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Abstract: Diffraction is a phenomenon related to the wave nature of light and arises when a
propagating wave comes across an obstacle. Consequently, the wave can be transformed in amplitude
or phase and diffraction occurs. Those parts of the wavefront avoiding an obstacle form a diffraction
pattern after interfering with each other. In this review paper, we have discussed the topic of
non-diffractive beams, explicitly Bessel beams. Such beams provide some resistance to diffraction
and hence are hypothetically a phenomenal alternate to Gaussian beams in several circumstances.
Several outstanding applications are coined to Bessel beams and have been employed in commercial
applications. We have discussed several hot applications based on these magnificent beams such as
optical trapping, material processing, free-space long-distance self-healing beams, optical coherence
tomography, superresolution, sharp focusing, polarization transformation, increased depth of focus,
birefringence detection based on astigmatic transformed BB and encryption in optical communication.
According to our knowledge, each topic presented in this review is justifiably explained.

Keywords: optical trapping; material processing; free-space long-distance self-healing beams;
optical coherence tomography; superresolution; sharp focusing and polarization transformation;
depth of focus

1. Introduction

Bessel functions are precise solutions to the Helmholtz equation [1,2], i.e., classic Bessel beams
(BB) are diffraction free and offer noteworthy features such as an exceptional depth-of-field (DOF),
self-recovery, and beam-width relative to the scattering limit. Moreover, high-order BBs show phase
displacements, i.e., they imitate vortex beams and transfer an orbital angular momentum [3]. BB modes
are characterized by an integer n, known as the order of the beam. In cylindrical coordinates,
the complex amplitude for the nth-order BB can be expressed as:

En(r,ϕ, z) = Aeikzz Jn(krr)e±inϕ (1)

where A is the complex constant, kz = k cosθ0, kr = k sinθ0. k = 2π/λ is the wavenumber and λ is the
wavelength of the light radiation, θ0 is the angle of the conic wave to the z-axis. The function Jn (x)
is the nth-order Bessel function of the first kind. The zero-order beam E0 has a maximum intensity
on the axis, similar to the Gaussian beam (GB); but, unlike the GB, it also has a collection of circular
nodes ringing the axis as seen in Figure 1 [4]. But there is also a minimum on the central axis for n
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≥ 1. The on-axis node occurs for the same reason as in the case of Laguerre–Gauss case: the e±inϕ

component means that the beam has orbital angular momentum (OAM) Lz = nh̄ along the beam axis.
As a consequence, the phase is unknown or singular on the axis itself, and thus the intensity must
disappear. It is difficult to construct a true BB in the lab because it would have to have infinite reach
in the transverse direction, and it would have infinite power. In this respect, it is identical to a true
plane wave, which also has an infinite amplitude and thus can never be realized precisely. But as
with the plane wave, it is possible to generate very good approximate BBs, which have all the useful
properties of the idealized version, at least for some finite area. It can be seen that all bright rings
hold the same amount of power; thus, for a beam of finite power, the intensity of each ring must
decline as the number of rings increases. The strength of the light in the central core must also reduce
as the number of rings increases. The most effective technique for producing an approximation to a
zeroth-order BB is utilizing an axicon, both refractive (conically shaped) and diffractive versions of
optical elements. When illuminated by a GB with a waist size much smaller than the hard aperture
of the axicon, virtually the whole input intensity is converted into a BB. The spacing between the
rings of the BB depends on the period of the axicon. Usually, axicons have been used to generate
zeroth-order BBs. Higher-order BBs can be directly generated from an illuminating GB by use of
axicon-type computer-generated holograms, for example, diffractive spiral axicons [5,6].

Figure 1. (a) Transverse profile of an ideal BB intensity (square of the zero-order Bessel function),
(b) Transverse profile of the intensity of the first-order BB.

In 1987, BBs were first studied by Durnin [1] and have been widely employed in applications
related to both optics [7,8] and acoustics [9–11]. In acoustics, BBs are generally used in applications
such as ultrasound imaging systems [12–14]. Their extended DOF and slender beam-width provide a
precise scanning of the transmitted beam, whereas their self-recovering properties contribute toward
extraordinary robustness to tissue scattering. Moreover, its diffraction-free feature provides a perpetual
deep imaging resolution. The diffraction-free self-healing features of the BB permits it to penetrate
deep into the volume of a sample, resist against refractions in chaotic environments, and provides
an axial resolution as compared to that of GBs. The fields, formed from coherent mixtures of BBs,
reveal a more than ten-fold rise in their undistorted penetration to diffraction-limited beams. Recently,
vortex beams, to be specific, BBs, have gathered a lot of interest because of their distinctive properties
for particle trapping [15–18], particle handling/rotation applications [19–21] or acoustic radiation force
strategies in liquids [22]. BBs have also been employed in photopolymerization [23] as well as in
material processing [24]. However, their prospects for high-throughput 3D printing have not been
effusively investigated.

In general, laser beams have a Gaussian profile. When a GB is focused via an optical lens,
an ellipsoidal focus is formed as revealed in Figure 2a, which is described by a lateral spot size and
a confocal length. A perfect BB is produced by a congregating conical wavefront of an unbounded
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level. When it congregates to the axis of symmetry and interacts with itself, the slanted conical
wavefront creates the distinctive BB shape as displayed in Figure 2b. BBs are expressed as a single-ring
pattern emerging from their narrow angular spectrum in the far-field. Although a true BB would
involve an infinite amount of energy to create, an axicon produces a close approximation with nearly
non-diffracting properties within the Axicon’s depth of focus (DOF). DOF is a function of the radius of
the beam entering the axicon (r), the axicon’s index of refraction (n), and the alpha angle (α):

DOF =
r
√

1− n2 sin2 α

sinα cosα(n cosα−
√

1− n2 sin2 α)
≈

r
(n− 1)α

(2)

The basic equation assumes that the angle of refraction is small and becomes less accurate as α
decreases. Beyond the axicon’s DOF, a ring of light is produced. The thickness of the ring (m) remains
constant and is comparable to r:

m =
r
√

1− n2 sin2 α

cosα(n sin2 α+ cosα
√

1− n2 sin2 α)
≈ r (3)

Figure 2. An illustration associating Gaussian and BB; (a) The incoming Gaussian laser beam is focused
by a lens to form an ellipsoidal focus by transforming plane waves into a curved wavefront; (b) A BB is
generated by an axicon which consists of a conical wavefront and a central lobe creates a focus which
resembles a line-shape.

Along with the numerous benefits of the BBs, they have their drawbacks as well. Firstly, these are
energy characteristics: diffraction-free properties are achieved due to the high energy cost. The axial
length of the beam is accompanied by a decrease in the amount of energy on the optical axis because
only a small part of the incident energy (energy from separate rings) is concentrated in the central spot.
Secondly, the presence of peripheral rings: a decrease in the size of the focal spot is accompanied by
the growth of side lobes that worsen the image properties [25,26]. Likewise, the high sensitivity of the
axicon’s point spread function (PSF) to aberrations of the optical system is known [27,28]. However,
in microscopes and scanning optical systems, the side lobes with an intensity smaller than 30% of the
main light spot can be efficiently filtered out [29,30]. This possibility is implied in Section 5.

Two-photon microscopy has revolutionized functional cellular imagining in tissue, but the highly
confined DOF of standard set up yields great optical sectioning, it also restricts the speed of imagining
in volume samples and user-friendliness. Therefore, a basic and overhaul adjustment to the two-photon
laser scanning microscope has recently been seen, which expands the DOF by the use of an axicon.
Here, three major advantages of this method are demonstrated in [31] using biological samples widely
used in the neuroscience field. First, a sample of neurons grown in culture and moved along the z-axis
displays that a steady focus is attained without negotiation on the transverse resolution. Secondly, in an
acute slice of the living mouse cortex, 3D population dynamics are monitored which demonstrates that
faster volumetric scans can be performed. Thirdly, in a fixed sample of mouse cortex, a stereoscopic
image of neurons and their dendrites are obtained via two scans instead of the full stack required by



Micromachines 2020, 11, 997 4 of 27

the standard systems. These benefits make extended DOF imagining based on BBs highly suitable
for the field of microscopy and life sciences in general, together with the ease of incorporation into
pre-existing systems.

Non-diffractive beams play a special role in fluorescence microscopy based on light sheets
(planar microscopy) [32–36]. Light-sheet fluorescence microscopy (LSFM) provides extremely high
image processing speed, good signal-to-noise ratio, a low level of photo-bleaching, and good optical
depth of penetration. This unique combination allows you to successfully apply this technology to the
study of living microorganisms in real-time. The extremely low toxicity of the system allows the ability
to view and differentiate groups of cells without causing damage to the samples. Such a system is
specifically designed for research in marine and cellular biology, as well as in plant physiology.

In acoustics, there are several approaches to produce zeroth and high-order BBs, though it is
not possible to perfectly generate all of them in reality. Numerous techniques are suggested to create
truncated BBs. A straightforward and attractive scheme is to employ a spherical slit at the axis, as a
result, BB patterns are produced, in equivalence with the optics [2]. Nevertheless, the tiny opening
intensely restricts the transmitted energy. Several works [37–40] have been published on well-generated
BBs employing a periodic arrangement of circular active piezoelectric sources in such a way that every
circular active element is fixed conferring to a Bessel function in both phase and amplitude.

There is a striking resemblance between the radial modes of piezoelectric sources and the Bessel
function, which is why this phenomenon can be imitated employing simple discs. However, it will not
provide a very high radiation efficiency [41]. A little while ago, it was assumed that BBs can only be
produced via vastly coherent light sources, for example, solid-state and gas lasers. However, over the
last few years, several works have described different techniques to produce BBs employing different
light sources such as semiconductor light sources [42], vertical-cavity surface-emitting lasers [43,44],
light-emitting diodes [43] and vertical external-cavity surface-emitting lasers [45], among others.

The topic of the BB is very interesting and has been under consideration by several researchers
around the world. For instance, the number of publications on the “BB” topic between 1987 and 2020
is depicted in Figure 3. This graph shows the number of papers indexed in the Scopus and Web of
Science databases, which are considered to be the most reliable and authentic sources. It can be seen
that BB has a constantly increasing trend in the number of articles published each year, similar to other
optics or physics-related topics. However, in 2020, we can see fewer publications on BBs, mainly due to
COVID-19 which has decelerated research activities around the globe. There are several other indexing
systems such as Copernicus, Science Citation Index, Google Scholar and PubMed, among others.

Figure 3. Articles related to “BBs” indexed in the Scopus database and Web of Science published during
the period 1987–2020.



Micromachines 2020, 11, 997 5 of 27

In this review paper, we have briefly explained the methods for the generation of BBs and
recent advances in the utilization of these extraordinary beams in several applications such as
optical trapping, material processing, self-healing property for underwater optical communication,
optical coherence tomography, superresolution, sharp focusing and polarization transformation,
increased depth of focus and other related applications. Over the last few years, our research group at
the department of Technical Cybernetic, Samara National Research University, Russia has published
several papers on the exploration of different applications utilizing BBs, such as optical trapping [46–49],
material processing [50–54], free-space long-distance self-healing [55–58], astigmatic transformed
BBs [59–61], encryption in optical communication [62–65] and sharp focusing [66–70], among others.

2. Optical Trapping with BBs

The techniques of tweezing and optical trapping are established on the forces that emerge as a
result of the rule of momentum preservation in the reflection, refraction, and absorption of the laser
beam at the particle [71,72]. For effective optical handling, i.e., consistent microparticles trapping,
a high gradient of the optical power density is required. For instance, a sharply focused laser light beam
is essential to trap the microparticle. This considerably shrinks the working area owing to diffraction,
tighter focusing outcomes in faster radiation divergence, and the issue cannot be solved regarding the
Gaussian optics. Nevertheless, Durnin [1] has demonstrated in his remarkable work that the diffractive
divergence can be practically removed with a special class of non-diffracting light fields known as BBs.
Practically speaking, BBs display a limited propagation length, which is dependent on the width of the
original collimated beam. As the BBs preserve their focus throughout the way, the placement of the
manipulated object can be considerably altered, hence allowing practical flexible micromanipulation
systems. Additionally, the employment of BBs unveils novel prospects in micro-fabrication [73],
manipulation of micro-machines [74] and numerous “lab-on-a-chip” applications [75].

Optical traps based on focused BBs offer highly superior capabilities for manipulation of individual
glass beads in the three spatial directions in comparison with standard optical tweezers based on
focused GB [76]. Interesting possibilities for the simultaneous trapping and rotating of various types
of dielectric particles (with high and low refractive indexes) provide multi-ringed vortex beams [77].
The angular momentum density of BBs is similar to that of multi-ringed LG beams [78,79]. However,
high-order BBs are easier to generate experimentally [46].

The field of optical trapping has grown into an essential phenomenon in the biological examination,
cold atom physics, and genetics [80,81]. It has swiftly bee established from its first verification by
Ashkin in the 1970s [71]. Regardless of its extensive implementation, the optical trapping of airborne
particles employing a single-beam gradient-force was not verified until 1997 [82]. Even nowadays,
most of the laser tweezer operations are being used to trap fairly translucent specks in a liquid.
A particle trapping via a single laser beam in the air is a more challenging task than in a liquid
medium, as the optical trap should be robust to conquer gravity and disruption in the air. Moreover,
as opposed to a particle in a liquid medium, a particle in the air has a higher relative refractive index,
which induces a sturdy scattering force that tends to disrupt the trap [83]. Nevertheless, for particle
delivery strategies, the potentiality to trap airborne particles is essential [84] as well as developing
aerosol classification methods that incorporate optical trapping with examination practices, for instance,
Raman spectroscopy [83,85].

Consequently, significant attention has been given to develop novel methods to capture airborne
particles utilizing either the photophoretic force or the radiative pressure force. In recent times,
the photophoretic force has been used to permit optical trapping of airborne particles with absorbing
properties. Several beam shapes such as vortex beams [86], bottle beams [87], and hollow cones
produced via a single beam [88], tapered rings [89], two counter-propagating beams [90] and optical
lattices [91], among others, have been employed. In [86–90], the particles are trapped in the low-intensity
area, which is contrasted to laser tweezers where the gradient force traps the particles near a laser
beam’s high-intensity focal point. As several photophoretic traps are only successful for particles
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with a specific geometry [92], the morphology of the absorbing particles poses additional technical
hitches. Nevertheless, some applications include the ability to capture the particles irrespective of their
construction and absorption.

An interesting method is proposed in [93], where a single formed laser beam is used to form a
region of low light intensity for photophoretic trapping of absorbing particles but minimizing the
dispersion force near the focal point at the same time. As a result, radiative pressure found that the
trapping of translucent particles is facilitated as shown in Figure 4a–d. Besides, this low dispersion
force permits airborne particles to be trapped by radiative pressure-based trapping via relatively
low numerical aperture optics. A comparable method has lately been demonstrated to allow optical
trapping of high relative refractive index non-absorbing particles utilized to trap airborne aerosol
droplets [94].

Figure 4. (a) Illustration of the optical trapping setup. The diameter of an expanded laser beam is
managed with a tunable iris before travelling through the two axicons to form a collimated hollow
beam. The aspheric lens creates a hollow conical focus within a glass chamber where airborne particles
are trapped, adapted with permission from [93]. (b) Calculated intensity profile near the focal spot,
adapted with permission from [93]. (c) Image of the conical focal region produced inside the chamber,
adapted with permission from [93]. (d) Image of a spore captured in the air close to the focal point,
adapted with permission from [93].

Due to the transfer of momentum from photons to particles, the radiative pressure force,
the gradient force and the scattering force produced from a single laser beam emerges. Regardless of
the realization of optical tweezers in maneuvering particles in the fluid, optical traps based on radiative
pressure utilizing a single laser beam are still not suitable for grabbing airborne particles. Bearing in
mind the radiative pressure force as an amalgamation of a gradient force and a scattering force,
this problem can be solved. The gradient force drags a particle close to the focus of the laser beam into
the high-intensity region at the focus, ensuring the restoring force is mandatory to catch a particle.
Instead, the scattering force moves the particle in the direction of the propagation of light and off-limits
the reinstating force needed. In general, optical trapping is only probable when the gradient force
overpowers the dispersion force [82]. Airborne particle trapping is a challenging task due to the
high refractive index of a particle in the air comparative to the ambient medium results in a sturdy
scattering force. To form a robust gradient force to trap airborne particles, high numerical aperture
optics (typically NA > 0.9) are obligatory [82]. In principle, by utilizing a counter-propagating beam
configuration, the scattering force can be concealed [95]. However, an accurate orientation is required,
which is practically not possible in many applications. If a laser light falls on absorbing airborne particles,
a portion of the light is absorbed and transformed into heat. Consequently, an interplay between a
non-uniformly heat-emitting particle and the ambient gas molecules leads to the photophoretic force.
As a result, absorbing airborne particles are captured by the photophoretic force. For instance, if an
absorbing airborne particle is hit by a light from one side, due to impact with the hot part of the
particle, the gas molecules on the elevated temperature side of the particle will have greater velocities,
imposing a net force that moves the particle to its cold side. The photophoretic force can be ~5 orders of
magnitude more robust than the gradient force for an intensely absorbing particle, usually employed
in optical tweezers [96].
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3. Material Processing via Ultrafast BBs

These days, micro- and nano-technologies rely on the growth of detailed and manageable
manufacturing tools that are capable of structuring materials with full precision and minimum
collateral loss. In a range of applications, from entertainment to medicine, lasers have proven to be
flexible instruments over the years. The individual usage of this system is dependent on different
parameters of the radiation emitted, such as wavelength, energy, and pulse duration. When considering
some applications, the beam structure is essential [97–99]. A typical GB is appropriate for some of them.
The ultra-short laser processing technique has grown into a vital technology capable of delivering
fundamental processing skills well into the size of the nanoscale [100–102]. This counts on incomparable
material processing capabilities through nonlinear excitation and inadequate thermal diffusion,
resulting in high-end applications where energy localization in space and time by ultrashort pulses
is important. Novel models of laser material processing are developed based on the spatiotemporal
design of irradiation rendering to the material response to optimize the structuring process concerning
quality and scale [103–105]. To synergistically associate irradiation and material reaction to energy load,
an advanced processing strategy involves a detailed understanding of the irradiation and material
transformation method.

For material processing applications in ultrafast modes, a new class of ultrafast laser beams
has recently emerged with the potential to achieve processing precision beyond the diffraction limit,
deep into the nanoscale domain. This relies on non-diffractive concepts, especially the Bessel-Gauss
beam [106], where non-diffractive propagation can be used to design the multi-dimensional interaction
segment. In transparent materials, the ability of these Bessel-Gauss beams is entirely utilizable,
with an energy gap larger than photon energy. BBs are helpful in Bragg grating inscription [107],
microchannel forming [108] and photopolymerization [109] due to an elongated focal area. BBs have
a ring-shaped spatial spectrum. It is conceivable to attain Mathieu beams with elliptical intensity
distribution by modifying the phase and amplitude of the BB. For instance, the elliptical beam structure
has been shown to cause directional glass cracking. Zeroth and higher-order BBs are among the most
distinguished non-diffracting beams and can be comprehended utilizing diffractive holograms or by
focusing Laguerre GBs via conical prisms (axicons).

In [110], a novel method is developed for the realization of superimposed complex BB vortices of
different orders, single and superimposed Mathieu beams of different topologies, as well as parabolic
non-diffracting beams. Furthermore, their amplitudes and phases are controlled in the focal region
independently to assist the creation of complex patterns not only in the transverse plane but also along
the focal line. The experimental verification using a conical prism together with a geometrical phase
element is presented for the transparent materials. In [111] the higher-order vector BBs are produced
for transparent material processing applications.

Three-dimensional integrated circuits are an enticing option to replace standard two-dimensional
ones as high-efficiency, low power exhaustion and miniaturized foot-print microelectronic devices [112].
One of the primary enduring problems, however, is the processing of high-aspect-ratio through-silicon
vias (TSVs), which is a critical technology for the assembly of three-dimensional silicon integrated
circuits. As a simple and environmentally friendly substitute with less manufacturing stages
due to the exclusion of photolithography, TSV manufacturing through direct laser drilling has been
suggested. This has been demonstrated with the production of 20 µm diameter holes in a 250 µm
thick silicon substrate employing nanosecond UV laser percussion [113]. However, for the assembly
of three-dimensional silicon integrated circuits, the deep drilling of holes smaller than 10 µm in
diameter remains a major future challenge. Ultrafast laser treatment has recently been shown to
be a desirable method for material processing, as it facilitates sub-diffraction-limit processing with
heat-affected zone elimination [114]. High-quality cutting has been successfully checked for planar
silicon elements with 780 nm femtosecond lasers [115]. Furthermore, in many important research
and engineering applications, fast speed and high aspect ratio drilling of through-holes in different
materials utilizing ultrafast laser processing have become an attention-grabbing theme. In different
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silica glasses, femtosecond BBs have been employed to create microstructures with aspect ratios of up
to 102–103, without requiring sample transformation due to the elongated field depth.

In [116], TSVs are fabricated by using femtosecond BBs with wavelength tuning of 400 nm to
2400 nm. The manufacture of fine TSVs utilizing a 1.5 µm femtosecond BB is demonstrated in [117].
A Bessel femtosecond beam is customized via a specifically fabricated binary phase plate to remove
the extreme ablation brought by the sidelobes of a traditional BB. Three separate forms of femtosecond
laser beams such as a Gaussian beam (GB), a conventional BB (CBB) and a tailored BB (TBB) were
used to determine the theory of the suggested method as shown in Figure 5a–c. It is established
that the customized femtosecond BB (without sidelobe destruction) can be employed to form a
two-dimensional periodic arrangement of ~10 µm TSVs on a silicon substrate of thickness 100 µm,
indicating a possible use in the three-dimensional assembly of three-dimensional silicon integrated
circuits. Two-dimensional profiles of CBB and TBB in the x-y plane together with the on-axis intensity
distributions (orange curve) are experimentally measured as displayed in Figure 5d,e, respectively.
The experimentally obtained transverse intensity distributions of the CBB and TBB at z = zmax are
presented in Figure 5f,g, respectively, together with a charged coupled device taken pictures of the
particular beams in the insets. Figure 5h–j illustrate the SEM pictures of the TSVs formed in 50 µm
thick samples employing the GB, CBB and TBB, respectively.

Figure 5. Diagram of the beams generation setup and intensity profiles for, (a) GB, (b) CBB and
(c) TBB. Experimentally measured two-dimensional profiles in the x-y plane in cooperation with the
on-axis intensity distribution (Orange curve) of, (d) CBB and (e) TBB. Measured transverse intensity
distributions at z = zmax along the CCD captured images of (f) CBB and (g) TBB. SEM images of the
cross-sectional view of TSVs manufactured silicon substrate using (h) GB, (i) CBB and (j) TBB. Adapted
with permission from [117].

4. Free-Space Long-Distance Self-Healing BBs

In addition to the non-diffractive feature, BBs are self-healing which means that they have a
self-reconstruction ability after a hurdle comes across their transmission path [118]. The intensity
arrangement at z and z + δz is formed by different sections of the crossing planar beams as shown in
Figure 6. This property comes from the selective constructive interference occurring between multiple
coherent plane waves propagating at an equal angle concerning the optical axis. The redevelopment
distance of the beam relies on the size of the hurdle and the angle defining the conical superposition of
the planar beams. Consequently, BBs are usually more prone to dispersion than most other traditional
Gaussian beams. Due to the unusual non-diffractive and self-recovery properties, BBs have gathered
particular attention in biomedical physics, laser processing and metrology [119].
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Figure 6. Self-healing features of an axicon-produced BB: an obstacle located in the center of the Bessel
region blocks the beam for the smallest distance Zmin, the Bessel field reconstructs after travelling for
some distance. The beam profiles before and after the obstacle are also shown. Inspired by [120].

A novel method for creating long-distance self-recovering BBs generated by an annular lens
and a 4f-configuration spherical lens is stated in [121]. This shows the diffraction-free light evolution
of a zeroth-order BBs over several meters and addresses the available scaling prospects that exceed
present technologies. Additionally, it has been shown that this setup can be modified to generate
BB superpositions, realizing the longest optical conveyor beam and helicon beam. Last but not
least, the self-healing properties of the beams are verified concerning robust opaque and transparent
scatterers, which underscores the pronounced perspective of this novel approach [121].

Underwater wireless communication is supposed to have high data rates to relay big data over
several meters via a proper wavelength. It has already gained more and more recognition with a
massive rise in underwater applications, for instance, unmanned underwater vehicles, submarines and
sensors in the oceanic environment [122–124], among others. The optical turbulence is primarily caused
by variations in temperature and salinity in underwater environments, such as in oceans. The standard
of communication of the orbital angular momentum (OAM)-based underwater wireless communication
system has been seriously impaired by this turbulence [125]. A hypothetical analysis of the effect of
temperature and salinity variations on the typical strength of the Gaussian Schell-model vortex beams
in the turbulent ocean has shown that partially coherent beams have a more effective resistance to
turbulence than full coherent beams [126]. The transmission of partially coherent Laguerre-GBs in
the tempestuous ocean is studied in [127,128]. Furthermore, the influence of the ocean instabilities
on the oceanic OAM-based underwater wireless communication system’s channel capacity has also
been observed in [129]. In [126] the statistical characteristics of the vortex beams such as the power,
polarization, and coherence travelling in oceanic turbulence are theoretically studied.

Vortex beams bearing OAM with helical phase fronts have been commonly used as beam sources to
mitigate the turbulence effect on any optical vortex [130]. A Bessel-Gaussian (BG) beam is an imperative
part of the pseudo-non diffraction vortex beams family. In the case of blockades, BG beams can heal
themselves, which is an important feature for optical communications based on the line-of-sight
operations [131]. Consequently, for the OAM-based underwater communication systems [132,133],
the non-diffraction and self-recovery properties of BG beams make them a valuable commodity.
The transmission characteristics of BG beams in the free space environment was explored [134] and
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the non-obstruction characteristics of BG beams in a free-space optical communication system were
studied in [135].

An experimental study of the underwater transmission and self-recovering properties of BG beams
has recently been provided in [131]. A GB with a wavelength of 532 nm is transmitted from a laser
diode and then a neutral density filter (NDF) is employed to reduce the intensity of the GB. The GB
matches its polarization to the optimized working polarization of the selected polarization-sensitive
spatial light modulator (SLM) after passing through the polarizer (Pol.) and a half-wave plate (HWP).
When the polarized GB is illuminated on an SLM, the desired BG mode is generated, where the special
phase hologram grating is revealed on the liquid crystal screen of the SLM. The BG beam carrying
the OAM mode is then transferred through a water tank simulating the underwater environment.
A rectangular water tank of one meter in length was used to replicate the underwater atmosphere.
The temperature variations were regulated by a heater within the container, and salinity variations
were accompanied by adding different salt bulks in the water. The experimental setup to analyze the
BG beam properties underwater is shown in Figure 7a, whereas the recorded beam profiles at the
receiver are shown in Figure 7b. For more detailed information, discuss [131].

Figure 7. (a) The investigational arrangement for examining BG beam properties in the underwater
situation. (b) The influence of underwater optical turbulence on the transmission of BG beam versus
free space atmosphere. Adapted with permission from [131].

5. BB for Optical Coherence Tomography

Optical coherence tomography (OCT) is an imaging process that offers in situ, non-invasive,
high resolution, cross-sectional pictures of the biological tissues. Given the depth of penetration of
a light beam into biological tissue, endoscopic probes are needed to examine the conditions of wall
linings inside the organs such as the liver, stomach, lung, colon and wider arteries within the body.
Various types of endoscopic OCT systems have been developed after the first endoscopic applications
of OCT in 1996 [136]. Traditional GBs are currently used in endoscopic probes. Some are relocated
to the targeted site by moving a wire backwards and forward in and out of the body to steer the



Micromachines 2020, 11, 997 11 of 27

catheter. These probe types work at the low numerical aperture and have a lateral resolution of ~20 µm.
Some probes use higher numerical aperture optics; nevertheless, they are limited to the smaller DOF.
A fine focus modification is needed for these probes which cannot be accomplished by wire adjustment.
A gradient index (GRIN) lens rod-based probe was then demonstrated to focus on targeted points in
a sample by shifting a stage out of the body [137]. Nevertheless, some endoscopic applications are
constrained by the nonflexible rod. The growth of elongated DOF imaging arrangements is therefore
an active research area of OCT [138]. Several methods have been applied, such as the Swept-source,
time and spectral-domain OCT. Of these methods, the spectral-domain is favored over others, since it
is simple to implement and does not require a complex structure. Initially, the OCT system was
arranged only in free optics, but the advent of optical fiber improves the versatility of the system
and paves the way for a new area of operation [139]. In OCT, the sample beam interferes with the
reference beam to produce interference spectra that are further analyzed by the dedicated sample
imaging tools. OCT may be achieved by either dual-path or a common-path interferometry techniques.
The later methodology can solve the problems of polarization mismatch, group velocity dispersion and
ambience vibration. The common path configuration eliminates device and computational complexity
since there is no need for extra modules and algorithms to compensate for dispersion.

Imaging based on BB, produced by axicon optics, differs from GB imaging in that it allows the
focusing range to be extended without losing resolution [140]. However, the trade-off is a reduction
in the illumination and collection efficiency. OCT employing BB has become a trend to benefit from
a long DOF and tighter spot size. Bessel beams for illumination/detection were used to break the
limit of focus range and transversal resolution given by the GB profile [141–143]. The use of axicon
optics in time-domain OCT was originally considered by Ding et al. [144] Lately, a non-dual path
imaging scheme for imaging of biological samples has been suggested employing Fourier-domain
OCT (FD-OCT) [145]. A custom-made micro-optic axicon is used to produce a BB to lighten and image
in biological samples using spectral-domain OCT (SD-OCT) [146]. Concerning the GB, BB concurrently
produces a high DOF and a tight focus point. It is not possible to produce perfect BB, but the GB
can be converted into a BB structure known as a Bessel-Gauss beam and is often referred to as a BB.
Several methods are discussed to transform the standard GB to BB. Traditionally, the axicon lens may
be the best alternative for the transformation of the beam. A lot of impressive work has been performed
on the generation of BB via the axicon lens [147,148]. However, BB axicon lens construction uses free
optics, which are not appropriate for applications where there is a need for a small central spot size.

To eliminate group velocity dispersion and polarization incompatibility between the reference
and the sample arm, common-path optical coherence tomography (CP-OCT) is used so that both arms
share the same physical path. Current CP-OCT implementations usually involve one to incorporate an
additional cover glass into the beam path of the sample arm to provide a reference signal. This step is
further reduced by making direct use of the back-reflected signal, provided by the conical lens-tip fiber,
as a reference signal as shown in Figure 8a [149]. The conical lens, which is directly manufactured by a
simple selective-chemical etching process on the optical fiber tip (inset of Figure 8a), performs two
functions: (1) it can be used as an imaging lens; (2) as the self-aligning reference plane.

Researchers have been involved in producing such axicon structures within the optical fiber such
that they can be used for imaging and sensing applications. Considerable work is being conducted on
BB construction using optical fibers and deep-sealed negative axicons (DSNAs) [150,151]. The DSNA
is manufactured by standard chemical etching in hydrofluoric acid (HF) at the tip of the single-mode
highly doped photosensitive optical fiber and produces BB [152]. A tomography methodology
for fluorescence microscopy scanning is introduced in [153], which enables the volume image to be
captured in a single frame scan. Volumes are photographed by concurrently recording four independent
projections at various angles using temporally multiplexed, tilted BBs.

An FD-OCT method is used to exhibit the effectiveness of this method upon biological tissue.
An in-fiber CP-OCT technique can prove to be potentially useful in endoscopic OCT imaging.
The usefulness of employing axicon micro-optics has been solely established by imaging a biological
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sample, precisely an African frog tadpole, at different places attained with an incident power of 25 mW
and an irradiation time of 50 µs as shown in Figure 8b The detailed study on SD-OCT can be found
here [146].

Figure 8. (a) Illustration of a light field travelling from the fiber to the sample and back. The inset
displays the SEM image of the fiber probe where the conical microlens can be seen. Adapted with
permission from [149], (b) 1 mm × 1 mm SD-OCT images of an African from tadpole located at various d
values acquired using a 600 µm effective axicon micro-optic lens (top row) and a 0.037 NA conventional
lens (bottom row). Adapted with permission from [146].

6. Birefringence Detection Based on Astigmatic Transformed BB

One of the difficulties of information-measuring optical fiber networks is the random birefringence
of the basic elements, for instance, the birefringence of a single-mode fiber (SMF) due to the ellipticity of
the fiber core. Birefringence results in an unregulated change in the polarization of light, the properties
of the optical fiber sensors and the values of the measured signals. Birefringence is often intrinsic in
the GRIN owing to the residual mechanical stress led by the dopant, which results in a decrease in the
performance of the radiation coupling into an optical fiber because of astigmatic misrepresentation
and variations in the polarization state of the signal [154–157]. Birefringence control is therefore an
essential practical task which provides a method for enhancing the correctness and consistency of
transmitted signals in optic fiber and optoelectronic systems. In [61], Khonina et al. have proposed
a mechanism for the detection of birefringence parabolic GRIN lenses by utilizing the astigmatic
transformation of the zeroth-order BB as shown in Figure 9 [59,60]. Numerical modelling reveals a
distinctly noticeable deformity of the intensity distribution in the transmission of scalable astigmatic
BBs. The strength of astigmatism can be calculated by the electric field distribution of the distorted
beam. In an experimental analysis of the propagation of a BB utilizing a quarter-pitch GRIN lens,
similar patterns are also obtained, which suggests the existence of birefringence of the lens material.
The assessment of the experimental and computational results indicates the probability of calculating
an optical path difference between the ordinary and extraordinary beams of no worse than 0.05 of
the wavelength.
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Figure 9. Birefringence detection established on the astigmatic transformation of a BB. Adapted with
permission from [61].

Besides, the possibility of optimizing the method of glass dicing by regulating the axicon-produced
BB ellipticity (astigmatic) is proposed in [158]. In Figure 10a–c, the BB generation setup and
the generated BB patterns are shown for the axicon tilt angle of 0 and 10 degrees. Intra-volume
modifications are created by the astigmatic BB with transverse crack proliferation in the dominant
direction. Regarding processing time, glass breaking force and cutting standard, the alignment of
these adjustments parallel to the dicing path provides major benefits. A similar approach has also
been demonstrated where five BBs of complex amplitudes was fabricated to study the astigmatic BBs.
The optical setup and the BB patterns are shown in Figure 10d–g. The detail of this method can be
found in [46].

Figure 10. (a) BB generation setup, (b) Axicon generated BB pattern in the XY plane for 0 degrees,
(c) Axicon-generated BB patterns in the XY plane for 10 degrees [158]. Optical setup for the generation
of BBs at different diffraction orders employing a multi-order DOE under (d) perpendicular and
(f) oblique illumination. This results in the intensity distribution for a perpendicular diffraction order
under (e) perpendicular and (g) oblique illumination.

7. Tight or Sharp Focusing and Focal Shaping

7.1. Superresolution

A narrow annular pupil that blocks the light from propagating practically through the entire
central part of the lens [70,159–161] is a simple, albeit low-efficiency technique to create narrow
extended beams in the focal plane. From Figure 11, it can be seen that by establishing the narrow
ring the generation of 1.6 times smaller focal spot even at the high numerical aperture is permitted.
The detailed analysis of this topic can be found in our previous study [70].
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Figure 11. Drawing of the focal spot for the full-aperture radiance by plane wave—classical
diffraction limit is 0.51λ and with narrow ring aperture—BB’s diffraction limit is 0.36λ (superresolution).
Adapted with permission from [70].

More complex methods for the full-aperture apodization of the pupil’s function that utilizes
both purely the phase and amplitude-phase distributions have also been presented [67,162,163].
One method is based on an additional axicon-type binary phase that discards the central rays from the
focal plane [164]. This permits the reduction of the spot size in the total intensity with a reasonable
loss of energy. However, in all cases, a tighter focal spot is usually attained at expense of the energy
redeployment from the central peak to the side lobes.

7.2. Strengthening the Longitudinal Component

Note that the superresolution is also achieved due to special types of polarization and amplification
of the longitudinal component of the electric field [165–168]. The longitudinal component plays a
significant role not only in the reduction of the focal-spot size, but also in other applications, in particular,
in the imaging of molecule orientations [169], second-harmonic generation [170], spectroscopy [171]
and particle acceleration [172]. To generate and amplify the longitudinal component of the electric
field, it is possible to use the optical elements, as well as the specially designed optimized elements
that form longitudinally polarized needles as shown in Figure 12 [68,173–176].

Figure 12. Generation a longitudinally polarized needle when a spiral diffractive axicon is added to
the objective.
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Note that a longitudinally polarized field can be formed immediately near the optical element
using a large-aperture axicon [66]. Moreover, the enhancement of the longitudinal component is
possible for various types of polarization due to the introduction of asymmetry into the axicon
structure [69,177] as shown in Figure 13.

Figure 13. Asymmetric binary axicon (a) for the formation of a longitudinally polarized field, (b) the
red line is for transverse components intensity, the blue line is for the longitudinal component intensity,
and the black line is for the total (sum) intensity with linear polarization of the incident radiation,
(c) Illustration of Scheme.

7.3. 3D Focal Shaping

Shaping and transformation of light beams in the focal domain [178–182] is of paramount and
growing interest in modern optics, such as in confocal microscopy, stimulated emission depletion,
darkfield microscopy as well as in optical tweezers/particle trapping, optical storage, lithography etc.
A chain of nearly spherical balls of subwavelength size is easy and can be formed by counter-propagating
Bessel beams [183,184]. To form a separate spherical distribution, the interference of tightly focused
vortex beams can be applied [185,186].

8. Other Related Applications

A lens is the best-known optical element, an axicon has become well known in optics only since
the middle of the past century [140]. By an axicon was understood any axisymmetric optical element
which, due to reflection and/or refraction, converts the light of a point source disposed on the optical
axis into an axial segment [140]. Later, the term of the classical axicon began to be used to refer to
an optical element whose phase function has a linear dependence on the radius—a linear or conical
axicon [187,188]. At the same time, various axisymmetric optical elements have been proposed a
logarithmic axicon [189,190], a generalized axicon [191], which generates an axial light segment with
definite properties.

When an axicon is combined with a spiral phase plate, a spiral or helical axicon can be obtained [192].
For the first time, a diffractive spiral axicon was manufactured using the photolithography technology
and was experimentally used to form higher-order BBs [193]. In the binary version, the spiral axicon
looks like a spiral ring grating [194]. When an axicon is supplemented with a lens, another interesting
optical element is obtained—a lensacon [195,196]—which was suggested to use a corrective element in
the optical system of the human eye [197,198]. An artificial eye lens in the form of a thin plate whose
surfaces have microrelief in the form of a circular diffraction grating can be implanted through a small
incision, which significantly reduces surgery risks. An axicon supplemented by a lens generates a light
ring [199,200], which is useful in surgery for smoothing and ablating corneal tissue [201].

Optical communication systems have been a popular tool for transmitting information due to
high reliability and high usability. Many applications for personal, commercial and military use have
been described. Owing to the high prevalence and diversity of applications, an optical network must
be sufficiently protected. The protection applies to all levels of the network. It is also important to have
the highest degree of protection on all layers. A very common and dangerous practice is to implement
security protocols at higher levels of the network without protecting the lowest levels. To create a
complicated solution, the physical layer of an optical system must be secured against different kinds of
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hazards. The physical layer of an optical fiber network is vulnerable to a range of threats, ranging from
threats on physical networks, surveillance and eavesdropping.

Non-diffractive beams are suitable for information encryption in optical communication because the
diffraction-free property of the beams does not rely on the distribution of the amplitude, phase or even
polarization of the spatial frequency range [62–64,202]. In [203], an experimental technique is described
for easily generating a non-diffracting range of intensity patterns. It is expected that these patterns might
be useful in information encryption or surveillance applications. Polarization state encryption has been
shown to offer additional consistency in key encryption architecture, complementing amplitude and phase
encryption [65,204–206]. Moreover, some recent studies have looked at the use of partially coherent light
for optical trapping [207,208] and polarization-multiplexing for optical recording [209], making it feasible
for related applications of transversely random polarization non-diffracting beams. Figure 14 presents the
intensity, polarization and phase distribution for the constant phase and randomly polarized input beam.

Figure 14. Transverse distributions of intensity, polarization and phase at different positions behind
the lens for random polarization state. Adapted with permission from [65].

Lately, the researchers are attracted by the “perfect” optical vortices (POV) having ring radius
independent of its vortex number [210–213]. As a rule, the Fourier transformation of BBs or lens-axicon
doublets [213–216] is used to create such optical beams. In reality, these methods can be considered
similar, since the axicon is regularly employed to produce BBs [147,217,218]. Besides, the POV can be
shaped using a curved fork grating [219,220]. The operation of curved fork gratings are significantly
different from classic fork gratings [221–223], which are used to generate and also to detect numerous
OV beams having different diffraction orders [224]. With the creation of a correlation peak in the
focal plane of the lens in the corresponding diffraction order, the existence of a vortex component of a
specific order is observed (Figure 15).

Figure 15. The action of the conventional fork grating with m = 1: (a) grayscale element, (b) binary
element and (c) binary element in the presence of a vortex beam with m0 = 3. The focal plane is
separately shown and the numbers in the frame resemble the values (nm), i.e., positive diffraction
orders are positioned below. Adapted with permission from [220].

Curved fork gratings generate multiplexed BBs, so annular distributions independent of its vortex
number are formed in the focal plane. Hence, the detection of an OV cannot be comprehended in the
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focal plane, but only at a certain distance from it (see Figure 16). This offers additional security for
information transmission.

Figure 16. The action of the curved fork grating with m = 1 (a, b, c are analogical as Figure 15).
Adapted with permission from [220].

Furthermore, the generation of a 3-D configuration of ring-shaped OV beams is important for the
processing of high-throughput laser material. For example, the shaping of the desired configuration of
OV beams enables the processing of a bulk of transparent materials and polymers and the manufacture
of 3-D meta-structures using single-shot pulse laser printing [225].

9. Concluding Remarks

The optical beams free of dispersion and diffraction are exceptional cases of optical wave
transmission that have gained extensive interest in recent years. The beams that are formed with
spatial or temporal invariance involves a detailed knowledge of the physical laws governing their
propagation in a given medium. A Bessel beam (BB) gets its name from the narrative of such a beam
via a Bessel function, and this results in an anticipated cross-sectional contour of a set of concentric
rings. Mathematically the BB contains an endless number of rings, and so over an infinite area would
transfer infinite power. Thus the assumption must be that BB cannot be created. However, Durnin et al.
demonstrated that an approximation can be made to a BB (quasi-BB) experimentally which retains
the properties of the mathematical solution over a limited distance. The diffraction-free character of
perfect BBs has initiated massive interest among researchers all over the world. In this review paper,
we tried our best to enclose this vast topic so that the readers can find recent developments on BBs in
one place. Moreover, we have also included several theoretical and experimental demonstrations of
BBs from our research group.
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