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INTRODUCTION 
 
Multiple system atrophy (MSA) is a progressive 
neurodegenerative disorder manifested by parkinsonism, 
cerebellar ataxia syndrome, as well as autonomic nervous 
dysfunction [1]. Pathologically, it is characterized by 
alpha synuclein-positive glial cytoplasmic inclusions 
(GCIs), which lead to the degeneration and death of 
neurons, finally result in the brain atrophy in several 
specific regions including the striatum, cerebellum, and  

 

olivopontine structures [2–4]. However, the mechanism of 
MSA remains unclear at present. The main hypothesis of 
MSA pathophysiology suggested that the disruption of 
functional connectivity (FC) among specific brain 
regions, caused by alpha synuclein-positive GCI, might 
contribute to the clinical performances of MSA.  
 
Recent advances in neuroimaging techniques provide 
the opportunity to study the disconnections (i.e., 
disruption of functional connectivity) in MSA in vivo. 
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ABSTRACT 
 
In order to explore the topological alterations in functional brain networks between multiple system atrophy 
(MSA) patients and healthy controls (HC), a new joint analysis method of static and dynamic functional 
connectivity (FC) is proposed in this paper. Twenty-four MSA patients and twenty HCs were enrolled in this 
study. We constructed static and dynamic brain networks from resting-state fMRI data and calculated four 
graph theory attributes. Statistical comparisons and correlation analysis were carried out for static and dynamic 
FC separately before combining both cases. We found decreased local efficiency (LE) and weighted degree (WD) 
in cerebellum from both static and dynamic graph attributes. For static FC alone, we identified increased 
betweenness centrality (BC) at left dorsolateral prefrontal cortex, left Cerebellum_Crus9 and decreased WD at 
Vermis_6. For dynamic FC alone, decreased BC, clustering coefficients and LE at several cortical regions and 
cerebellum were identified. All the features had significant correlation with total UMSARS scores. Receiver 
operating characteristic analysis showed that dynamic features had the highest area under the curve value. Our 
work not only added new evidence for the underlying neurobiology and disrupted dynamic disconnection 
syndrome of MSA, but also proved the possibility of disease diagnosis and progression tracking using rs-fMRI. 
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The resting-state functional magnetic resonance 
imaging (rs-fMRI) can explore statistical correlations of 
spontaneous activities among functional correlated 
brain regions and different brain networks [5, 6]. In the 
previous studies, researchers found the disruption of the 
striatal-thalamo-cortical (STC) network, default mode 
network (DMN), visual associated network [7], 
cerebello-thalamo-cortical (CTC) network [8], as well 
as motor network [9] in MSA patients, which were 
associated with the movement dysfunction. 
Furthermore, recent MSA studies revealed the altered 
functional connectivity of DMN, sensorimotor network, 
visual associated cortices and cerebellum [10, 11], 
which showed close correlation with structure atrophy 
and perfusion dysfunction. These studies provided 
evidence for the hypothesis of “disconnection 
syndrome”, suggesting that the accumulation of alpha-
synuclein GCIs of the MSA may destroy the specific 
networks and finally result in associated clinical 
dysfunction [12]. Besides resting state networks, graph 
theoretical analysis is another method to study brain 
networks. Researchers found altered network topology 
and graph theory attributes by diffusion tensor 
tractography [13] and rs-fMRI [14, 15]. Despite these 
advances, previous studies mostly assumed that the 
functional connectivity was constant during the MRI 
scanning, ignoring its dynamic nature [16–18]. 
 
Compared to static FC, dynamic FC offers the chance to 
investigate the rs-fMRI time series on a much finer 
scale (e.g., at specific time points or within predefined 
time windows), which brings two exclusive advantages. 
On the one hand, it facilitates observation of details that 
are averaged out in static FC and thus offers richer 
information for studying brain activities. On the other 
hand, it enables capture of spontaneously reoccurring 
functional connectivity patterns (i.e., FC states), which 
is essential for understanding the temporal variability in 
the intrinsic organization of the brain. Based on these 
advantages, researchers found that dynamic FC was a 
potential sensitive biomarker for neuropsychiatric 
disorders, such as Schizophrenia [19], Autism [20], and 
Parkinson's disease [21, 22]. The graph theory attributes 
are extended based on dynamic FC as well [23, 24]. 
However, to our knowledge, no study has examined the 
dynamic FC in MSA patients until now. To fill in the 
gap, this paper intends to combine the static and 
dynamic FC to focus on the following two questions: 1) 
whether and how MSA patients differ from healthy 
controls (HCs) in the static and dynamic FC at the 
whole-brain level; 2) whether such differences in static 
and dynamic FC can serve as potential biomarkers of 
MSA. Based on the previous studies and the pathology 
of MSA, we can hypothesize that alpha synuclein-
positive GCI may disrupt the connectivity of DMN 
regions, sensorimotor cortex and cerebellum, destroy 

the network topology pattern in these regions, which are 
associated with clinical dysfunction. By using static and 
dynamic FC analysis, we can deeply understand the 
differences between MSA and controls, and possibly 
capture the most sensitive biomarker to differentiate the 
two groups. 
 
In the current study, we propose a novel joint analysis 
method, investigating the network topology of static and 
dynamic FC based on the resting-state fMRI data of 24 
MSA patients and 20 HCs. Firstly, we calculated four 
graph theory attributes based on static and dynamic FC. 
Secondly, statistical comparisons were performed and 
the correlations between features and clinical 
performance were measured in static and dynamic cases 
independently. Then, we identified features that are 
significantly abnormal and correlated with clinical 
scores in both static and dynamic cases, as well as static 
specific and dynamic specific features. Finally, we used 
the receiver operating characteristic (ROC) analysis to 
investigate whether the significantly different and 
correlated features can serve as predictors to distinguish 
MSA from HC.  
 
RESULTS 
 
Demographic and neuropsychological tests  
 
Demographic and clinical characteristics are described 
in Table 1. No significant differences of gender, age, 
education, MMSE and MoCA scores were found 
between the MSA-c type and control groups. However, 
the MSA-c type group exhibited increased total 
UMSARS scores which refer to the severity of the 
disease. 
 
Graph attributes analysis 
 
Statistical analysis on graph attributes identified a range 
of significantly different and correlated regions. A 
region is considered as significantly different if the non-
parametric Mann Whitney test produced a p-value < 
0.05. The correlation analysis between four graph 
theory attributes and total UMSARS scores selects 
regions that showed a p-value less than 0.05 in Kendall 
correlations. We identified regions and features that 
were significant (difference and correlation) in static-
alone, dynamic-alone and both scenarios. Results are 
summarized in Table 2.  
 
Static and dynamic graph attributes 
 
Among features identified from static graph attributes, 
BC at left dorsolateral prefrontal cortex (DLPFC, 
BA46) and left Cerebellum_Crus9 (AAL105), LE at 
right Cerebellum_Crus2 (AAL94), right Cerebellum_
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Table 1. Clinical and demographical data. 

 MSA-C(n=24) Control(n=20) p-Value 
Age, years 57.29±1.20 57.20±1.11 0.715 
Gender, male/female 14/10 7/13 0.383 
Education, years 13.80±0.48 13.75±0.49 0.192 
Disease duration years 4.27±0.18 NA  
MMSE 27.20±0.45 27.30±0.42 0.374 
MoCA 27.40±0.29 28.10±0.28 0.378 
UMSARS-I 16.54±1.17 NA  
UMSARS-II 16.17±1.28 NA  
UMSARS- total 32.71±2.27 NA  
Over disability grade 2.49±0.25 NA  
 

Table 2. Significant static and dynamic features. 

Graph 
theory 
attributes 

Brain region 

Brodmann 
area / 

Automated 
Anatomical 

Labeling 
atlas area 

Static Dynamic 

Mean 
HC 

Mean 
CMSA 

Strength 
P 

Kendall 
Correlation 

Mean 
HC 

Mean 
CMSA 

Strength 
P 

Kendall 
Correlation 

BC Left dorsolateral prefrontal 
cortex BA46 29.30 61.75 0.013 0.336 - - - - 

 Left Cerebellum_Crus9 AAL105 34.40 58.50 0.043 0.370 - - - - 
WD Vermis_6 AAL112 24.60 21.99 0.027 -0.292 - - - - 
BC Left frontal eye field BA8 - - - - 94.99 67.57 0.005 0.314 

CCFS Right ventral anterior 
cingulate cortex BA24 - - - - 0.4969 0.3735 0.002 -0.396 

LE Right Cerebellum_Crus1 AAL92 - - - - 0.2420 0.2187 0.010 -0.292 
LE Right Cerebellum_Crus2 AAL94 0.2348 0.1985 0.001 -0.314 0.2498 0.2187 0.003 -0.314 
 Right Cerebellum_Crus 6 AAL100 0.2356 0.2010 0.006 -0.366 0.2464 0.2213 0.009 -0.351 
 Vermis_6 AAL112 0.2148 0.1961 0.029 -0.366 0.2309 0.2135 0.032 -0.336 
WD Right Cerebellum_Crus 6 AAL100 27.33 22.94 0.009 -0.322 28.51 25.21 0.014 -0.329 

The p-value is obtained by non-parametric Mann-Whitney tests. BC: betweenness centrality; CCFS: clustering coefficient; LE: 
local efficiency; WD: weighted degree. Significant correlations were shown in bold (p < 0.05, uncorrected). 
 

Crus6 (AAL100) and Vermis_6 (AAL112), WD at right 
Cerebellum_Crus6 (AAL100) and Vermis_6 (AAL112) 
showed significant difference and had significant 
correlation with clinical scores. Patients showed increased 
BC values and decreased LE and WD values at these 
regions Cerebellum_Crus. The correlations of BC with 
scores were all positive, whereas CCFS, LE and WD were 
negatively correlated with scores (Table 2).  
 
For dynamic feature results, BC at left frontal eye 
field (BA8), CCFS at right VACC, LE at right 
Cerebellum_Crus1 (AR92), right Cerebellum_Crus2, 
right Cerebellum_Crus6 and Vermis_6, WD at right 
Cerebellum_Crus6 were both significantly different 
and correlated with scores. Patients showed reduced 
CCFS, LE and WD values at these regions, while with 
decreased BC at left frontal eye field. The correlations 
of BC with scores were positive, whereas CCFS,  
LE and WD were negatively correlated with scores 
(Table 2).  

The stability of dynamic graph attributes was also 
examined. The stability of patients was higher than 
healthy controls in several regions for LE and WD, 
while healthy controls were more stable for CCFS. The 
betweenness centrality (BC), however, exhibited mixed 
result. Only BC at left frontal eye field was both 
significantly different in strength (p<0.005) and stability 
(p<0.004), as well as correlated with scores (Kendall 
taur = 0.333). BC of AD patients at left frontal eye field 
was more stable than healthy controls. The detailed 
statistics can be found in Supplementary Table 1  
 
Static and dynamic overlapping graph attributes 
 
The intersection of static and dynamic significant 
features were LE at right Cerebellum_Crus2, right 
Cerebellum_Crus6 and Vermis_6, and WD at right 
Cerebellum_Crus6. As reported before, statistical tests 
results were consistent in static and dynamic FC. 
Patients showed reduced LE and WD values at these 
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regions. The correlations of CCFS, LE and WD with 
scores were negative.  
 
In order to visualize dynamic graph attributes, we 
calculated the average and 95% confidence interval 
within each group at each time slice. Patients and 
healthy controls were shown as red and green 
respectively. The average value lies in the middle, 
bounded by the upper and lower 95% confidence 
interval curves. The correlation results of static and 
dynamic features are also plotted in Figures 1 and 2 
respectively.  
 
We plotted the receiver operating characteristic (ROC) 
curve based on each of the significant regions. Figure 1 
shows results from static FC. The ROC curve of dynamic 
features was generated at each time slice and the area 

under curve (AUC) value was calculated. A black line 
represents the variation of AUC and is shown in the 
dynamic plots. The ROC curve related to the maximum 
AUC of dynamic features is shown in Figure 2.  
 
Although the feature locations are the same, dynamic 
significant features generally had higher AUC 
compared to their static counterparts. The dynamic 
significant feature of LE at right Cerebellum_Crus2 
reached the highest ROC AUC of 0.78, followed by 
dynamic significant feature of LE at right 
Cerebellum_Crus6 with ROC AUC of 0.75.  
 
Static and dynamic specific graph attributes 
 
In order to investigate differences of static and dynamic 
graph attributes, we identified features that are 

 

 
 

Figure 1. ROC curve and correlation of static features. The correlation is between clinical score (x-axis) and features (y-axis). BC: 
betweenness centrality; CCFS: clustering coefficient; LE: local efficiency; WD: weighted degree. 
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significant only in static or dynamic cases. The static 
specific significant features include BC at left DLPFC, 
left Cerebellum_Crus9 and WD at Vermis_6, while 
dynamic specific significant features include BC at left 
frontal eye field, CCFS at right VACC, and LE at 
Cerebellum_Crus1. Patients had higher static BC at left 
DLPFC and left Cerebellum_Crus9, and lower static 
WD at Vermis_6. Static BC at left DLPFC and left 
Cerebellum_Crus9 were positively correlated with 
scores while static WD at Vermis_6 showed negative 
correlation. All dynamic specific significant features were 
lower in the patient group and had negative correlation 
except BC at left frontal eye field. The region volume, 
dynamic feature line plot, ROC curve and correlation of 
static and dynamic specific significant features are shown 
in Figures 3 and 4 respectively.  
 
The dynamic specific significant features also showed 
higher AUC values compared to static specific 
significant features. Dynamic CCFS at right VACC 
reached the highest AUC of 0.86, higher than LE at 
right Cerebellum_Crus2 (AUC = 0.78).  
 
Logistic regression analysis 
 
In order to assess the value of identified significant 
features in disease classification, we fitted a logistic 

regression model using static specific, dynamic specific 
and overlapping features with regularization parameter 
C = 1. ROC curves were plotted to evaluate the 
classifier performance (Figure 5). The model built with 
dynamic specific features reached the highest AUC of 
0.86, with 87.5% sensitivity and 75.0% specificity. 
 
DISCUSSION 
 
Major findings 
 
As the first attempt to investigate the FC dynamics of 
MSA at the whole-brain level, the present work 
analyzed the regional temporal variability of graph 
theory attributes related to MSA patients in comparison 
with HCs. Our main findings are as follows. First, 
among the features identified from both static and 
dynamic graph attributes, LE at right 
Cerebellum_Crus2, right Cerebellum_Crus6 and 
Vermis_6, and WD at right Cerebellum_Crus6 had 
significant correlations with total UMSARS scores. 
Second, when investigating the differences between 
static and dynamic graph attributes, we identified 
features that are significantly abnormal only in static or 
dynamic cases. The static specific significant features 
include BC at left DLPFC, left Cerebellum_Crus9 and 
WD at Vermis_6, while dynamic specific significant 

 

 
 

Figure 2. Dynamic graph attributes curves with ROC AUC plots, ROC curve at the maximum ROC AUC time point, and 
correlation of features and clinical scores. For Dynamic Features line plots, black line stands for ROC AUC (value on the right axis). Green 
stands for healthy controls and red stands for CMSA patients (value on the left axis). The ROC curve at the time point when AUC reached its 
maximum is shown. The correlation is between clinical score (x-axis) and features (y-axis). BC: betweenness centrality; CCFS: clustering 
coefficient; LE: local efficiency; WD: weighted degree. 
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features include BC at left frontal eye field, CCFS at 
right VACC, and LE at right Cerebellum_Crus1. All the 
features had significant correlation with total UMSARS 
scores. Third, the ROC analysis revealed that among all 

static and dynamic features, dynamic specific CCFS at 
right VACC showed the largest area under the curve, 
implying that the dynamic functional change of VACC 
may be the key imaging marker for MSA diagnosis.

 

 
 

Figure 3. Static specific significant features. These features can only be identified from static functional connectivity. The 3D region 
volume was shown, as well as the ROC curve and correlation with clinical scores. The correlation is between clinical score (x-axis) and 
features (y-axis). BC: betweenness centrality; CCFS: clustering coefficient; LE: local efficiency; WD: weighted degree. 

 

 
 

Figure 4. Dynamic specific significant features. These significant features can only be identified from dynamic functional connectivity. 
The 3D region volume was shown, as well as the dynamic features line plots. Green stands for healthy controls, red stands for CMSA patients 
(value on the left axis), and black line stands for ROC AUC (value on the right axis). The ROC curve at the time point when AUC reached its 
maximum is shown. The correlation is between clinical score (x-axis) and features (y-axis). BC: betweenness centrality; CCFS: clustering 
coefficient; LE: local efficiency; WD: weighted degree. 
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Features identified from both static and dynamic 
graph attributes  
 
Among the features identified from both static and 
dynamic graph attributes, some features were found to 
have significant correlations with total UMSARS scores 
in several cerebellar subregions. BC, CCFS, LE and 
WD are measures of regional functional “importance” 
based on the strength of a region’s connections with 
other regions and importance of the connected brain 
regions themselves. In our study, we found LE and WD 
in MSA patients were lower than healthy controls in the 
identified areas and showed mostly negative correlation. 
The decreased LE at right Cerebellum_Crus2, right 
Cerebellum_Crus6 and Vermis_6, and WD at right 
Cerebellum_Crus6 suggested that the accumulation of 
alpha-synuclein GCIs of the MSA may destroy specific 
networks including the DMN and cerebellum networks 
[8, 12].  
 
Apart from the overlapping significant graph attributes 
in both static and dynamic, there are several static and 
dynamic specific graph attributes. The static specific 
significant features include increased BC at left DLPFC 
and left Cerebellum_Crus9, decreased WD at vermis_6, 
while dynamic specific significant features include 
decreased BC at left frontal eye field, decreased CCFS 
at right VACC, and decreased LE at right 
Cerebellum_Crus1. This discrepancy between static and 
dynamic graph attributes indicates that dynamic 
functional connectivity can reveal extra significant 
features. As ROC analysis reported below, some 
features showed a strong predictive value only in 
dynamic cases. 
 
We also identified BC at left frontal eye field as the 
only feature that showed difference on dynamic stability 
and strength, as well as correlated with scores. Stability 
measures the amount of changes of a feature during a 
period of time [25]. BC at left frontal eye field in 
patients was more stable than healthy controls, meaning 

that the brain network's topology related to left frontal 
eye field of patients did not change as much as healthy 
controls. This network stiffness may be caused by 
MSA. The occurrence of BC at left frontal eye field in 
the set of significant difference and significant 
correlation dynamic features also implies the link of 
dynamic functional alteration, dynamic stability and 
clinical traits of MSA patients at left frontal eye field. 
 
As the essential component of DMN, VACC was found 
to have lower CCFS in MSA patients than healthy 
controls. The DMN was a functional-anatomic network 
which is thought to be responsible for self-reflection, 
memory and stream-of-consciousness processing [26, 
27]. The disruption of DMN was consistently 
demonstrated in Alzheimer’s disease (AD) by many 
resting-state fMRI studies, which contributed to the 
memory deficit of AD [28, 29]. However, with the 
gradually deeper understanding of DMN, researchers 
found that changes of DMN occurred in several other 
neurological disorders, including depression [30], 
autism spectrum disorders [25], schizophrenia [31], as 
well as in MSA [32]. These findings indicated that 
regions of DMN might be responsible for multiple 
functions beyond memory, including action, cognition, 
emotion, perception, interception and mental imaginary. 
Therefore, the disruption of DMN in the MSA-c type 
may result in the impairment of these functions. This 
result was consistent with the previous MSA studies, 
which also reported the disruption of DMN in the MSA-
c type patients [8, 10, 12, 33].  
 
The decreased LE at right Cerebellum_Crus1, right 
Cerebellum_Crus2, right Cerebellum_Crus6 and 
Vermis_6, WD at Vermis_6 and right Cerebellum_Crus6 
were found in our study. To our knowledge, as the 
afferent fibers of cerebellum, cerebello-cortical circuit 
mainly comes from the opposite cerebellopontine nucleus 
and the inferior olivary nucleus, passing through the 
middle and lower cerebellar peduncles to the new 
cerebellum. And then, the cerebellar cortex sends the 

 

 
 

Figure 5. Logistic regression model. A logistic regression model using overlapping (A), static specific (B) and dynamic specific features (C) 
with regularization parameter C = 1. ROC curves were plotted to evaluate the classifier performance. 
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efferent fibers to dentate nuclei and forms the main body 
of the superior cerebellar peduncles, which project into 
the contralateral thalamus and cerebral cortex. From the 
view of the process of the cerebello-cortical circuit, 
many cerebellum regions play an important role in the 
network, which is responsible for the planning, balance, 
and coordination of motor functions. In this study, the 
disconnection within several cerebellum regions was 
consistent with the pathology of MSA-c type, which 
emphasizes on the cerebellum atrophy and dysfunction 
[34, 35]. In addition, these results matched well  
with several previous resting-state fMRI studies [8, 10, 
12, 33]. 
 
In the present study, we found that BC in MSA patients 
was higher than healthy controls at left DLPFC and left 
Cerebellum_Crus9. We speculate that this strange result 
may be related to its compensatory effect. In addition, 
we found BC in MSA patients was lower than healthy 
controls in left frontal eye field, which is a part of the 
visual network. According to the established inter-
national diagnostic criteria of probable MSA defined by 
the American Academy of Neurology and American 
Autonomic Society [1], patients with MSA often show 
damage of visuospatial function. In addition, Kawai’s 
study [36] reported that patients with MSA showed 
severe involvement of visuospatial and constructional 
function compared with control subjects.  
 
The dynamic graph attributes analysis of ventral 
anterior cingulate cortex as biomarker 
 
In the previous studies, most researchers used structural 
changes as biomarker to differentiate the MSA-c type 
and controls. For example, a previous study used the 
“hot cross bun” sign as biomarker to diagnose MSA-c 
type, yielding a high specificity of 97%, but its 
sensitivity was only 50% [37]. In the current study, to 
get a valuable imaging marker, we performed ROC 
analysis on all features identified from both static and 
dynamic graph attributes, finding that most of the 
dynamic significant features show higher AUC values 
than static significant features. When using the feature 
of CCFS at right VACC in dynamic graph attributes as 
the biomarker, we could differentiate the two groups at 
the cutoff value of 0.503, yielding a sensitivity of 
83.3%, specificity of 75.0%, and reach the highest AUC 
of 0.86. This is a meaningful result which could be used 
as a valuable imaging marker for the early diagnosis of 
MSA-c type.  
 
The correlation between graph attributes and 
clinical performances 
 
In this study, we found a close relationship between 
motor impairment (total UMSARS scores) and the static 

and dynamic graph attributes in several regions of the 
MSA patients, which suggested a clinical relevance of 
static and dynamic functional disruption in MSA. The 
altered static and dynamic FC in these regions might be 
used as imaging markers for tracking disease 
progression.  
 
Dynamic versus static graph attributes 
 
In our work, we analyzed dynamic graph attributes 
based on dynamic functional connectivity (DFC) and 
incorporated static graph theory attributes to identify 
significant regions. To our knowledge, no study has 
examined DFC in MSA patients before. Compared 
with static functional connectivity, DFC measures 
functional variation within a time slice of the scanning 
session and can reveal transient characteristics of brain 
activities that might be averaged out in static FC. We 
adopted a sliding-window approach with window 
length = 100 TR and step size = 3 TR. Our previous 
research proved that this combination can extract as 
much features while minimizing computation costs 
[38]. It is, however, an open question regarding the 
selection of sliding-window parameters and other 
methods to estimate dynamic functional connectivity 
[39–41].  
 
The analysis results showed that dynamic graph 
attributes shared similar significant features with static 
graph attributes, as well as identifying dynamic 
specific significant features. The overlapping 
significant features were similar between static and 
dynamic cases, implying that dynamic graph attributes 
can preserve stable features identified by static 
analysis. On the other hand, dynamic analysis revealed 
significant features that were especially useful at 
classifying patients, reaching the top ROC AUC of 
0.86. It can be seen from the dynamic attributes line 
plot of CCFS at right VACC that the feature 
distributions of two groups were mixed at first, and 
split away as time varies. This implies that such high 
AUC value can only be identified using dynamic 
functional connectivity. As a result, dynamic analysis 
can not only identify most significant features as static 
analysis does, but also reveal extra features that  
could possibly be used as biomarker for disease 
classification.   
 
Future considerations 
 
There are still some issues to be addressed. First, 
recent studies have paid more attention to MSA-p 
type. In the future, exploring MSA different subtypes 
(parkinsonian and cerebellar variants) would provide 
valuable biomarkers for the early differential 
diagnosis of the disease. Second, in this study, we 
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mainly focused on the motor function changes of 
MSA, as measured by UMSARS. Some MSA patients 
might present cognitive dysfunction with the disease 
progresses. In the future, we will collect more samples 
and classify MSA as two groups according to 
cognitive performances. We will analyze network 
attributes to compare the differences between MSA 
with and without cognitive decline. Third, the sample 
size is relatively small, and in the future, we will 
continue to expand the sample size. More samples 
could also validate statistical analysis methods such as 
stepwise multivariate logistic models. Finally, in the 
current study, when measuring dynamic functional 
connectivity (d-FC), we adopted a sliding-window 
method, with window length = 100 TR (200 s) and 
step size = 3 TR (6 s), as a previous research proved 
that this combination can extract as much features 
while minimizing computation costs [38]. And the 
analysis was performed at each brain region. In the 
future, we can adopt different sliding-window 
methods for comparison as well as performing global 
comparison of graph attributes, which might reveal 
other evidence on the implications of MSA.   
 
CONCLUSION 
 
In conclusion, by using static and dynamic functional 
connectivity, we identified significant graph attributes 
in several specific regions in MSA patients. For the 
overlapped results, disrupted connectivity in several 
cerebellar subregions was found in MSA patients 
relative to controls. In addition, we also identified 
some static and dynamic specific significant graph 
attributes. Further ROC analysis revealed that dynamic 
CCFS at right VACC could be used as the most 
valuable imaging marker for the early diagnosis of 
MSA, indicating the advance of dynamic functional 
connectivity analysis. These findings provided new 
evidence for the disconnection syndrome of MSA and 
emphasized the importance of dynamic functional 
connectivity analysis in deepen the understanding of 
the disease. 
 
MATERIALS AND METHODS 
 
Participants  
 
Twenty four MSA c-type patients and twenty controls 
were recruited at the clinic of Dongfang Hospital of 
Beijing University of Chinese Medicine. The two 
groups were matched for age and gender and all the 
participants are right-handed. The diagnosis of MSA 
was according to the established international diagnostic 
criteria of probable MSA defined by the American 
Academy of Neurology and American Autonomic 
Society [1]. All subjects were evaluated by complete 

physical and neuropsychological examinations 
including mini-mental state examination (MMSE), 
Montreal Cognitive Assessment (MoCA), and Unified 
Multiple System Atrophy Rating Scale (UMSARS). 
The clinical examinations were performed on the day 
before fMRI scanning.  
 
The inclusion criteria for controls were as follows: (1) 
there were no neurological or psychiatric disorders 
including obsessive disorder, anxiety disorder, 
schizophrenia, depression, epilepsy and so on; (2) there 
were lack of significant cognitive decline (MMSE score 
> 24);(3) there were no neurological deficiencies 
including visual or hearing loss; (4) there were no 
treatment with deep brain stimulation or operation (5) 
there were no evidence of movement disorder, vascular 
brain lesions, brain tumor, and/or marked cortical 
and/or subcortical atrophy on MRI scan. 
 
The exclusion criteria for the subjects were as follows: 
The subjects of hemorrhage, infarction, tumors, trauma, 
or severe white matter hyper-intensity were excluded 
from the study. Clinical and demographic information 
of the subjects was shown in Table 1.  
 
All subjects gave written informed consent in 
accordance with the Declaration of Helsinki. The 
protocol was approved by the Medical Research Ethical 
Committee of Dong fang Hospital of Beijing University 
of Chinese Medicine. 
 
MRI acquisition protocol  
 
MRI data acquisition was performed on a GE 3.0T 
Discovery 750 scanner. Foam padding and headphones 
were used to control head motion and scanner noise. 
The resting-state fMRI data was acquired by the 
following parameters with 6 minutes: repetition time 
(TR)/echo time (TE)/flip angle (FA) = 2000 ms/30 
ms/90°, field of view (FOV) = 24 × 24 cm2, resolution = 
64 × 64 matrix, number of slices = 36, thickness = 3 
mm, gap = 1 mm, voxel size = 3.75 × 3.75 × 3 mm3, 
and bandwidth = 2232 Hz/pixel. In total, 6480 images 
were acquired for resting state fMRI. All the 
participants were instructed to keep their eyes closed, 
move as little as possible, think of nothing in particular, 
and stay awake during the scans.  
 
Image preprocessing 
 
The preprocessing of fMRI data was carried out using 
DPARSFA (V4.3) [42] and SPM12 (V6906). We 
discarded the first 10 time points to let subjects be 
familiar with the scanning environment. Slice timing 
correction was then performed. Head motion was 
corrected before normalizing the image to a 2mm-
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isotropic BOLD EPI template in the Montreal 
Neurological Institute (MNI) 152 standard space. The 
image was resampled to 3-mm isotropic voxels and 
spatially smoothed by a Gaussian kernel with 4mm full-
width half-maximum (FWHM). Then, we removed the 
linear trend and nuisance covariates, including head 
motions, cerebral fluid, white matter and the global 
signal. Finally, the signal time course was filtered to 
keep signals within 0.01-0.08Hz.  
 
The data processing was carried out using an in-house 
software, Multi-Modal Data Processing System 
(MMDPS) [43]. We applied both static and dynamic 
functional connectivity (s-FC and d-FC) to evaluate 
functional changes in MSA patients. Graph theory 
attributes were also calculated based on static and 
dynamic FC. The whole processing pipeline is shown 
in Figure 6. 
 
Network construction 
 
During network construction, we adopted a brain atlas 
to define nodes and constructed brain network for 
each participant. The atlas consists of 84 whole-brain 
Brodmann areas [44] and the cerebellum parcellation 
from the Automated Anatomical Labeling atlas with 
26 regions [45]. Since cerebellum is actively involved 
in the progression of CMSA, we hope the inclusion of 
it could reveal disease-specific features. For static 
functional connectivity (s-FC), the BOLD time course 
was averaged within each brain area and Pearson 

correlation coefficients were calculated for each pair 
of regions, representing the functional connectivity 
between these two nodes in the network. 
 
When measuring dynamic functional connectivity  
(d-FC), we adopted a sliding-window method, with 
window length = 100 TR (200 s) and step size = 3  
TR (6 s). A previous research proved that this 
combination can extract as much features while 
minimizing computation costs [38]. The preprocessed 
data contained 170 TRs so the sliding window  
method yielded 24 dynamic networks for each  
subject.  
 
Graph theory attributes calculation 
 
We calculated four graph theory attributes to reflect 
the topology of brain networks. The graph theory 
attributes are all associated with nodes in networks. 
The betweenness centrality (BC) of a node is the 
fraction of all shortest paths in the network that pass 
through the given node, indicating the nodal ability of 
information flow throughout the network. The 
clustering coefficient (CCFS) is the fraction of 
triangles around a node, measuring the tendency of all 
nodes in its neighborhood to form a cluster. The local 
efficiency (LE) of a node is measured as the average 
sum of inverse shortest path of other nodes to the 
given node. It quantifies the efficiency of a network to 
transfer information. And the weighted degree (WD) 
of a node is the sum of its connectivity strength. 

 

 
 

Figure 6. Processing pipeline. Both static and dynamic functional connectivity was calculated based on BOLD fMRI signal. For static 
functional connectivity, the pair-wise Pearson correlation between two regions was obtained using the whole time series. For 
dynamic functional connectivity, we utilized the sliding window method to produce a range of functional networks. After network 
construction, graph theory attributes were calculated based on each functional networks, yielding sFeat for static feature, and dFeats 
for dynamic features. 



www.aging-us.com 11 AGING 

Among these four graph theory attributes, CCFS and 
LE fall in range [0, 1]. BC can be normalized to [0, 1] 
by dividing by (n − 1) × (n − 2), where n is the  
 
These graph theory attributes were calculated based on 
individual node in each brain network, including both 
static (s-BC, s-CCFS, s-LE and s-WD) and dynamic 
networks (d-BC, d-CCFS, d-LE and d-WD). The static 
network produced one set of graph attributes for each 
subjects, while dynamic networks yielded graph 
attributes at each time slice. As a result, 24 data points 
were calculated for each subject and each attribute. 
These data points were arranged by time order, 
forming a fluctuating series of attributes for a 
participant during the scanning interval. We also 
measured the stability of dynamic graph attributes 
using methods proposed in [46]. All graph theory 
attributes were normalized to range [0, 1] before 
calculating stability.  
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Statistical analysis and feature selection 
 
The statistical analysis procedure, including comparison 
and correlation, is summarized in Figure 7. At the first 
stage, static and dynamic features were analyzed 
separately and the same procedure was repeated for 
each one of the four graph attributes. For dynamic graph 
attributes, since each subject was associated with 
multiple data points at a range of time slices, we firstly 
calculated the strength of the dynamic attributes  

using methods described in [46] before performing 
comparison and correlation.  
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Since the features were not normally distributed, and 
the sample size was relatively small, we performed 
non-parametric Mann-Whitney tests between MSA 
patients and NCs. Significant regions (p < 0.05, 
uncorrected) were selected, forming a set of 
significantly different features (Sig. diff. feat. static / 
dynamic). The comparison of dynamic stability 
between patients and healthy controls was also 
performed. On the other hand, the Kendall correlation 
coefficients were calculated between features and total 
UMSARS scores. Areas that had a significant 
correlation (p < 0.05, uncorrected) were extracted, 
forming a set of significantly correlated features (Sig. 
corr. static / dynamic).  
 
Then, at the second stage, the significantly different 
and correlated sets of static and dynamic graph 
attributes were intersected, yielding static and dynamic 
significant features (Sig. Feat. static / dynamic). At the 
third stage, the static and dynamic significant features 
were further intersected, identifying features that  
were significant in both static and dynamic cases. 
Static and dynamic specific features were left out at 
this stage. The stability of dynamic graph attributes 
were also incorporated into the dynamic significant 
features and the intersection gave stability different 
features.  

 

 
 

Figure 7. Statistical analysis procedure. At the first stage, comparison and correlation analysis was performed for static and 
dynamic features separately. At the second stage, significantly different and correlated features were combined. At the third stage, 
significant features found by static and dynamic functional connectivity were merged, as well as incorporating dynamic stability 
measurements. The circle-plus sign stands for intersection. sFeat, static feature; dFeat, dynamic feature; corr., correlate; Sig., 
significant; Feat, feature; diff, difference. 
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Supplementary Table 1. Dynamic stability comparison results. 


