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Purpose: It is still equivocal whether oxygen uptake recovery kinetics are limited by oxygen delivery and
can be improved by supplementary oxygen. The present study aimed to investigate whether measure-
ments of muscle and pulmonary oxygen uptake kinetics can be used to assess oxygen delivery limitations
in healthy subjects.
Methods: Sixteen healthy young adults performed three sub-maximal exercise tests (6 min at 40% Wnax)
under hypoxic (14%02), normoxic (21%02) and hyperoxic (35%0,) conditions on separate days in ran-
domized order. Both Pulmonary VO, and near infra red spectroscopy (NIRS) based Tissue Saturation
Index (TSI) offset kinetics were calculated using mono-exponential curve fitting models.
Results: Time constant T of VO, offset kinetics under hypoxic (44.9 + 7.3s) conditions were significantly
larger than t of the offset kinetics under normoxia (37.9 + 8.2s, p = 0.02) and hyperoxia (37+6s,
p = 0.04). TSI mean response time (MRT) of the offset kinetics under hypoxic conditions (25.5 + 13s) was
significantly slower than under normoxic (15 + 7.7, p = 0.007) and hyperoxic (13 + 7.3, p = 0.008)
conditions.
Conclusion: The present study shows that there was no improvement in the oxygen uptake and muscle
oxygenation recovery kinetics in healthy subjects under hyperoxic conditions.
Slower TSI and VO, recovery kinetics under hypoxic conditions indicate that both NIRS and spiro-
ergometry are appropriate non-invasive measurement tools to assess the physiological response of a
healthy individual to hypoxic exercise.
© 2017 The Society of Chinese Scholars on Exercise Physiology and Fitness. Published by Elsevier
(Singapore) Pte Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Slower recovery kinetics in patients with an impaired cardiovas-
cular function appear to represent an oxygen delivery limitation,’

The rate of change of pulmonary oxygen uptake (VO,) following
an acute bout of submaximal exercise, also defined as VO, offset
kinetics, reflects the ability of an individual to recover from exer-
cise."” Changes in cardiac output as well as the balance between
oxygen delivery and utilization in activated muscle tissue are the
main contributing factors influencing oxygen uptake Kkinetics.

* Corresponding author. Department of Aging and Geriatric Research, University
of Florida, Gainesville, FL, USA.
E-mail address: r.mankowski@ufl.edu (R.T. Mankowski).

http://dx.doi.org/10.1016/j.jesf.2017.07.001

either due to impaired blood flow and/or endothelial dysfunction
of the microvasculature in skeletal muscle.>* Furthermore, VO,
offset kinetics have been shown a sensitive and reproducible’
measure to detect oxygen delivery limitations under hypoxic con-
ditions' Although the concept of VO, offset kinetics was first
introduced in clinical exercise physiology about 3 decades ago,® its
diagnostic application to assess the physiological mechanisms un-
derlying exercise intolerance under normoxic conditions is still
limited. Previous research suggests that the systemic relationship
between oxygen delivery and consumption could potentially be
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Abbreviations

ATT Adipose tissue thickness

BMI Body mass index

CEPL Clinical exercise performance laboratory
CHF Chronic heart failure

COPD  Chronic obstructive pulmonary disease
FiO2 Inspiratory oxygen fraction

MRT Mean response time

NIRS Near infra-red spectroscopy

PCr Phosphocreatine

R2 Coefficient of determination

Rpm Revolutions per minute

T Time constant

Td Time delay

tHb Total blood volume in the muscle
TSI Tissue saturation index

VO, Oxygen uptake
VOypeak  Peak oxygen uptake
Wmax Maximal workload

determined by simultaneously measuring pulmonary and muscle
tissue oxygen levels following manipulation of inspiratory oxygen
fraction (FiO,).”® If, for instance, hyperoxia would simultaneously
improve pulmonary and muscle oxygen uptake kinetics, oxygen
delivery to the muscle is most likely the rate-limiting step for ox-
ygen utilization in muscle tissue. The present study aimed to
investigate whether combined non-invasive measurements of
pulmonary and muscle tissue oxygen uptake kinetics under
manipulated FiO2 conditions, can be used as a novel physiological
assessment tool to challenge the respiratory and microvascular
system and potentially differentiate peripheral from central oxygen
uptake limitations in healthy subjects. Based on the available
research and our current understanding of oxygen uptake kinet-
ics,#69-11 \we hypothesized that in healthy moderately trained
subjects, acute exposure to hyperoxia would not improve muscle
tissue oxygen uptake recovery kinetics, while acute exposure to
hypoxia would impair the recovery kinetics.

2. Methods
2.1. Subjects

Sixteen healthy, young adults (BMI: 22.0 + 1.5kg/m?, (22 + 2
yrs)) were recruited through social media at Erasmus University

Medical Centre in Rotterdam, the Netherlands and agreed to
participate in the study (Table 1). There were no gender differences

Table 1

Subjects' characteristics.
n = 16 (10 male and 6 female) Mean + SD
Age (years) 223 +24
Weight (kg) 774 +£11.9
Height (cm) 183 +9
BMI (kg/m?) 23.0+23
VO3peak (ml/min/kg) 45.6 + 8.8
Wmax (Watt) 315.2 + 63.0
ATT (mm) 6.1+3
Borg Score 163 + 0.8

BMI Body Mass Index; VO, peak maximum oxygen uptake; ATT adipose
tissue thickness.

in any of the variables measured. The study protocol, which was a
sub study of a larger clinical trial on optimization of exercise
therapy in type 2 diabetes patients, was approved by the regional
Medical Ethics Committee of the Erasmus University Medical
Centre in Rotterdam, the Netherlands (MEC; number: 2012-128;
and registered at the Dutch Trial Registry number: NTR3777.

2.2. Experimental protocol

Subjects visited the Clinical Exercise Performance Laboratory
(CEPL) four times. An interview, physical examination and all ex-
ercise tests (1 maximal + 3 submaximal tests) were at the Erasmus
University Medical Center in Rotterdam, the Netherlands within a
time frame of 4 weeks. During the first appointment a sports
physician performed an interview and physical examination. To
assess maximal workload (Wpax) and maximal oxygen uptake
(VOzpeak) subjects were asked to perform a standard incremental
exercise test on a cycle ergometer (protocols: ramp 120 (2 Watt/10
seconds) for women and a ramp 180 (3 Watt/second) for men).
Perceived exertion level after the incremental exercise test was
rated using a Borg Scale.'” The subjects breathed the oxygen mix-
tures through the entire protocol including rest, exercise and
recovery.

2.3. Blinding procedure

During the next three visits (with 7 days washout periods)
participants underwent a sub-maximal exercise test under various
inspiratory fractions of oxygen (FiO;) 14%, 21% and 35% O, (BOC
Morden, London, UK). These levels of FiO, were considered safe
during maximal exercise tests."> The subjects were blinded to the
randomized order of FiO, during the submaximal tests by drawing
an opaque sealed envelope. The sub-maximal exercise test protocol
was as follows: 10 minutes of rest, 3 minutes of unloaded cycling, 6
minutes of cycling at 40% of their Wyax and 5 minutes of recovery.
Subjects were instructed to maintain cadence between 60 and
80 revolutions per minute (rpm).

2.4. Medical gasses

Each test was performed under either mixture of 14%, 21% and
35% of oxygen in nitrogen - 50 liter cylinders (BOC Morden, London,
UK). The control oxygen conditions (21% of oxygen in nitrogen)
were ordered and prepared in the EMC and delivered to the CEPL by
the internal medical gasses distributor (Linde Gas, The
Netherlands). The air was inspired from a cylinder through a
Douglas bag (20 liter) connected to an oro-nasal 7400 Vmask™ and
a 2730 2-way Y-shape™ non-rebreathing two-way valve (Hans
Rudolph, inc. Kansas, USA).

2.5. Respiratory gas measurements

The analysis of oxygen uptake (VO;) and production of carbon
dioxide (VCO,) levels were continuously measured through a
metabolic cart (Oxycon Pro, Jaeger, Mannheim, Germany).

2.6. NIRS measurements

The methodology of the NIRS (Portamon, The Netherlands)
measurement procedures as well as data collection of an absolute
measure of tissue oxygen saturation (tissue saturation index (TSI),
have been described elsewhere.* Given the thickness of the sub-
cutaneous adipose tissue may confound the NIRS signal amplitude,
the skinfold thickness was measured and reported. Skinfold
thickness of the m. vastus lateralis at the site of the NIRS device was
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measured (median of three measurements) in seated position using
Harpenden skinfold callipers (British Indicators Ltd, Burgess Hill,
UK). Adipose tissue thickness was calculated by dividing skinfold
thickness by two,"” resembling subcutaneous fat and skin. (ATT).

2.7. Absolute values

The methodology of calculating all VO, and TSI absolute values
(amplitude, baseline and steady-state) were described in detail in a
reproducibility study of Niemeijer et al. (Niemeijer et al., 2015).

2.8. Pulmonary VO, kinetics

Fitting of mono-exponential curves of onset and offset oxygen
uptake kinetics was performed in Python 2.7 (Python Software
Foundation), in order to calculate the time constant and increase in
oxygen uptake. Two formulas were used for offset kinetics, as
described before.'®

VO, (t) = VO3 steady state — B 1-e” (t=Td)/ )

B = VO,-amplitude during exercise (ml/min), Td = time delay (s)
and t = time constant tau (s).

2.9. NIRS kinetics analysis

Time constants (t) of recovery were calculated by fitting the TSI
data to a first-order.

(mono-exponential) model using the non-linear least squares
method (Python 2.7, Python Software Foundation). Additionally,
the mean response time (MRT) was calculated as the sum of tau and
time delay (MRT = © + Tq). Considering better reproducibility, we
used MRT TSI for the kinetics comparisons with tau VO,. The co-
efficient of determination (r?) was applied to determine how well
the fitted mono-exponential curve approximated the real data
points. r? ranges from 0 to 1 with 1 as an indicator for a line that
perfectly fits the real data. The methodological details of the re-
covery TSI kinetics are available elsewhere (Niemeijer et al., 2015).
All calculations were adjusted for FiO,.

2.10. Statistical analysis

Subject’ characteristics were expressed as mean + SD. The ob-
tained results under the three oxygen conditions were compared
using a General Linear Model with repeated measures (IBM SPSS
Statistics version 20). Level of significance was set at p < 0.05. The
Bonferroni post-hoc analysis was used in multiple comparisons.

3. Results
3.1. VO, kinetics

Curve fitting levels of VO, offset kinetics were sufficiently ac-
curate for hypoxia (r* = 0.89 + 0.07), normoxia (r? = 0.92 + 0.04)
and hyperoxia (r? = 0.92 + 0.04). The © of VO, offset kinetics under
hypoxic conditions was respectively 7 + 9 and 8 + 11 seconds larger
than t of the offset kinetics under normoxia (p = 0.02) and
hyperoxia (p = 0.04) (Table 2). However, there was no significant
difference in t© between normoxic and hyperoxic conditions
(Table 2).

3.2. TSI kinetics

Monoexponential curve fitting was sufficiently accurate for
hypoxia (r> = 0.97 + 0.02), normoxia (r> = 0.93 + 0.06) and

Table 2
Mean 7 values of VO, and TSI offset kinetics under hypoxic, normoxic and hyperoxic
conditions.

Hypoxia Normoxia Hyperoxia P-value

Offset kinetics
T voz (S) 449 +73 379 + 82" 37 + 6™ 0.02*%; 0.04**
MRT 751 (S) 25.5+13.0 15.0 + 7.7* 13.0 £ 7.3* 0.007*; 0.008**

Amount of **" assigns the statistical difference between FiO2 conditions (*-hypoxia
with normoxia and **-hypoxia with hyperoxia and ***-normoxia with hyperoxia) to
a p-value.

hyperoxia (r* = 0.90 + 0.11). The MRT of TSI offset kinetics under
hypoxic conditions was respectively 10 + 11 and 12 + 13 seconds
longer than MRT of the offset kinetics under normoxia (p = 0.007)
and hyperoxia (p = 0.008) (Table 2). Hyperoxic conditions did not
accelerate the offset kinetics. The t values of VO, offset kinetics
were significantly larger than MRT of TSI (p = 0.0001) under the
different oxygen conditions (Table 2).

3.3. Absolute baseline and steady-state values of VO, and TSI

The absolute steady-state values of VO, were not different in
normoxia (VO p = 1.0) and hyperoxia (VO p = 1.0) as compared to
hypoxia. Only the absolute steady-state values of TSI were signifi-
cantly different in hypoxia compared with normoxia (p = 0.0001)
and hyperoxia (p = 0.003). TSI amplitude values were significantly
different between normoxia and hyperoxia (p = 0.01) and nor-
moxia and hypoxia (p = 0.001) (Table 3). Additionally, there was no
difference (p = 1.00) in amplitude of total blood volume in the
muscle (tHb) between the FiO, conditions.

4. Discussion

In the present study we investigated whether higher FiO, can
improve oxygen uptake recovery kinetics following a constant-load
submaximal bout of exercise. In line with our hypothesis, the main
finding of this study was that higher FiO, conditions did not
accelerate the recovery kinetics in healthy young participants
without any clinical signs of oxygen uptake or oxygen delivery
limitations. Nevertheless, lower FiO; significantly impaired oxygen
uptake recovery kinetics in these individuals.

To date, it is still equivocal whether additional oxygen in
inspired air can be beneficial in improving oxygen uptake re-
covery kinetics and submaximal exercise tolerance!’ in either
healthy or diseased populations. The effect of the higher FiO; on
the recovery kinetics rate may both depend on cardiovascular
function'® as well as individual sensitivity to manipulated FiO,
conditions.'” In our population of healthy participants, we did
not find any obvious beneficial effects of acute exposure to
hyperoxia on either VO, uptake or muscle oxygenation recovery
kinetics (Table 2). As such, our results extend on the work from
Macdonald et al. by showing that muscle oxygenation recovery
kinetics can provide further insights into the peripheral effects of
hyperoxic exercise. In the study of Macdonald et al. participants
performed submaximal exercise tests below the ventilatory
threshold in normoxia and hyperoxia (70% O). Similar to 35% of
oxygen in the present study, even those higher levels of hyper-
oxia have no additional effects on VO, offset kinetics.?® Grassi
et al. suggest that muscle oxygen kinetics are closely related to
pulmonary oxygen uptake kinetics.” Indeed, our results show
proportional changes of muscle oxygenation and pulmonary VO,
under manipulated FiO2 (Table 2), which extends on the results
of Macdonald et al. using VO, uptake kinetics, only. Rossiter et al.
have shown that muscle oxygenation rate was correlated with
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Table 3
Mean baseline (rest) and steady-state absolute values of VO, and TSI under hypoxic, normoxic and hyperoxic conditions.
Hypoxia Normoxia Hyperoxia P-value

Baseline
VO, (ml/kg/min) 29+04 3.0 + 0.5* 32 +0.5% 0.06*; 0.8**
TSI (%) 672 +£53 68.4 + 4.8* 70.8 + 7.8** 0.8%; 0.3**
tHb (uM_cm) 118.6 + 38.9 115.1 + 39.1* 115.5 + 37.8** 0.4*%; 0.68**
Steady-state
VO, (ml/kg/min) 20 + 3.1 19 +2.9* 18.9 + 2.9** 1.0%; 1.0**
TSI (%) 60.3 + 7,6 65.4 + 6* 66.1 + 8.9** 0.0001%; 0.003**
tHb (uM_cm) 109.7 + 36.4 1064 + 36.1* 106.7 + 34.8** 0.28*; 0.56**
Amplitude of Recovery
VO, (ml/kg/min) 156 + 2,4 15.3 + 2.4* 15.4 + 2.4 1.0%; 1.0
TSI (%) 97+5 64 +4.1" 58 + 2.7** 0.001*; 0.01**
tHb (uM_cm) -8.8 +45 -8.7 + 44* -8.7 + 5.9** 1.0%; 1.0**

Amount of * assigns the statistical difference between FiO2 conditions (*-hypoxia with normoxia and **-hypoxia with hyperoxia) to a p-value. The bold values signifies p <

0.05.

the recovery kinetics of phosphocreatine following a submaximal
exercise bout.?' The present study indicates that assessment of
peripheral recovery kinetics through NIRS can potentially be a
more simple and cost-effective method than the use of a meta-
bolic cart system. Similar hyperoxic exercise studies in patients
with clinically relevant impairments in the cardiovascular® and/
or pulmonary?? system are required to compare and validate
NIRS-based TSI with VO, uptake recovery kinetics following
hyperoxic submaximal exercise.

In order to investigate the sensitivity of NIRS and VO, mea-
surements we investigated VO, and TSI offset kinetics under hyp-
oxic conditions as a model to induce an artificial oxygen delivery
limitation in healthy subjects. In line with previous work in this
area,’ we found slower oxygen uptake and muscle oxygenation
kinetics (Table 2). Slower recovery kinetics under lower FiO, con-
ditions may suggest a blunted compensatory hyperemic vaso-
dilatory response (decreased blood volume)* in older/diseased
subjects.”® In our study there was no difference in the amplitude of
tHb (related to blood flow) between the FiO, conditions. This
suggests that there was no need for compensatory vasodilation to
increase oxygen delivery under hypoxic conditions. Taken together,
slower TSI and VO, recovery kinetics under hypoxic conditions
indicate that both NIRS and spiro-ergometry are both appropriate
non-invasive measurement tools to assess the physiological
response of a healthy individual to hypoxic exercise. Its clinical
relevance still needs to be established by similar NIRS-VO, uptake
recovery kinetic studies in patient populations with cardiovascular,
pulmonary and/or metabolic induced exercise intolerance.

Variability of the mono-exponential curve fitting technique as
used in the current study was a limitation. In particular, hyperoxic
condition data points were harder to fit by a mono-exponential
technique but it was still reasonably good (certainly when
compared with pulmonary oxygen kinetics). The reason for this
could be an altered vascular/metabolic response, which is not
mono-exponential.

In conclusion, the present study shows that there was no
improvement in the oxygen uptake and muscle oxygenation re-
covery Kkinetics in healthy subjects under hyperoxic conditions.
Future studies should focus on mechanisms of tolerance to altered
FiO, conditions (vascular/metabolic) and finding a principal limi-
tation to recovery from moderate-intensity exercise forms.
Furthermore, the present study suggests that NIRS based recovery
kinetics could potentially replace VO, uptake kinetics as measured
through a metabolic cart. As such, NIRS could be useful when
assessing an individual's response to field-based submaximal ex-
ercise conditions mimicking average daily life activities and work
conditions in health and disease.
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