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Abstract: In this article, we present an efficient coding scheme for LiDAR point cloud maps. As a
point cloud map consists of numerous single scans spliced together, by recording the time stamp and
quaternion matrix of each scan during map building, we cast the point cloud map compression into
the point cloud sequence compression problem. The coding architecture includes two techniques:
intra-coding and inter-coding. For intra-frames, a segmentation-based intra-prediction technique
is developed. For inter-frames, an interpolation-based inter-frame coding network is explored to
remove temporal redundancy by generating virtual point clouds based on the decoded frames. We
only need to code the difference between the original LiDAR data and the intra/inter-predicted
point cloud data. The point cloud map can be reconstructed according to the decoded point cloud
sequence and quaternion matrices. Experiments on the KITTI dataset show that the proposed coding
scheme can largely eliminate the temporal and spatial redundancies. The point cloud map can be
encoded to 1/24 of its original size with 2 mm-level precision. Our algorithm also obtains better
coding performance compared with the octree and Google Draco algorithms.

Keywords: LiDAR; point cloud map; coding; segmentation; interpolation

1. Introduction

LiDAR point clouds have been widely used in many emerging applications [1],
such as the preservation of historical relics, mobile robots, and remote sensing [2–9].
LiDAR sensors are essential for autonomous vehicles, and dense LiDAR point cloud
maps play an indispensable role in unmanned driving, such as obstacle detection [10],
localization [11], and navigation [12]. In wide geographic areas, a LiDAR point cloud map
consists of a vast number of points and requires a large bandwidth and storage space to
transmit and store [4,13–15]. Therefore, developing compression algorithms for the dense
LiDAR point cloud maps is an urgent task.

With the characteristics of covering a large area, unstructured organization, and a
huge volume [16], it is difficult to remove redundancy without distortion when encoding
the LiDAR point cloud map. Octree, as a data structure, has been widely used to encode
point clouds. Each internal node has exactly eight children in an octree. The octree-based
point cloud compression method is to divide a 3D point cloud by recursively subdividing
it into eight octants. As octree-based compression methods are lossy, they are suboptimal
for the autonomous vehicles that have strict requirements for compression accuracy in the
task of path planning or obstacle detection, etc.
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In this research, we focus on compressing the large-scale dense LiDAR point cloud
maps. The well-known low-drift and real-time LiDAR odometry (LOAM) algorithm are
used to build the 3D map [17]. The proposed LiDAR point cloud map coding algorithm
can be used in mobile robots or surveying and mapping fields. The major contributions are
as follows.

• By recording the time stamp and quaternion matrix of each scan during mapping, the
large-scale point cloud map compression can be formulated as a point cloud sequence
compression problem;

• For intra-coding, we develop an intra-prediction method based on segmentation and
plane fitting, which can exploit and remove the spatial redundancy by utilizing the
spatial structure characteristics of the point cloud.

• For inter-coding, we develop an interpolation-based inter-prediction network, in
which the previous time and the next time encoded point clouds are utilized to syn-
thesize the point clouds of the intermediate time to remove the temporal redundancy.

• Experimental results on the KITTI dataset demonstrate that the proposed method
achieves a competitive compression performance for the dense LiDAR point cloud
maps compared with other state-of-the-arts.

2. Point Cloud Coding: A Brief Review

The compression of the 3D point cloud data is a hot topic and preliminary investiga-
tions have been recently made.

2.1. Volumetric/Tree-Based Point Clouds Coding

For unstructured point clouds, Octree representation is commonly utilized as a point-
cloud geometry compression method. To improve the immersive visual experience, De
Oliveira Renteet et al. [18] proposed an efficient geometric coding scheme for point clouds,
in which an octree-based compression algorithm compression was utilized as a basic layer
and used the graph transformation technique as an enhancement layer to encode the
residual data. Their reported evaluation results show that the method produced significant
improvement, especially at low and medium bit rates. Traditional point-cloud compression
algorithms are limited to encoding the position and attribute of discrete point clouds.
In [19], Krivokua et al. introduced an alternative technique based on volume function.
Like regression analysis, the volume function is a continuous function that can interpolate
the values on a finite set of points into a linear combination of continuous basis functions.
B-spline wavelet basis is utilized for encoding the volume function, which represents
the geometry and attributes of point clouds. Compared to the latest MPEG point-cloud
coding standard [20], their algorithm achieves better coding performance in geometry
and attributes. To alleviate the computational complexity of the 3D point-cloud model in
registration, data abstraction, and visualization, Elseberg et al. [21] proposed an effective
point-cloud storage and compression scheme based on the Octree. The coding scheme can
be used in file format conversion and 3D model registration.

2.2. Image/Video-Based Point Clouds Coding

For structured point clouds, some studies have focused on employing image/video
codecs to compress point cloud data by mapping it into 2D data. Similar to this approach,
Tu et al. [22] transformed LiDAR point clouds into a range image sequence and used a
simultaneous localization and mapping (SLAM) algorithm to perform inter-prediction. The
intra-frame and inter-prediction residual data are encoded by the MPEG-like compression
method. Unlike the aforementioned methods, Wang et al. [23] proposed a method to
compress RGB-D point clouds. The properties between RGB-D point clouds and LiDAR
point clouds are similar, except for the measurement range (i.e., Lidar is around 100 m,
while RGB-D camera is around a few meters). They developed a warping-based depth
data coding method, in which a point-cloud registration algorithm was utilized to remove
redundancy. Experimental results showed that their algorithm achieved a higher compress



Sensors 2022, 22, 5108 3 of 14

ratio with less distortion compared to recent methods. Tu et al. [24] used the conventional
image and video-based schemes to compress the 2D arrays by converting the LiDAR data
to a range image. Feng et al. [25] proposed a real-time spatio-temporal LiDAR point clouds
compression scheme. In this scheme, key frames are identified and encoded by interative
plane fitting, and then the temporal streams are encoded by referencing the spatially
encoded data. In [26], Tu et al. firstly chose frames as keyframes (I-frame) and obtained
the optical flow between the two nearest keyframes. Then, according to the two keyframes
and the optical flow, a U-net network was utilized to generate the remaining LiDAR
frames (P-frames) between the two keyframes. They removed the temporal redundancy by
interpolating point cloud data between two non-adjacent frames. In [27], Tu et al. proposed
an RNN-based network to encode LiDAR point clouds. They used a recurrent neural
network, and only the input of the first layer was the point cloud data, while the inputs of
other layers were the residual data. Their method was to remove the spatial redundancy of
a frame of point clouds, not the temporal redundancy. Coding each frame is independent
and does not depend on other frames.

2.3. Summary

Currently, there is still no efficient coding solution for the LiDAR point cloud map.
Though volumetric/tree-based schemes, such as Google Draco [28] and MPEG TMC
13 [20], can be used to encode the LiDAR point cloud map, their coding performance is
far from satisfactory as these methods fail to utilize the spatial structure of point clouds.
Converting LiDAR data into a 2D matrix in itself is an efficient method for reducing
spatial redundancy. However, most of the existing methods [22,24,29] directly use the
image/video-based method to encode LiDAR range image without further exploiting the
temporal and spatial redundancies.

3. Overall Codec Architecture

In the paper, the problem of efficient coding dense LiDAR point cloud map is ad-
dressed, which can be used for mobile robots or surveying and mapping fields. The
low-drift and real-time LOAM algorithm is utilized to construct a LiDAR point cloud
map [17]. During the mapping process, the time stamp of the LiDAR scans and quaternion
matrices is recorded relative to the global coordinate origin. As the LiDAR point cloud map
is constructed by these frames, the dense point cloud map compression can be specified
into a point cloud sequence coding task.

Generally, the point cloud sequence compression needs to exploit both temporal and
spatial redundancies. The system architecture of our LiDAR point cloud map coding
algorithm is illustrated in Figure 1. We divide the frames in the point cloud sequence into
intra-frames (I-frames) and inter-frames (B-frames, bi-prediction). An I-frame is compressed
independently by removing the spatial redundancies, while a B-frame is compressed by
referring to encoded I-frames or B-frames to remove the temporal redundancies. Two
I-frames are encoded firstly, followed by B-frames in the middle of two I-frames. B-frames
cannot be encoded independently and rely on two encoded I-frames [30].
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Figure 1. System architecture of our LiDAR point cloud map encoder.

The intra-frames are coded by a segmentation-based prediction technique, while for
inter-frames, we develop an interpolation-based coding network to remove the temporal
redundancy.

Decoding is the inverse process of encoding. The decoded residual data is added to
the prediction data to recover the point clouds. According to the decoded point clouds,
quaternion matrices, and translation matrices, the point cloud map can be reconstructed: xB

yB
zB

 = Ryaw × Rpitch × Rroll ×

 xI
yI
zI

+

 Cx
Cy
Cz

, (1)

where xI , yI , zI is x, y, z of coordinate system of an intra frame, and xB, yB, zB are corre-
sponding x, y, z, when using the predicted B-frame as the coordinate origin. Cx, Cy, and Cz
denotes the translation matrix, and Ryaw, Rpitch, Rroll represents the rotation matrix of yaw,
pitch, and roll angle.

4. Intra-Frame Point Cloud Coding Based on Semantic Segmentation
4.1. Overview of Intra-Coding Network

The pipeline of the proposed segmentation-based intra-frame point cloud coding
method is illustrated in Figure 2. Firstly, the point cloud conversion from 3D to 2D is
performed to obtain the 2D Matrix of point clouds. Then, the RangeNet++ [31] network
is utilized to realize point cloud segmentation. The residual data, contour map, and the
quadric surface parameters are encoded with lossless coding schemes and packaged as the
the intra-bitstream.
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Figure 2. Intra-prediction technique based on segmentation.

4.2. LiDAR Point Cloud Segmentation

The LiDAR data from the KITTI dataset is utilized to verify our method, which uses
64 channels, covering 26.9◦ vertical field of view and a 360◦ horizontal field of view [32].
Considering that LiDAR sensors acquire data in an orderly way, the point clouds can be
converted from R3 to R2. Let (Ii = (xi, yi, zi))i=1...N be the coordinates of a frame of point
cloud captured by Velodyne sensors. Considering that the point clouds is ordered, it can be
transformed into a 2D matrix X(u, v)u=1...M,v=1...N .(

u
v

)
=

( 1
2 (1− arctan(y, x)π−1) · w

(1− (arcsin(zr−1 + fup)) f−1) · h ,
)

(2)

where (x, y, z) represent the coordinates of point P, (u, v) are 2D matrix coordinates, (h, w)
are the height and width of the desired 2D matrix representation, r =

√
x2 + y2 + z2

represents the distance of point P = (x, y, z) from the origin, and f = fup + fdown denotes
the vertical field of view of the LiDAR sensor [33].

The RangeNet++ takes the fused 2D information as input and outputs the segmen-
tation results. Three 2D convolutional blocks are adopted as a 2D feature extractor. The
output of the final layer is the point cloud segmentation results. The segmentation results
will pave the way for the subsequent surface fitting-based intra-prediction technique.

4.3. Segmentation-Based Intra-Prediction Technique

Nearly one-third of the point cloud data are ground points. After segmenting the point
cloud, we can segment the ground and other objects. Thus, the quadric surface fitting-based
technique is utilized to fit the point clouds. Considering the complexity and compression
efficiency, we fit the segmented region with the plane for the ground points and sphere for
other object.

A plane is defined by J = (n, d), where n is the normal vector, with ||n|| = 1, and d is
the vertical distance from the origin to the plane. The distance from a point pi to the plane
is defined as:

Dplane(J, pi) = ||nT p− d|| (3)
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Then we can construct the equation εplane as a function of the distance of the minimum
value of the sum.

εplane(J, S) =
N

∑
i=1
||nTSi,: − d|| (4)

A sphere is represented by J = (c, r), where r ∈ R denotes the radius, and c ∈ R3

represents the center. The distance from point pi to the sphere is defined as:

Dsphere(J, pi) = ||c− pi|| − r (5)

Then we can construct the fitting equation εsphere as a function of the distance of the
minimum value of the sum.

εsphere(J, S) =
N

∑
i=1
||(||c− pi||)− r|| (6)

4.4. Residual Data Coding

According to the parameters of the LiDAR sensor, we use the fitting plane to calculate
the coordinates of the virtual points. The residual data Rintra(x, y) is the difference between
the original range image Xintra(x, y) and the predicted range image Pintra(x, y). As the pixel
values of the residual data are nearly zero, the entropy of the Rintra(x, y) is smaller copared
with Xintra(x, y). Thus, the residual data Rintra(x, y) can be encoded with fewer bits.

Rintra(x, y) = Xintra(x, y)− Pintra(x, y). (7)

5. Inter-Frame Point Cloud Coding Based on Inserting Network
5.1. Overall Inter-Prediction Network

To remove temporal redundancy in the LiDAR point clouds [34], an inter-frame point
cloud inserting network is designed, as illustrated in Figure 3. The interpolation module
utilizes the encoded points clouds X = {Xt0, Xt0+2k}, and generates the internal point cloud
frame Pt0+k. We calculate the difference between the predicted result Pt0+k and the real
point cloud Xt0+k as residual data Rinter(x, y), which will be encoded as the inter-bitstream.

Figure 3. Inter-frame point cloud inserting network.

5.2. Point Cloud Interpolation Module

Figure 3 illustrates the diagram of the LiDAR point cloud interpolation module. The
encoder and decoder parts predict the 3D voxel stream, which will be used to generate the
required intermediate frames. The network generate the predicted frame Pt=t0+k according
to the input point clouds X̌t=t0 and X̂t=t0+2k, where X̌t=t0 , X̂t=t0+2k are already encoded
frames. The predicted frame can be the middle frame by interpolating or the next frame
by extrapolating the input point clouds. We focus on interpolating the intermediate frame
according to two decoded frames. The network is represented by H(Xrec, Θ), where the
output F is the 3D voxel flow of the input Xrec, and Θ is the network parameters.

F = (∆x, ∆y, ω) = H(Xrec; Θ), (8)
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where F is the optical flow of two adjacent frames. The opposite direction of the optical flow
is used to identify the corresponding position in the previous frame. The coordinates of
the corresponding positions in the preceding and following frames is defined as L f ormer =
(x−∆x, y−∆y) and Llater = (x+∆x, y+∆y). We use tri-linear interpolation from the eight
corner points of the voxel to calculate the output value P(x, y) by four points: X̌00(x̌ceil , y̌ceil),
X̌01(x̌ceil , y̌ f loor), X̌10(x̌ f loor, y̌ceil), and X̌11(x̌ f loor, y̌ f loor), from the former frame, and the
other four points: X̂00(x̂ceil , ŷceil), X̂01(x̂ceil , ŷ f loor), X̂10(x̂ f loor, ŷceil) and X̂11(x̂ f loor, ŷ f loor),
from the later frame.

The time component of the voxel stream F can be considered as a linear blending
weight between two adjacent frames. We employ this voxel stream to sample the input
two frames and use the volume sampling function Tx,y,ω to generate the final predicted
frame P.

Pinter(x, y) = Tx,y,ω(Xrec, H(Xrec; Θ))
= ω · Pf ormer(x, y) + (1−ω) · Plater(x, y), (9)

where Pf ormer(x, y) and Plater(x, y) are computed by

Pf ormer(x, y) =
[

1− x x
]
×
[

X̌00 X̌01
X̌10 X̌11

]
×
[

1− y
y

]
,

Plater(x, y) =
[

1− x x
]
×
[

X̂00 X̂01
X̂10 X̂11

]
×
[

1− y
y

]
.

(10)

The interpolation network adopts a fully convolutional structure, with four convolu-
tional layers and four deconvolutional layers. To better maintain the spatial features in the
low dimension layer, some jump connections between the corresponding convolutional
layer and deconvolutional layer are added.

5.3. Inter Loss Function Design

The prediction module is represented by H(X(t0,t0+2k), Θ), where the output Pt0+k is
the predicted point cloud at t = T + 1 and Θ is the network parameters.

Pt0+k = H(X(t0,t0+2k), Θ), (11)

The predited point cloud data are converted to range image, and the difference
between the original range image Xt0+k(x, y) and the predicted range image Pt0+k(x, y) is
calculated as the residual data Rinter(x, y), which will be encoded losslessly. Explicity, the
training loss is defined as follows:

Rinter(x, y) = Xt0+k(x, y)− Pt0+k(x, y)

= Xt0+k(x, y)− H(X(t0,t0+2k), Θ)
(12)

Lloss = ||Rinter||2 (13)

5.4. Visualization Results

For the inter-coding network, if the point-cloud interpolation module synthesizes
more accurate point clouds, smaller residual data and higher compression performance can
be achieved. To deeply evaluate, four scenes point cloud interpolation results are obtained,
as illustrated in Figure 4. We can see that the predicted point cloud and the original point
cloud are almost the same. The effectiveness of the inter insertion module is confirmed.
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Ground Truth

Generation Result

(a)

Ground Truth

Generation Result

(b)

Ground Truth

Generation Result

(c)

Ground Truth

Generation Result

(d)

Figure 4. Qualitative results: (a) campus; (b) city; (c) road; (d) residential (Best viewed by zooming in).

6. Experimental Results

The proposed point cloud compression scheme is implemented in python using point
cloud libraries (PCL) [35] on a PC with a TITAN RTX GPU. The KITTI dataset [36], including
city, residential, campus, and road scenes, is used to evaluate our algorithm.

6.1. Evaluation Metric

To evaluate the overall performance, the calculation of the compression ratio (CR) and
relative distance (Dd) is considered. The CR is obtained by calculating the ratio between
the point cloud size after compression and the original size.

CR =
Compressedsize

Originalsize
× 100%, (14)
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Dd represents the distance between the ground truth LiDAR data Pinput and the
reconstructed one Pdecode. Dd is defined as follows:

Dd(Pinput, Pdecode) =
Dd(Pinput, Pdecode)

2
+

Dd(Pdecode, Pinput)

2

Dd(Pi, Pj) =
1
|Pi| ∑

xi∈Pi

min
xj∈Pj

d(xi − xj)
. (15)

The measure is sensitive to false positives (rebuilding points in unoccupied areas) and
false negatives (excluding occupied areas).

6.2. Coding Performance for a Single Frame

To find the most efficient coding method for the residual data, several lossless coding
schemes are used to encode the residual data, including Zstandard, LZ5, Deflate, Lizard,
LZ4, and PPMd. To verify the compression efficiency in removing the time and space
redundancy, the 2D matrices are also directly encoded with the lossless coding algorithms
without any preprocessing. Figure 5 shows the experimental results.

(a) (b)

(c) (d)

Figure 5. CR of different lossless coding schemes: (a) campus; (b) city; (c) road; (d) residential.

For intra-coding, the smallest CR value is 4.64%, achieved by using the PPMd scheme
for the city scene due to its simple structure. The point cloud of the residential scene,
however, is complex and the CR is much higher. The smaller the CR, the better the coding
performance.
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For inter-coding, it can be observed that using the PPMd scheme achieves the best
compression performance for the campus scene, with a CR of 3.09%. The worst CR is
6.87% for the residential scene using the LZ4 scheme. However, the CR of the proposed
inter-coding network is still smaller than that of directly coding point cloud data with
lossless coding schemes.

6.3. Comparsion with Octree and Draco

According to the time stamp and quaternion matrix of each scan, the scans are merged
into a LiDAR panoramic map. Taking this point cloud map as a whole, Table 1 de-
scribes the CR results of the proposed coding method compared to Octree [35] and Google
Draco [28]. The quantization accuracy (QA) of our method is set to 2 mm, 5 mm, and
1 cm, while the distance resolution (DR) of Octree is set to 1 mm3, 5 mm3, and 1 cm3.
The quantization bits (QB) of Draco are set to 17, 15, and 14, which correspond to 1 mm
accuracy, 5 mm accuracy, and 1 cm accuracy, respectively. Besides that, the compression
level (CL) = 10 is set to achieve the highest compression rate. In our experiments, PPMd
is selected to encode residual data. From Table 1, it can be observed that compared with
Octree, the proposed algorithm achieves a smaller CR value.

Table 1. Comparison ratio results with the Draco and Octree methods.

Inter-Inserting Method Octree [35] Draco [28]

Scene QA DR QB

2 mm 5 mm 1 cm 1 mm3 5 mm3 1 cm3 17 (bits) 15 (bits) 14 (bits)

Campus 3.09 2.49 2.01 21.27 8.05 5.75 11.87 7.75 5.47

City 3.90 3.38 2.83 23.98 10.76 8.40 12.52 8.38 6.49

Road 3.16 0.26 2.12 23.56 10.35 7.99 12.31 8.35 6.59

Residential 4.29 3.68 3.16 22.94 9.72 7.37 12.66 8.59 6.33

Average 3.61 3.03 2.53 20.23 9.72 7.29 12.34 8.27 6.22

6.4. Rate-Distortion Curves

Four state-of-the-art baselines are chosen for comparison, including Google Draco [28],
MPEG TMC13 [20], and Tu’s method [26]. The results are evaluated in terms of the relation-
ship between the Distance and the bit per point (bpp) for point cloud data for four scenes,
as illustrated in Figure 6. The proposed LiDAR point clouds coding method has shown
outstanding advantages in terms of bbp and Dd among these methods [37–39]. Google
Draco and MPEG TMC13 are not designed specifically for multi-line LiDAR data [40,41].
Compared to these methods, our method can generate the point cloud more accurately,
which contributes to largely removing the redundancy and obtaining a better Dd-bpp result.
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(a) (b)

(c) (d)

Figure 6. Dd-bpp curves of our method in compared to Google Draco [28], MPEG TMC13 [20] and
Tu’s method [26]: (a) campus, (b) city, (c) road, and (d) residential.

6.5. Computational Complexity

The proposed intra-coding consists of three steps, namely segmentation, intra-prediction,
and residual data coding, while the inter-coding method consists of inserting frame and
residual data coding. By calculating the average coding time, 100 frames are selected.
Experimental results show that the total intra-coding time with the lossless method (PPMd)
is 0.21 s and the total inter-coding time is 0.15 s.

7. Discussion

With a 5–15 HZ user-selectable frame rate, the LiDAR sensor of HDL-64E S2 captures
over 1.3 million points per second. The drawback of the proposed LiDAR point cloud
map coding scheme is that the intra-coding and inter-coding can not meet the real-time
requirement [42–44]. However, it can be used for off-line LiDAR point cloud map coding to
reduce its storage space and transmission bandwidth, which can be used in mobile robots
or surveying and mapping fields. The follow-up research focuses on implementing the
coding scheme to the FPGA platform to accelerate the algorithm and achieve real-time
performance.

8. Conclusions

Ranging sensors, such as LiDAR, are considered to be very robust under all light
conditions or foggy weather, which have been widely used in the field of autonomous
driving tasks, for instance, navigation, obstacle avoidance, target tracking, and recognition,
etc. However, the enormous volume of LiDAR point clouds brings great challenges to
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data storage and transmission. To address this issue, this paper focuses on LiDAR point
cloud map coding. Firstly, an intra-coding technique is designed based on point cloud
segmentation and geometric reconstruction, which can effectively remove the spatial
redundancy of the LiDAR point cloud. Secondly, we designed a point cloud insertion
network to remove the time redundancy of point clouds by inserting frames into the
intermediate moment according to the encoded point clouds. Experiments demonstrate
that the proposed method obtains a higher comparison performance compared with several
representative point cloud methods.
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