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Rationale & Objective: Biomarkers of kidney dis-
ease progression have been identified in in-
dividuals with diabetes and underlying chronic
kidney disease (CKD). Whether or not these
markers are associated with the development of
CKD in a general population without diabetes or
CKD is not well established.

Study Design: Prospective observational cohort.

Setting & Participants: In the Atherosclerosis Risk
in Communities) study, 948 participants were
studied.

Exposures: The baseline plasma biomarkers of kid-
ney injury molecule-1 (KIM-1), monocyte
chemoattractant protein-1 (MCP-1), soluble
urokinase plasminogen activator receptor (suPAR),
tumor necrosis factor receptor 1 (TNFR-1), tumor
necrosis factor receptor 2 (TNFR-2), and human
cartilage glycoprotein-39 (YKL-40) measured in
1996-1998.

Outcome: Incident CKD after 15 years of follow-
up defined as ≥40% estimated glomerular
filtration rate decline to <60 mL/min/1.73 m2 or
dialysis dependence through United States Renal
Data System linkage.
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Analytical Approach: Logistic regression and C
statistics.

Results: There were 523 cases of incident CKD.
Compared with a random sample of 425 controls,
there were greater odds of incident CKD per 2-fold
higher concentration of KIM-1 (OR, 1.49; 95% CI,
1.25-1.78), suPAR (OR, 2.57; 95% CI, 1.74-3.84),
TNFR-1 (OR, 2.20; 95% CI, 1.58-3.09), TNFR-2
(OR, 2.03; 95% CI, 1.37-3.04). After adjustment
for all biomarkers, KIM-1 (OR, 1.42; 95% CI,
1.19-1.71), and suPAR (OR, 1.86; 95% CI, 1.18-
2.92) remained associated with incident CKD.
Compared with traditional risk factors, the
addition of all 6 biomarkers improved the C
statistic from 0.695-0.731 (P < 0.01) and using
the observed risk of 12% for incident CKD, the
predicted risk gradient changed from 5%-40%
(for the 1st–5th quintile) to 4%-44%.

Limitations: Biomarkers and creatinine were
measured at one time point.

Conclusions: Higher levels of KIM-1, suPAR,
TNFR-1, and TNFR-2 were associated with
higher odds of incident CKD among individuals
without diabetes.
Chronic kidney disease (CKD) has been recorded in
almost 700 million adults worldwide.1 In the United

States, an estimated 37 million adults have CKD, and
809,000 have kidney failure requiring dialysis.2,3 Novel
therapies have been developed that prevent CKD progres-
sion,4-6 but they may be more effective at preventing
kidney failure requiring dialysis or transplant when
deployed early.7-9 Therefore, initiatives focused on the
identification of individuals with a high risk of developing
CKD are of great importance, as this could allow more
targeted prevention and treatment efforts.10

Several kidney-specific biomarkersmayhelpwith the early
identification of high-risk individuals, even when typical
kidney parameters such as creatinine, cystatin, and urine al-
bumin still decrease within the normal range.11 Given the
variability of urinary biomarkers related to tonicity and urine
flow,12 we wanted to investigate the utility of plasma bio-
markers. In particular, plasma biomarkers related to in-
flammation and fibrosis (tumor necrosis factor receptor-1
[TNFR-1], tumor necrosis factor receptor-2 [TNFR-2],13
monocyte chemotactic protein-1 [MCP-1], soluble
urokinase-type plasminogen activator receptor [suPAR]),14

repair (chitinase 3-like protein 1 [YKL-40]),15 and tubular
injury (kidney injurymolecule-1 [KIM-1]) have been shown
to be associated with progressive CKD in individuals with
diabetes, but whether or not this relationship exists with the
development of CKD in individuals without diabetes is less
clear.11,16 Among these biomarkers, TNFR-1 and TNFR-2
have been the most studied and consistent in their associa-
tion with incident and progressive CKD among individuals
with and without diabetes.11-13,16 suPAR, YKL-40, and KIM-
1 have also been associated with incident CKD, though less
consistently across different study populations.11,12,16-20 For
example, a recent study of individuals without CKD or dia-
betes in 2 cohorts—the multi-ethnic study of atherosclerosis
(MESA) and the reasons for geographic and racial differences
in stroke (REGARDS) study—found that TNFR-1 andTNFR-2
were consistently associated with incident CKD. KIM-1,
suPAR, and YKL-40 also had significant associations with
incident CKD in MESA but not in REGARDS.11
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PLAIN-LANGUAGE SUMMARY
For people with diabetes or kidney disease, several
biomarkers have been shown to be associated with
worsening kidney disease. Whether these biomarkers
have prognostic significance in people without diabetes
or kidney disease is less studied. Using the Atheroscle-
rosis Risk in Communities study, we followed in-
dividuals without diabetes or kidney disease for an
average of 15 years after biomarker measurement to see
if these biomarkers were associated with the develop-
ment of kidney disease. We found that elevated levels of
KIM-1, suPAR, TNFR-1, and TNFR-2 were associated
with the development of kidney disease. These bio-
markers may help identify individuals who would
benefit from interventions to prevent the development
of kidney disease.

Le et al
Our study objective was to assess whether plasma levels
of KIM-1, MCP-1, TNFR-1, TNFR-2, suPAR, and YKL-40
were associated with the development of incident CKD
above traditional risk factors in individuals without known
diabetes in the well curated, longitudinal Atherosclerosis
Risk in Communities (ARIC) study.
METHODS

Study Population

The ARIC study is a community-based prospective cohort
study designed to evaluate the etiology of cardiovascular
disease.21 Total 15,792 individuals between the age 45-64
years were enrolled in 1987-1989 in 4 communities:
Forsyth County, North Carolina; Jackson, Mississippi;
northwestern suburbs of Minneapolis, Minnesota; and
Washington County, Maryland. All participants provided
informed consent at study enrollment and at each follow-
up study visit.

Study Design and Outcome

Incident CKD was defined as either a ≥40% estimated
glomerular filtration rate (eGFR) decline to a level
of <60 mL/min/1.73 m2 or kidney replacement therapy
(dialysis or transplant) at study visit 5 (2011-2013)
when compared with study visit 4 (1996-1998, defined
as the baseline for this study). Kidney failure or dialysis
was determined by linkage with the United States Renal
Data System (USRDS) registry.3 Individuals with albu-
minuria were included. We excluded individuals with
eGFR of <60 mL/min/1.73 m2, and we excluded in-
dividuals with prevalent diabetes defined as self-
reported diagnosis of diabetes by a physician, antidia-
betic medication, fasting blood glucose ≥ 126 mg/dL,
or nonfasting blood glucose ≥ 200 mg/dL at visit 4. We
excluded individuals who had missing eGFR at visit 4 or
visit 5.
2

Exposure Variables

We measured concentrations of KIM-1, MCP-1, suPAR,
TNFR-1, TNFR-2, and YKL-4011,20,22-26 in plasma bio-
specimens collected from study participants at visit 4
(1996—1998) in all cases and a random sample of controls.
Biomarkers weremeasured in duplicate, and themean of the
2 values was used in the analysis. Samples were stored
at −80 �C and analyzed using a multiplex assay on the meso
scale discovery platform (Meso Scale Diagnostics) in the
CKD Biomarkers Consortium central laboratory at Brigham
andWomen’s Hospital. Sampleswere repeated if their intra-
assay coefficient of variation was >20% for 2 or more ana-
lytes, and particularly, KIM-1 (0.74% of samples), MCP-1
(0.11%), suPAR (0.42%), TNFR-1 (2.64%), and TNFR-2
(0.21%) required repeating. The mean coefficients of vari-
ation were 5.0% for KIM-1, 2.3% for MCP-1, 4.2% for
suPAR, 7.6% for TNFR-1, 2.8% for TNFR-2, and 2.0% for
YKL-40. For 47 blind duplicates that were generated at the
time of blood specimen collection in the ARIC study, mean
coefficients of variation were 12.5% for KIM-1, 9.3% for
MCP-1, 9.2% for suPAR, 10.7% for TNFR-1, 6.3% for
TNFR-2, and 4.5% for YKL-40.

Covariates

Information on age, sex, race, smoking status, height,
weight, blood pressure, health history, and medication use
was collected using standardized procedures during visit 4
by trained technicians.27 Body mass index was calculated
using measured height and weight. Blood pressure was
measured as the average resting state using 2 measure-
ments with a random zero sphygmomanometer. Hyper-
tension was defined as systolic blood pressure of ≥140 mm
Hg, diastolic blood pressure of ≥90 mm Hg, or use of anti-
hypertensive medication. History of congestive heart dis-
ease, stroke, or cardiovascular disease was self-reported at
visit 1, and for subsequent study visits, cardiovascular
events were ascertained through annual telephone in-
terviews, review of hospital records, and active surveil-
lance with events adjudicated by an expert committee.

Urine albumin was measured by a nephelometric
method on either the Dade Behring BN100 or the Beckman
image nephelometer. Of the entire ARIC cohort 1,065
random individuals were measured on both assays with a
mean difference of −53 mg/L for albumin and −0.8 mg/L
for urine albumin-to-creatinine ratio (uACR). Plasma and
urine creatinine levels were measured by the modified
kinetic Jaff�e method. Cystatin C was measured using a BN
II nephelometer.28 The eGFR was calculated using the
2021 eGFRCr-Cys equation because of its higher accuracy29

compared with the traditional eGFRCr equation.
30,31

Statistical Analysis

Descriptive statistics were used to report baseline partici-
pant characteristics in the overall sample and separately for
individuals who developed and did not develop CKD.
Pearson correlation coefficients were calculated to assess
Kidney Med Vol 5 | Iss 11 | November 2023 | 100719
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the intercorrelations among biomarkers and their correla-
tions with eGFR and uACR.

Plasma biomarkers were log2-transformed to improve
the normality of their distribution and to allow for the
interpretation of the results at a 2-fold higher biomarker
concentration. We additionally analyzed the biomarkers
across quartiles, with the lowest quartile being the refer-
ence category in individuals who did not develop incident
CKD.

We calculated odds ratios (OR)and 95% confidence
intervals (CI) for the association between plasma bio-
markers and incident CKD using unadjusted logistic
regression models. In addition, we used multivariable
logistic regression models, adjusted for demographic
characteristics (age, sex, and race), study site, health
behavior (smoking status), health status (body mass index,
systolic blood pressure, anti-hypertensive medication, and
history of cardiovascular disease), and log-transformed
uACR in model 1; we additionally adjusted for eGFR in a
separate model (model 2). To estimate improvement in fit
over traditional risk factors, the C statistic was calculated
using model 2 with and without the inclusion of indi-
vidual biomarkers and all 6 biomarkers.

To identify which biomarkers were associated with
incident CKD after adjustment for other biomarkers, we
constructed a regression model with all 6 biomarkers
(KIM-1, MCP-1, suPAR, TNFR-1, TNFR-2, and YKL-40).
We used step-wise regression with backward and for-
wards selection to minimize the Akaike information
criterion least absolute shrinkage and selection operator
(LASSO) method, and likelihood ratio test to optimize and
assess model selection. The LASSO selects variables by
penalizing the absolute value of the magnitude of
coefficients, and this method selects the most important
biomarkers in a rigorous and reproducible way. The co-
efficients for LASSO regression were then calculated using
logistic regression models.

To calculate the improvement in risk prediction with
these 6 biomarkers over traditional risk factors, we calcu-
lated the individual risk for incident CKD using traditional
risk factors with and without the 6 biomarkers. A risk
gradient was then calculated by using the 10th and 90th
percentile values (ie, the midpoint of the 1st and 5th
quintile), with the 50th percentile risk set at the observed
risk of incident CKD within the ARIC study from visit 4 to
visit 5. We additionally estimated the odds ratio of incident
CKD between the 1st and 5th quintiles.

We also performed 2 sensitivity analyses. First, we
excluded individuals with baseline albuminuria, defined
as >30mg/g, and second, we restricted outcomes to those
who met a composite of incident CKD outcomes and
progressed to CKD3b+ or kidney failure on dialysis.

Statistically significant results were determined by a
2-tailed P < 0.05. Analyses were performed using Stata
version 17 statistical software32 and R Core Team Version
4.2.033 with the MASS34 and ggplot2 package.35
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RESULTS

Of the 11,656 individuals enrolled in ARIC at visit 4, we
excluded 777 for baseline eGFR of <60 mL/min/1.73 m2

and 1,874 for prevalent diabetes. Of the remaining 9,005
individuals, 5,069 presented for follow-up with eGFR
measurements, and the median follow-up time was 14.8
years (25th percentile—75th percentile: 14.2—15.5). We
had 609 incident CKD cases, and 86 were excluded for
missing covariates. Of the 523 cases, 385 had progressed
to CKD3b+ or kidney failure on dialysis or transplant
(CKD3b: 269, CKD4: 68, CKD5: 10, and kidney failure
requiring dialysis or transplant: 38). Of the 4,030 controls,
425 were then randomly selected for biomarker mea-
surement in addition to the cases.

In the entire cohort at baseline, the mean age was 62
years, 59% were women, and 20% were Black. The mean
systolic blood pressure was 127 mm Hg and 39% were
taking blood pressure medication. The mean uACR was
14 mg/g, and mean eGFR was 91 mL/min/1.73 m2

(Table 1). There were 41 incident CKD and 9 nonCKD
individuals with baseline uACR > 30 mg/g. See Tables S1,
S2, and S3 for study participant characteristics by quartile
of biomarkers.

All 6 biomarkers were statistically significant and posi-
tively correlated with each other (Table 2). The strongest
correlation was observed between TNFR-1 and TNFR-2
(r = 0.69). All biomarkers were inversely associated with
eGFR, and TNFR-1 and TNFR-2 had the strongest inverse
correlations with eGFR (TNFR-1: r = −0.54; TNFR-2:
r = −0.51). All biomarkers were also positively correlated
with uACR except for MCP-1.

In unadjusted analyses, higher levels of each of the 6
biomarkers were associated with greater odds of incident
CKD (Table 3). Results were similar after adjusting for
demographics, CKD risk factors, and uACR. After
additional adjustment for baseline eGFR, KIM-1, suPAR,
TNFR-1, and TNFR-2 retained statistically significant as-
sociations, but associations with MCP-1 and YKL-40 were
attenuated and no longer associated with incident CKD
(Figure 1). There were statistically significant trends of
higher odds of incident CKD across ascending quartiles of
KIM-1, suPAR, TNFR-1, and TNFR-2, but not MCP-1 or
YKL-40 in model 2 (Figure 2). The strongest associations
between biomarkers and incident CKD were observed for
KIM-1 (OR for quartile 4 vs quartile 1: 2.32; 95% CI,
1.54-3.49) and suPAR (OR for quartile 4 vs quartile 1:
2.31; 95% CI, 1.48-3.62) (Figure 2). By C statistic,
individual KIM-1, suPAR, and TNFR-1 had statistically
significant improvements in model prediction of incident
CKD beyond traditional covariates (Table 3). Inclusion of
all 6 biomarkers together with traditional risk factors also
significantly improved model prediction (C statistic 0.732
with a difference of 0.04 and P < 0.001).

When all 6 biomarkers were modeled together, KIM-1
(OR, 1.42; 95% CI, 1.19-1.71) and suPAR (OR, 1.86; 95%
CI, 1.18-2.92) were statistically significant with greater
3



Table 1. Baseline Characteristics for the Overall Study Population and According to Incidenta CKD Statusb

Characteristic
Overall
(N=948)

Incident CKD
(n=523)

No CKD
(n=425) Pc

Age (y) 62 (5) 63 (5) 61 (5) < 0.001
Female 562 (59.3%) 325 (62.1%) 237 (55.8%) 0.05
Black 189 (19.9%) 118 (22.6%) 71 (16.7%) 0.03
Body mass index (kg/m2) 29 (5) 29 (6) 29 (5) 0.07
Current smoker 127 (13.4%) 75 (14.3%) 52 (12.2%) 0.34
Systolic blood pressure (mm Hg) 127 (19) 132 (19) 122 (16) < 0.001
Blood pressure medication use 370 (39%) 243 (46.5%) 127 (29.9%) < 0.001
History of cardiovascular disease 71 (7.5%) 53 (10.1%) 18 (4.2%) < 0.001
eGFR (mL/min/1.73 m2)d 91 (92) 89 (90) 93.4 (94) < 0.001
uACR (mg/g)e 4 (2-7) 4 (2-8) 3 (2-6) < 0.001
Abbreviations: eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease; uACR, urine albumin-to-creatinine ratio.
aIncident CKD was defined as either a ≥40% eGFR decline to a level of <60 mL/min/1.73 m2 or kidney replacement therapy (dialysis or transplant).
bData are reported as number (percent) or mean (standard deviation). No data were missing.
cP-value from Pearson χ2 for categorical variables and t tests for continuous variables.
d2021 CKD-EPI Cr-Cys equation. Data are reported as mean (median).
eData are reported as median (25th percentile—75th percentile).
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odds of incident CKD after adjusting for demographic
factors, health status, uACR, and eGFR (Table 4). Using
LASSO regression, however, both TNFR-1 and TNFR-2
remained in the final model in addition to KIM-1 and
suPAR (Table 4), with statistically significant model
improvement by the likelihood ratio test (P = 0.04 for
inclusion of both TNFR-1 and TNFR-2 with KIM-1 and
suPAR).

In terms of risk prediction, the highest quintile vs
lowest quintile (with lowest quintile as reference) had
significantly increased risk of incident CKD when using
traditional risk factors (model 2 without biomarkers; OR
8.19 [95% CI, 5.19-13.17]), and the risk increased further
when incorporating the 6 biomarkers (OR 12.77 [95% CI,
7.78-21.57). We then calculated the risk gradient by
setting the middle quintile at the 12% observed risk of
incident CKD within this cohort over the 15 years of
follow-up. The risk gradient for traditional risk factors was
5%-40% (for the first and fifth quintile) and the risk
gradient for traditional risk factors with the 6 biomarkers
was 4%-44%.

For our sensitivity analyses, the results of the first
analysis (exclusion of individuals with uACR > 30 mg/g at
baseline) were consistent with the original findings except
for unadjusted YKL-40, which was no longer associated
Table 2. Pearson Correlation Coefficients for Plasma Biomarkers,

KIM-1 MCP-1 suPAR TNFR
KIM-1 1 0.14a 0.13a 0.24a

MCP-1 — 1 0.20a 0.28a

suPAR — — 1 0.50a

TNFR-1 — — — 1
TNFR-2 — — — —
YKL-40 — — — —
Abbreviations: eGFR, estimated glomerular filtration rate by 2021 Cr-Cys equation;
chemoattractant protein-1; suPAR, soluble urokinase plasminogen activator recept
ceptor 2; uACR, urine albumin-to-creatinine ratio; YKL-40, human cartilage glycopr
aP < 0.05.

4

with incident CKD. See Table S4. For the second sensitivity
analysis, where we restricted the outcome to incident CKD
and CDK3b+ or kidney failure on dialysis, all individual
biomarker associations were attenuated, but the statistical
significance was unchanged compared with the primary
analysis (Table S5). In the model with all 6 biomarkers
together, however, TNFR-1 was no longer statistically
significant, and only the association between both KIM-1
and suPAR with incident CKD remained statistically sig-
nificant (Tables S5 and S6). In LASSO regression, KIM-1,
suPAR, TNFR-1, and TFNR-2 were still selected, but in
step-wise regression, only KIM-1 and suPAR remained in
the final model.
DISCUSSION

In a population without known diabetes and follow-up
after 15 years, we show that higher plasma concentra-
tions of baseline KIM-1, suPAR, TNFR-1, and TNFR-2
were individually associated with higher odds of incident
CKD, above and beyond CKD risk factors, baseline eGFR,
and albuminuria. These biomarkers may be representative
of a subclinical kidney injury process and could help
identify individuals at risk of CKD incidence and possible
mechanisms of kidney disease pathogenesis. MCP-1 and
eGFR, and uACR

-1 TNFR-2 YKL-40 eGFR uACR
0.17a 0.16a −0.19a 0.19a

0.25a 0.15a −0.20a 0.03
0.49a 0.14a −0.42a 0.12a

0.69a 0.20a −0.52a 0.19a

1 0.22a −0.51a 0.18a

— 1 −0.20a 0.08a

CKD, chronic kidney disease; KIM-1, kidney injury molecule-1; MCP-1, monocyte
or; TNFR-1, tumor necrosis factor receptor 1; TNFR-2 tumor necrosis factor re-
otein-39.

Kidney Med Vol 5 | Iss 11 | November 2023 | 100719



Table 3. Association of Individual Plasma Biomarkers with Incidenta CKD in the ARIC Study and Change in C Statistics

Plasma
Biomarker

OR (95% CI) for Incident CKDb

Unadjusted Model 1c Model 2d C Statistic (95% CI)e ΔC-Statistic
KIM-1 1.66 (1.41-1.95) 1.53 (1.28-1.82) 1.49 (1.25-1.78) 0.711 (0.679-0.744) 0.016f

MCP-1 1.36 (1.01-1.82) 1.44 (1.03-2.01) 1.34 (0.96-1.89) 0.697 (0.664-0.730) 0.002
suPAR 2.99 (2.17-4.12) 2.75 (1.90-3.98) 2.57 (1.74-3.84) 0.714 (0.679-0.746) 0.018f

TNFR-1 2.13 (1.65-2.74) 2.24 (1.66-3.00) 2.20 (1.58-3.09) 0.713 (0.681-0.745) 0.018f

TNFR-2 2.42 (1.76-3.32) 2.21 (1.55-3.15) 2.03 (1.37-3.04) 0.706 (0.673-0.738) 0.010
YKL-40 1.14 (1.01-1.29) 1.04 (0.91-1.18) 1.01 (0.89-1.16) 0.695 (0.662-0.728) 0.000

aIncident CKD was defined as either a ≥40% eGFR decline to a level of <60 mL/min/1.73 m2 or kidney replacement therapy (dialysis or transplant).
bOR is calculated per 2-fold higher biomarker level.
cModel 1 was adjusted for age, sex, race, study site, body mass index, systolic blood pressure, anti-hypertensive medication use, smoking status, history of cardio-
vascular disease, and urine albumin-to-creatinine ratio.
dModel 2 was adjusted for covariates in model 1 with additional adjustment for eGFRCr-Cys.
eC statistic calculated from Model 2 without any biomarkers was 0.695 (0.662-0.728).
fP < 0.05 for comparison of C statistic before and after inclusion in Model 2.

Le et al
YKL-40 were not associated with greater odds of incident
CKD. In this study, suPAR was associated with the highest
odds of incident CKD, with TNFR-1 and TNFR-2 confer-
ring almost similarly high odds. When all 6 biomarkers
were modeled together, only KIM-1 and suPAR were sta-
tistically significant across sensitivity analyses and regres-
sion models (multivariable, LASSO, and stepwise).

Previous studies have found each of these biomarkers to
be associated with CKD progression in individuals with
diabetes,16 but few have specifically looked in individuals
without diabetes or CKD at baseline. Other previous
studies have been limited to children with CKD,17 adults
with CKD or diabetes,13,16,18,20,24-26,36 urinary samples
(KIM-1, MCP-1, and YKL-40),37,38 or assessment of in-
dividual biomarkers.20,39,40 By studying this specific
population, the CKD Biomarkers Consortium aimed to
identify biomarkers strongly associated with incident CKD
and, as a consequence, potentially identify individuals who
Figure 1. Odds ratio for incident chronic kidney disease per 2-
fold higher concentration of each individual plasma biomarkera.
KIM-1, kidney injury molecule-1; MCP-1, monocyte chemoattrac-
tant protein-1; suPAR, soluble urokinase plasminogen activator
receptor; TNFR-1, tumor necrosis factor receptor 1; TNFR-2 tu-
mor necrosis factor receptor 2; YKL-40, human cartilage
glycoprotein-39. aLogistic regression models were adjusted for
age, sex, race, study site, body mass index, systolic blood pres-
sure, anti-hypertensive therapy, smoking status, history of cardio-
vascular disease, log-transformed urine albumin-to-creatinine
ratio, and eGFR.
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may benefit from interventions to delay the onset of kid-
ney disease.

The CKD Biomarkers Consortium previously studied
these same biomarkers in individuals without diabetes or
CKD in bothMESA andREGARDSusing a case-cohort design,
andwe found that TNFR-1 andTNFR-2were associatedwith
incident CKD, whereas MCP-1 had no associations. By
contrast, the associations with KIM-1, suPAR, and YKL-40
were inconsistent, as they had statistically significant asso-
ciations individually in MESA but not in REGARDS.11 This
study evaluates the same biomarkers in a different popula-
tion while also using the 2021 Cr-CysC eGFR equation,
which better estimates kidney function. As in MESA, we
found both KIM-1 and suPAR to be associated with incident
CKD.11,20,41 suPAR is an inflammatory molecule that may
lead to pathologic podocyte activation,42,43 and it has pre-
viously been shown to be associated with eGFR decline in
populations with and without CKD11,14,20 and those
without albuminuria.44 KIM-1, a marker of acute and
chronic proximal tubule injury, can be detected in both
blood and urine after kidney injury25 and has been associ-
ated with incident and progressive CKD across individuals
with24,38,45 andwithout diabetes.46,47 For both TNFR-1 and
TNFR-2, we confirmed previous findings of an association
with incident CKD. This is not surprising, as previous
research has shown a consistent relationship between inci-
dent and progressive CKD in individuals with and without
diabetes.11,13,17,18,24,39,48,49 Elevated TNF receptors likely
reflect TNF pathway activation, which has been associated
with increased vascular endothelial permeability, glomer-
ular basement membrane thickening, glomerular hyper-
cellularity, apoptosis of endothelial cells, and direct toxicity
to kidney cells.50-52

We did not find either MCP-1 or YKL-40 to be statis-
tically associated with incident CKD. MCP-1 is a pro-
inflammatory biomarker, which recruits monocytes and
macrophages, and in urine, it has been frequently associ-
ated with poor kidney outcomes across multiple clinical
settings, such as diabetes, ADPKD, post-cardiac surgery,
and post-kidney transplant across incident and progressive
5



Figure 2. Association of quartiles of plasma biomarkers with incident chronic kidney disease in multivariable logistic regression
models in ARICa. KIM-1, kidney injury molecule-1; MCP-1, monocyte chemoattractant protein-1; suPAR, soluble urokinase plasmin-
ogen activator receptor; TNFR-1, tumor necrosis factor receptor 1; TNFR-2 tumor necrosis factor receptor 2; YKL-40, human carti-
lage glycoprotein-39. aLogistic regression model adjusted for age, sex, race, study site, body mass index, systolic blood pressure,
anti-hypertensive medication use, smoking status, history of cardiovascular disease, log-transformed urine albumin-to-creatinine ratio,
and eGFR. P-value from model 2 of individual biomarkers.

Le et al
CKD.37,38,53-58 Our null finding with MCP-1 is similar to
both MESA and REGARDS.11 Explanations could include a
lack of detectable inflammation or fibrosis in the early
kidney disease course versus decreased sensitivity for kid-
ney damage compared with urinary MCP-1.57 Like
REGARDS, but opposite of MESA, we did not see an as-
sociation with YKL-40; also known as chitinase 3-like 1
(CHI3LI), YKL-40 is thought to regulate the repair phase
of acute kidney injury23 with urinary YKL-40 associated
with incident CKD.37 Notably, YKL-40 has also been
shown to be elevated in individuals with cardiovascular
disease59,60 who were included in this study but excluded
in MESA.11 Further studies will be needed to evaluate the
Table 4. Six Biomarker Model for the Association of Plasma Biom

Plasma Biomarker

OR (95% CI) for Incident Chronic

Model 1b Model 2
KIM-1 1.42 (1.19-1.71) 1.42 (1.
MCP-1 1.08 (0.76-1.54) 1.08 (0.
suPAR 1.84 (1.18-2.90) 1.86 (1.
TNFR-1e 1.48 (0.99-2.23) 1.51 (1.
TNFR-2e 1.13 (0.69-1.85) 1.15 (0.
YKL-40 0.95 (0.83-1.10) 0.95 (0.
Abbreviations: CI, confidence interval; KIM-1, kidney injury molecule-1; MCP-1, m
plasminogen activator receptor; TNFR-1, tumor necrosis factor receptor 1; TNFR-2
aOR were calculated per 2-fold higher biomarker level.
bModel 1 was adjusted for all the biomarkers as well as age, sex, race, study site, bod
status, history of cardiovascular disease, urine albumin-to-creatinine ratio, and all 6
cModel 2 was adjusted for covariates in model 1 and eGFR.
dModel 2 was used before variable selection through LASSO or Step-wise regress
eInclusion of both TNFR-1 and TNFR-2 resulted in improved fit by likelihood ratio t

6

utility of MCP-1 and YKL-40 in incident CKD and to assess
if urine or plasma is more prognostic of kidney outcomes.

In summary, we present data showing that individual
kidney biomarkers, specifically KIM-1, suPAR, TNFR-1,
and TNFR-2, were associated with greater odds of inci-
dent CKD in people without diabetes. In LASSO regression
with all 6 biomarkers, these 4 biomarkers remained in the
final model. Although both TNFR-1 and TNFR-2 were no
longer statistically significant, this may be because of high
collinearity.61 Notably, inclusion of both TNFR-1 and
TNFR-2 improved model fit by the likelihood ratio test.
With these findings, there are now multiple studies to tie
these biomarkers with incident,41,62 progressive, and end-
arkers with Incident Chronic Kidney Disease

Kidney Diseasea

c LASSOd Stepwised

19-1.70) 1.40 (1.18-1.68) 1.39 (1.17-1.66)
76-1.54) — —
18-2.94) 1.95 (1.32-2.90) 2.08 (1.43-3.05)
00-2.31) 1.39 (0.94-2.06) 1.42 (1.04-1.96)
70-1.91) 1.13 (0.70-1.83) —
83-1.10) — —
onocyte chemoattractant protein-1; OR, odds ratio; suPAR, soluble urokinase
tumor necrosis factor receptor 2; YKL-40, human cartilage glycoprotein-39.

y mass index, systolic blood pressure, anti-hypertensive medication use, smoking
biomarkers.

ion.
est (P < 0.05) for model 1, model 2, and LASSO.
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stage kidney disease16,18,36,49,63,64 in individuals with and
without diabetes, suggesting a pathogenic association.
Alternatively, these biomarkers may be strongly associated
with kidney outcomes as markers of kidney function
despite adjustment for eGFRCr-CysC. Current applications of
these biomarkers for prognostic use could include opti-
mizing selection for clinical trials by both decreasing
enrollment size through enrichment for higher-risk par-
ticipants and identifying individuals who may benefit from
targeted preventions for incident CKD, such as increased
surveillance or dietary counseling.8,9,36,65 Although the
benefits of biomarker inclusion in addition to traditional
risk factors within this study were modest, these results
report the potential of kidney-specific biomarkers for risk
stratification for incident kidney disease.

This study hasmultiple strengths. In addition, to being the
largest study of these biomarkers and incident CKD to date,
the study includes rigorous adjustment of kidney function
using the 2021 eGFRCr-CysC race-free equation, simultaneous
assessment of multiple biomarkers, biomarker measurement
in duplicate, and a high level of quality control in a laboratory
developed as part of the CKD Biomarkers Consortium. This
study has several limitations. Incident CKD was primarily
defined using kidney function measured at a study visit and
included peoplewho progressed to kidney failure; therefore,
the exact timing of progression is unknown during the 15
years of follow-up. This study was restricted to individuals
who were alive and completed follow-up at ARIC study visit
5. Survival bias is likely given that death and lost time to
follow-up may have disproportionally occurred in those
with more severe CKD (and excluded from this study).
Biomarkers were only measured at 1 time point, which can
lead to measurement errors. Diabetes status was determined
by self-report or a single lab measurement, which may have
led to misclassification. Results may not be generalizable to
the entire US population as individuals were required to
complete at least 2 study visits to be included and were
restricted to 4 geographic regions within the ARIC study.
Finally, given the observational nature, there may still be
confounding despite rigorous adjustment for known CKD
risk factors. Future studies will need to confirm our results,
explore the utility of urinary versus serum biomarkers, and
identifywhich set of biomarkers aremost associatedwith the
development of CKD.

In conclusion, baseline KIM-1, suPAR, TNFR-1, and
TNFR-2 were associated with incident CKD with ≥40%
decline in the eGFR from baseline in individuals without
diabetes. These biomarkers may be able to identify in-
dividuals who can benefit from early intervention to delay
onset of CKD.
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