 7 subjects for the test
data. The experiments E1 and E2 were performed. Figure 10 shows skeleton-based image
representations for B3, B5, C3, and C5 for the class ‘HAND_WAVE’.
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are displayed.

4.2.1. Statistical Analysis

For all skeleton configurations evaluated in E1, the differences are statistically sig-
nificant in terms of accuracy (F(5) = 17.34, p < 0.001), being the B1 with the highest mean
accuracy (93.8% ± 0.6%). However, for the pair-wise skeleton configuration B1 and B6 the
difference is not statistically significant (t(38) = 0.38, p = 0.35) considering the validation
dataset. Regarding the test dataset, similar results were obtained, that is, statistical differ-
ences in terms of accuracy were found (F(5) = 95.09, p < 0.001), with B1 with the highest
mean accuracy (92.4% ± 0.0%).

Additionally, for skeleton configurations evaluated in E2 statistical differences were
found in terms of accuracy in both validation and test datasets (F(4) = 20.10 and F(4) = 107.95,
respectively, p < 0.001), where B1 presented the highest accuracy (93.8% ± 0.6% for the
validation dataset and 92.4% ± 0.0% for the test dataset), based on a pair-wise evaluation
between the B1 and the other skeleton configurations. Indeed, the inter-class accuracy when
comparing the control group (B1) with one of the skeleton configurations that presents one
of the lowest mean accuracies (C2); in general, all classes mean accuracy drops (Table 5),
and the class ‘COVER_EARS’ presents the most noticeable drop in terms of mean accuracy
(from 93.2% ± 0.6% in B1 to 83.2% ± 2.3% in C2).

Table 5. Inter-class mean accuracy comparison between the control group (B1) and C2 with the present work test dataset.

SC 1 IDLE SD 2 CLAP HW 3 HR 4 PT 5 CE 6 TURN RK 7

B1 85.9% ± 1.1% 97.1% ± 1.1% 85.1% ± 1.7% 97.2% ± 0.0% 100% ± 0.0% 100% ± 0.0% 93.2% ± 0.6% 83.2% ± 2.2% 92.0% ± 2.3%
C2 80.5% ± 1.7% 95.9% ± 1.7% 84.3% ± 0.2% 94.6% ± 0.0% 100% ± 0.0% 97.4% ± 0.6% 83.2% ± 2.3% 86.7% ± 2.2% 88.8% ± 2.1%

1 Skeleton Configuration; 2 STANDING; 3 HAND_WAVE; 4 HAND_RAISE; 5 POINTING; 6 COVER_EARS; 7 ROCKING.

4.2.2. Class Activation Maps

Figures 11 and 12, on the left, show some samples of skeleton-based image representa-
tions for the classes ‘COVER_EARS’ (Figure 11) and ‘ROCKING’ (Figure 12) following the
skeleton sequences B1 and C2, respectively. On the right, class activation maps are shown
for the models trained with the same skeleton configurations. The class activation map
technique uses the Global Average Pooling (GAP) layer in CNNs to indicate, for a particular
category, the discriminative image regions used by the CNN to identify that category [58].
It could be used to interpret the prediction decision made by CNN. It is possible to observe
that according to the sequence of the joints, the CNN is triggered by different semantic
regions of the image. The model trained with the skeleton sequence B1 correctly predicted
the ground-truth class ‘COVE_EARS’ with the top prediction score of 0.43. Conversely, the
model trained with the skeleton sequence C2 incorrectly predict the sample as ‘Clapping’
with the top score of 0.49. Considering the samples for the ‘ROCKING’ class, both models
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correctly predicted the ground-truth class. However, the model trained with samples with
the joints sequence C2 presents a lower prediction score of 0.72.
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Figure 11. Skeleton-based image representations for the ground-truth class ‘COVER_EARS’ from the TSBD dataset. The
predicted class and its score are shown below each sample on the left. On the right, it is possible to see the activation maps
for each sample. It can be observed that the highlighted regions vary depending on the skeleton sequence, e.g., for B1 the
upper part of the region in the image is highlighted. On C2 the regions highlighted are more spread.
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Figure 12. Skeleton-based image representations for the ground-truth class ‘ROCKING’ from the TSBD dataset. The
predicted class and their score are shown below each sample on the left. On the right, it is possible to see the activation
maps for each sample. It can be noticed that the highlighted areas are, in general, in the same region on the image for both
B1 and C2.
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4.2.3. Per Class Performance and Real-Time Tests

Since the skeleton configuration B1 presents the highest mean test accuracy (92.4%± 0.0%),
the following results used this configuration. Figure 13 shows the training accuracy plot of the
model over the 20 runs. It is possible to see that the training converged rapidly and, in general,
it remained stable over the 200 epochs.
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Figure 13. Plot of the training accuracy over the 20 runs. The accuracy for the first epochs (5 to 100)
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As previously reported, the model achieved a validation accuracy of 93.8 ± 0.6% with
20% of the samples of the original dataset and test accuracy of 92.4 ± 0.0% with the test
data of seven subjects.

The model achieved an MCC of 91.5% ± 0.4% on the test samples.
Figure 14 shows the error bar plot of the mean accuracy per class as well as the

standard deviation for each of the 9 classes over the 20 runs. It is possible to see that most
classes had an average accuracy of over 90.0%.
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each of the 9 classes over the 20 runs.

In general, the classes achieved mean accuracies over 90.0% (Figure 14 and Table 5)
on the test data. The classes ‘IDLE’, ‘CLAP, and ‘TURN’ achieved, on average, the lowest
accuracies (85.9% ± 1.1%, 85.1% ± 1.7%, and 83.2% ± 2.2%, respectively).

Figures 15 and 16 show the generated image representations with the spatial and
temporal information that serves as input for the model, as well as frames of the actions
‘CLAP’ and ‘TURN’ performed by the subject in seated and upright positions, respectively.
These representations are generated and then classified by the model in real-time. It is
worth pointing out that these actions were performed by an adult subject.
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Figure 16. The generated image representations with the spatial and temporal information that serves as input for the model
(below), as well as frames of the actions ‘TURN’ (above) for the seated (on the left) and upright (on the right) positions. In
both scenarios, the model successfully classified the action as ‘TURN’.

4.3. Computational Efficiency

The computational time was calculated considering the average time for the Nuitrack
SDK to retrieve the user joints coordinates plus the time to encode the joints coordinates
into a sequence of frames and the classification time. The tests ran on a computer equipped
with an Intel(R) Core (TM) i7-8650 quad-core CPU with 16 GB of RAM. The inference
was done using OpenCV integrated with the Deep Neural Network module that allows
importing saved TensorFlow models [59]. Based on the performed tests, the total maximum
run time of the system is 0.032 s. Thus, the entire pipeline runs on average at about 31 FPS,
which ensures the real-time capability of the system.

4.4. Discussion

Based on the two experiments (E1 and E2) conducted with the KARD and the TSBD
datasets, it was found statistically significant differences in terms of accuracy between the
control group (B1) and the remaining skeleton configurations. Indeed, the model achieved
a mean accuracy of 94.0% ± 0.4% by using the B1 skeleton combination with the KARD
dataset. Furthermore, 12 out of the 18 classes achieved a mean accuracy of 100% ± 0.0% on
a benchmark dataset (as seen in Figure 9).
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Based on the combinations considered, there was one exception where the differences
were not found to be statistically significant for the pair-wise skeleton configuration B1
and B6 with the TSBD validation dataset of the present work. Concerning the test dataset,
it was found statistically significant differences, with B1 presenting the highest mean
accuracy. Therefore, it was possible to infer that the sequence of the joints could impact
the model’s performance. This could be further noticed when comparing the inter-class
accuracy with the present work dataset between the control group (B1) and one of the
skeleton configurations with the lowest mean accuracy (C2), where in general, all classes
mean accuracy dropped. This was more pronounced in the ‘COVER_EARS’ class, where it
dropped from 93.2% ± 0.6% in B1 to 83.2% ± 2.3% in C2.

Additionally, it is possible to observe from the activation maps (Figures 11 and 12) that
different regions in the images are activated by some visual pattern. For the ‘COVER_EARS’
class, this visual pattern focused more on the upper member joint position, since the upper
part of the image region for the skeleton sequence B1 was highlighted in its activation
map. Conversely, for the skeleton configuration C2 the highlighted regions were spread
across the image, and the sample was incorrectly classified as ‘CLAP’. This might be
due to the joints sequence being random, thus grouping the joints into limbs and trunk
may allow keeping the local motion characteristics [15], particularly for some categories.
Additionally, due to the nature of CNNs, it first captures local relationships, so when the
joints were hierarchically ordered, the results tended to be better. This was, in general,
mostly observed in the group’s joints configuration and better preserved in B1 configuration.
So, by maintaining the local and global joints hierarchy, the model (B1) performed better in
comparison to the other joint’s sequences. Considering the example for the ‘ROCKING’
class, in both cases, the predicted class was the ground-truth class, suggesting that the
joints sequence did not impact as much on the model’s final prediction. However, it was
possible to notice that the predicted class score was lower for the skeleton configuration C2.

Since the skeleton configuration B1 presented the highest mean accuracy, further tests
were conducted to assess the model performance. By analyzing the remaining results, it
was possible to observe that most of the classes had mean accuracies over 90% (Figure 14).
However, ‘IDLE’, ‘CLAP’, and ‘TURN’ achieved mean accuracies of 85.9% ± 1.1%, 85.1%
± 1.7%, and 83.2% ± 2.2%, respectively. This may be due to some samples being similar
in motion or, in the case of ‘IDLE’, some frames of the other classes could contain idle
moments when the user did not move.

As shown in Figures 15 and 16, the model could successfully classify the actions,
considering they were executed by an adult subject from two different positions, seated
and upstanding. It is worth pointing out that there was no data of adult subjects in the
TSBD dataset. Furthermore, all the samples were recorded, as depicted in Figure 5, in a
seated position. This could be mainly due to the normalization process that is scale and
translation invariant [15]. Thus, the model was able to successfully classify the actions for
these additional scenarios, effectively learning the skeleton motion characteristics.

So far, only a few works have tried to detect stereotyped behaviors of children with
ASD. One of them [32] has the goal of detecting the hand wave (flapping) gesture with
the Kinect sensor, achieving an accuracy of 51%. Another work [52] tried to detect other
stereotypes behaviors besides the hand wave. In order to have the same basis of comparison,
Table 6 compares both works with the present work in terms of accuracy for the similar
studied behaviors ‘HAND_WAVE’ and ‘ROCKING’.

Table 6. Comparison in terms of accuracy of other works in the literature that focus on the detection
of stereotypical behavior.

Work ‘HAND_WAVE’ ‘ROCKING’

N. Gonçalves et al. [20] 51.0% -
M. Jazouli et al. [52] 91.5% 92.2%

Present work 97.2% ± 0.0% 92.0% ± 2.3%
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The present method achieved a similar performance for ‘ROCKING’, while it outper-
formed the other works for the detection of stereotyped behavior ‘HAND_WAVE’.

Concerning the performance of the pipeline, it runs on average at about 31 FPS on a
quad-core CPU, being fast enough for most real-time applications.

The developed model could be used with other RGBD sensors with different configu-
rations (e.g., Kinect V1 or V2 [27], Orbec Astra [28], among others) since the Nuitrack SDK
has support for these sensors [54].

5. Conclusions and Future Work

Individuals with ASD have several impairments concerning social communication
and social interaction. Thus, it is important to propose new approaches for intervention in
order to mitigate these difficulties. Furthermore, it is important for technological devices,
such as robotic platforms, to receive some form of feedback from their peers’ actions to
better adapt their behavior to the end-user.

Following these ideas, the present work proposes an approach to automatically detect
some non-verbal behaviors. The system uses the Intel RealSense and the Nuitrack SDK to
detect and extract the user joint coordinates. The proposed approach learns directly from
the original skeleton data in an end-to-end manner.

The selected non-verbal behaviors for building the dataset consisted of typical and
stereotypical patterns.

In the first stage, two experiments (E1, sequence of groups, and E2, sequence of
joints) with the KARD and the TSBD datasets were carried out in order to infer if the
sequence of the joints in the skeleton image-based representation might impact the model
accuracy. It was found statistically significant differences in terms of accuracy between
the control group (B1 − P1, P2, P3, P4, and P5) and the remaining skeleton configurations.
Thus, indicating that the sequence of the joints can impact the model’s performance. Since
the skeleton configuration B1 presented the highest mean accuracy on the test dataset,
further tests were conducted to assess the model performance. The proposed model
achieved an overall validation accuracy of 93.8% ± 0.6% (with data from five subjects) and
a test accuracy of 92.4% ± 0.0% (with data from seven subjects). Additionally, the present
approach delivers state-of-the-art performance compared to other methods on the detection
of stereotyped behaviors (Table 6). More specifically, it achieved similar or even better
performance when classifying stereotypical behaviors—‘HAND_WAVE’ and ‘ROCKING’.

The whole pipeline is able to work in real-time, running on average at 31 FPS entirely
on an Intel(R) Core (TM) i7-8650 quad-core CPU in contrast to most state-of-the-art ap-
proaches that use dedicated GPU hardware when implementing deep learning approaches.

Future work will consist of using techniques to augment the TSBD dataset to improve
the system accuracy. In addtition, other deep neural network architectures will be explored.
Moreover, tests will be conducted with the target group in order to further assess the
system performance and improve the robot behavior. Additionally, the model will be used
in the system proposed by the research team in [15] in order to detect the child’s non-verbal
actions during support sessions with a humanoid robot. It is intended to automatically
adapt the robot’s behavior to the child’s action, providing a more adaptive support session
to each child.
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