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Combi-seq for multiplexed transcriptome-
based profiling of drug combinations using
deterministic barcoding in single-cell
droplets

L. Mathur 1,2,10, B. Szalai 3,4,9,10, N. H. Du5, R. Utharala1, M. Ballinger1,
J. J. M. Landry1, M. Ryckelynck 6, V. Benes 1, J. Saez-Rodriguez 7,8 &
C. A. Merten 1,5

Anti-cancer therapies often exhibit only short-term effects. Tumors typically
develop drug resistance causing relapses that might be tackled with drug
combinations. Identification of the right combination is challenging andwould
benefit from high-content, high-throughput combinatorial screens directly on
patient biopsies. However, such screens require a large amount of material,
normally not available from patients. To address these challenges, we present
a scalable microfluidic workflow, called Combi-Seq, to screen hundreds of
drug combinations in picoliter-size droplets using transcriptome changes as a
readout for drug effects. We devise a deterministic combinatorial DNA bar-
coding approach to encode treatment conditions, enabling the gene
expression-based readout of drug effects in a highly multiplexed fashion. We
apply Combi-Seq to screen the effect of 420 drug combinations on the tran-
scriptome of K562 cells using only ~250 single cell droplets per condition, to
successfully predict synergistic and antagonistic drug pairs, as well as their
pathway activities.

Despite major progress over the last decades, cancer remains a major
cause of death. Our increased molecular understanding of the mole-
cular basis of cancer has led to the development of targeted therapies.
These therapies have so far provided limited efficacy and only in a
small subset of patients1, despitemajor efforts to characterize patients
genomically to find response biomarkers.

An approach that holds the promise to improve this situation is to
complement large-genomic profiling in basal conditions with mea-
surements after perturbing cancer cells with drugs2. While many
approaches canbeused toperformdrug screenings, they areoften low
in throughput3, cost and timeextensive4, and/or require large amounts
of cells5, which together strongly restricts the number of potential
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drugs that can be screenedper tumor biopsy. This limitation getsmore
pronounced when considering drug combinations due to the sheer
number of potential combinations, which increases exponentially with
the number of tested drugs.

Due to limited screening capacities, computational approaches to
model drug–drug interactions have beendeveloped6.Whilemodels on
drug efficacies improved over the past years by an increase in available
data resources, predictions on drug responses remain challenging and
limited to well-characterized systems such as cell lines, thereby limit-
ing their translatability into clinics. Among the different data types,
gene expression states of cells were shown to be highly predictive of
drug response7. Additionally, data repositories of drug-induced tran-
scriptional changes, such as LINCS8, have proven to be a valuable
resource. While there are already perturbation screening platforms
available in plates for bulk9,10 and single-cell11,12 transcriptomics, they
usually require large numbers of cells per tested condition, and they
have not been used for screening drug combinations. Therefore,
integrating transcriptomic readouts into a miniaturized combinatorial
drug screening platform with the potential to screen tumor biopsies
will enable more relevant predictions and increase our understanding
of the mode of action of synergistic and antagonistic drug–drug
interactions.

Droplet-based microfluidics, which uses picoliter to nanoliter-
sized droplets as reaction vessels to perform cellular screens, provides
a promising approach to achieve this goal. Due to the miniaturization
over several orders of magnitude as compared to conventional plate-
based screens, the number of drugs or drug combinations can be
massively upscaled while working with low input cell numbers13. We
previously demonstrated the first step in this direction by integrating
Braille valves into a droplet microfluidic system to generate drug
combinations in so-called plugs (~500 nl large droplets) stored
sequentially in tubings14. Plugs were used to directly screen 56 com-
binatorial treatment options on pancreatic tumor biopsies to find the
most potent drug pairs using a phenotypic apoptosis readout. While
our previous approach provided the first proof of concept in directly
screening patient material, the still relatively large volumes of 500nl
limited the number of drug pairs tested. Furthermore, an apoptosis
assayprovides only a single endpoint readoutwith limited insights into
the drug pairs’ mode of action, which could significantly improve our
understanding and the predictability of drug combinations to tackle
resistance mechanisms.

To overcome these limitations, we present here a microfluidic
platform that allows to perform highly multiplexed screens of hun-
dreds of drug combinations in an emulsion of picoliter-sized droplets.
By introducing a deterministic combinatorial barcoding approach,
where sets of two barcodes encode drug pairs, we managed to screen
all conditions in a highlymultiplexed fashion,without the need to keep
any spatial order (e.g., wells, plug-sequence). Since the DNA barcodes
were designed for whole transcriptome analysis of cells after drug
perturbation, we were additionally able to perform massively paralle-
lized gene expression-based profiling of drug combinations. We
demonstrated that the presented Combi-Seq approach can be applied
todetermine the impact of drugs oncell viability and cellular signaling,
thus providing a high-throughput approach to discover synergistic
drug pairs and decipher their mode of action.

Results
Microfluidic workflow to generate drug combinations in
picoliter-sized droplets
Multiplexed combinatorial drug screens were performed in single-cell
droplets by encapsulating drugs together with DNA barcode frag-
ments (Fig. 1a). Each pairwise drug combination was encoded by a
unique combination of two DNA barcode fragments, which together
provided a priming site for reverse transcription (poly-dT) and PCR.
After off-chip incubation of droplets, reagents for cell lysis, barcode

fragment ligation, and reverse transcription were added to each dro-
plet by picoinjection15. The ligation of two barcode fragments (BC-RT
and BC-PCR) resulted in functional barcodes, encoding pairwise drug
combinations (Fig. 1). Since the barcodes were used for the reverse
transcription of mRNA released from lysed cells, transcriptomes were
barcoded according to drug treatments (Fig. 1b). Subsequently, bar-
coded cDNA was extracted from the droplets to construct a sequen-
cing library (Supplementary Fig. 1). Finally, sequencing was performed
to demultiplex treatment conditions and to analyze their effects on
gene expression.

In order to generate drug combinations in picoliter-sized dro-
plets, we synchronized theBraille valve system and autosampler-based
injection of drugs into a droplet-maker chip (Fig. 1c). In addition, cell
suspensions were injected into the droplet-maker chip at a density of
0.1 cells per droplet volume, to obtain droplets containing single cells
(SupplementaryMovie 1). The autosampler (Dionex) was loadedwith a
96-well plate, with eachwell containing a single drug together with the
corresponding barcoded primer fragment (BC-PCR) and a marker dye
enabling to monitor later mixing steps. Drugs were consecutively
aspirated and injected into the droplet-maker. The time window
between two samples from the autosampler (~3min) was used to
generate a sequence of 20 chemically-distinct plugs, each containing
unique pairs of two drugs and two barcode fragments (BC-RT and BC-
PCR), by injecting secondary drugs and barcodes (BC-RT) into a
separate Braille valve chip (Fig. 1c and Supplementary Fig. 2a). In par-
ticular, each compound valve was opened sequentially and fluorinated
oil was injected in between so that drug-barcode plugs spaced out by
an immiscible oil phase could be injected into a delay tubing (Fig. 1d).
Once the delay tubing was filled with a sequence of 20 plugs, two oil
valves were opened to inject all plugs into the droplet-maker (~2min,
Supplementary Fig. 2b).

Thereby, drug-barcode plugs from the valve system were com-
bined with the drug-barcode mixtures being injected from the auto-
sampler and encapsulated together with single cells into droplets
(Fig. 1e). By repeating this process, hundreds of combinations with
specific pairs of barcode fragments were generated (Fig. 1f). It is
important to note that scaling up the number of combinations can be
achieved by increasing the number of drugs injected from the
autosampler.

Synchronization between the autosampler and the valve-based
injection of drugs was crucial to ensure that combinations were only
generated once the drug injected from the autosampler had reached
its plateau concentration. Between each drug coming from the auto-
sampler, a timewindowwith decreasing and increasing concentrations
was observed, as shown by the alternating injection of fluorescence
dyes (Fig. 2a). This phenomenon is based on Taylor-Aris dispersion of
solutes in the continuous, miscible carrier phase (PBS) of the
autosampler16.No combinations were generated during that time
window, which was rather used to produce compound plugs in the
delay tubing of the Braillemodule. Once the plateau concentrationwas
reached, as indicated by measuring a constant intensity of a fluor-
escent marker dye, the 20 compound plugs were injected into the
droplet-maker and combined with the drug from the autosampler and
cells into droplets. The injection of one such plug train took 2min,
resulting in an overall time (plug production and injection) of 15 sec-
onds for generating ~2500 droplets containing cells and one barcoded
combinatorial treatment condition. Once all 20 plugs were injected,
the autosampler started aspirating the subsequent drug.

To ensure droplet contents with marginal cross-contamination,
we designed the geometry and delay tubing connectors of the Braille
valve drop-maker chips such that no residual drug-barcode mixtures
remained in the channels (Supplementary Fig. 3). Before each experi-
ment, we measured a proxy for the level of contamination between
plugs from the Braille display. This was done by using drugs supple-
mented alternatingly with Alexa-488 or Cascade-Blue, resulting in an
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alternating sequence of blue and green fluorescence peaks (Fig. 2b).
Fluorescence intensities of plugs weremeasured on the droplet-maker
and contaminations of drugs/dyes from one plug into the subsequent
plug were detected by either green signals in UV peaks or UV signals in
green peaks (Fig. 2c).

The ratio between the fluorescence signals from each negative
peak (n) in either the green or the UV channel with the previous
positive peak (n-1) was used as a proxy to quantify the level of cross
contaminations between two drugs (Fig. 2d). Over three different
chip setups (Braille valve and drop-maker), we found a mean of 1.5%
of contamination in the UV channel and 0.7% in the green channel
(Supplementary Table 1), indicating that the described systems
can be applied to generate combinations with sufficiently high
purity.

In the described microfluidic pipeline, drug combinations were
generated bymixing drugs injected from an autosampler and a Braille
valve module. To ensure precise and accurate drug concentrations

within droplets, both drugs had to be encapsulated at a constant and
predefined ratio. We validated the precise mixing of two drugs by
supplementing all compounds on theBraille displaywithCascade-Blue
and all compounds fromthe autosamplerwithAlexa-488.Weobserved
one highly dense main population of double blue and green double
positive droplets, demonstrating that both compounds were co-
encapsulated at a constant ratio (Fig. 2e). Furthermore, we confirmed
the stable co-encapsulation of the two dyes for droplets over indivi-
dual combinations (Fig. 2f). The median fluorescence intensities of
individual combinations were highly stable with coefficients of varia-
tion (CV) over 180 combinations of 2.9 and 3% for blue and green
intensities, respectively. The scattering of droplets around the main
population can be explained by a short (<100ms) flow equilibration
phase at the beginning and end of plugs and fluctuation of the droplet
trajectory within a focused laser beam (Supplementary Fig. 4 and
Supplementary Movie 2). Consequently, we concluded that the injec-
tion modes (Braille valve or autosampler) can be robustly
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Fig. 1 | Combi-Seq workflow and microfluidic pipeline. a Overview Combi-Seq
workflow: (1) Cells were encapsulatedwith drug combinations and pairs of barcode
fragments encoding drugs. (2) After off-chip incubation, droplets were reinjected
into a chip for picoinjection to add reagents for barcode ligation and reverse
transcription (RT), enabling barcoding of the transcriptome according to the drug
treatment. (3) Upon droplet breakage, pooled libraries for sequencing were gen-
erated in which cells from the same treatment group share the same barcode. This
facilitated demultiplexing of drug treatments and gene expression-based readouts
for pools of 250 cells. b Barcoding strategy applied to encode and decode drug
combinations for low input cell pools. Pairs of barcoded PCRprimers (BC-PCR) and
barcoded poly-dT primers (BC-RT) were joined in a ligation reaction to form
functional barcodes, whichwere used for reverse transcription, thereby encoding a
combination of two drugs. By breaking droplets, barcoded cDNA can be recovered
and amplified for sequencing. c Microfluidic pipeline used to generate drug com-
binations in droplets. (1) Braille valveswere used to generate sequences of 20 drug-

barcode (BC-RT)plugswithin thedelay tubing.Thedelay tubingwas connected to a
drop maker (2) into which cells and drugs-BC-PCR mixtures from multiwell-plates
were injected. Finally, injecting the plugs into the drop-maker by opening two oil
valves, droplets containing drug pairs with barcodes and cells were generated.
M1–M3 indicate positions where fluorescence signals were acquired. d Generation
of drug-barcode plugs in the delay tubing: (1) Plugs spaced out by oil were pro-
duced by sequentially opening the corresponding valves, (2) resulting in a
sequence of 20 drug-barcode plugs. (3) By opening two oil valves, the plugs in the
delay tubing were injected into the droplet-maker chip. eDroplet production from
a cell suspension, drug-barcode plugs, and drug-barcode mixtures injected by the
autosampler, resulting in the co-encapsulation of cells with drug-barcode combi-
nations. f Scheme illustrating the generation of drug combinations from 20 drugs
from the valve module with drugs from a 96-well plate. Each sequence of 20 drug-
barcode (BC-RT) plugs was combined with drug-barcode (BC-PCR) mixes from
one well.
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synchronized to generate drug combinations in droplets at high pre-
cision and purity.

Validations of gene expression-based combinatorial drug
screens using Combi-seq
To characterize the microfluidic pipeline and to demonstrate its
applicability to perform gene expression-based combinatorial drug
screens, we designed a small 4 × 4 drug screen (Table 1). First, we
wanted to assess whether the injectionmode of drugs from the Braille
valves vs. autosampler cause any bias, and therefore loaded the same
set of drugs on the Braille valves and autosampler. In case of an
injection bias, we would expect to see differences between the same
combination generated in reverse order (e.g., Imatinib and Trametinib
vs Trametinib and Imatinib). Secondly, we aimed at assessing the
impact of the barcoding mode on the gene expression readout. For
this purpose, we first encoded treatment conditions such that drugs
injected from the Braille valves were supplemented with barcoded BC-
RT, whereas drugs from the autosampler were supplemented with BC-
PCR. Then we repeated the experiment with BC-RT encoding drugs
from autosampler and BC-PCR encoding drugs from the Braille valves,

expecting comparable results if the barcoding mode is not impacting
the readouts. We used the described pipeline to generate droplets,
each containing single human leukemia K562 cells and all pairwise
combinations of drugs and the corresponding barcodes, and incu-
bated the emulsion for 12 h. After ligation, the two barcoded primer
fragments formed one functional barcode encoding the pairwise drug

Table 1 |Matrix of drugsused in thecombinatorial 4 × 4 screen

Drugs Imatinib Trametinib YM155 DMSO

Imatinib Imatinib Trametinib YM155 DMSO

Imatinib Imatinib Imatinib Imatinib

Trametinib Imatinib Trametinib YM155 DMSO

Trametinib Trametinib Trametinib Trametinib

YM155 Imatinib Trametinib YM155 DMSO

YM155 YM155 YM155 YM155

DMSO Imatinib Trametinib YM155 DMSO

DMSO DMSO DMSO DMSO
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Fig. 2 | Validations of the microfluidic pipeline. a Alternating injection of Alexa-
488 or Cascade-Blue from a 96-well plate using the autosampler. Samples being
injected in the timewindowof decreasing and increasing fluorescence signals (grey
box) were discarded by ensuring no combinations were generated. Since no drug-
barcode plugs from the Braille display were injected during time windows with
unstable concentrations (grey box), droplets only contained non-functional bar-
codes (BC-PCR). Time windows with stable fluorescence signals (blue box) were
used to generate drug combinations by the co-injection of 20 plugs generated on
the Braille display chip resulting in functional barcodes. b Fluorescence intensities
of a plug-sequence from the Braille valves supplemented with either Alexa-488 or
Cascade-Blue measured at position M1 (=before combinatorial mixing). The blue
overlay connecting (a) and (b) illustrates a time series during which one cycle of 20
plugs (second plug without reference dye) is combined with one sample from the
autosampler. Alternating sequences of drugs supplemented with Cascade-Blue or
Alexa-488were used to quantify cross-contamination between specific (e.g., green)
fluorescent-positive plugs into the subsequent negative (e.g., blue) sample for both

injection modes, separately. c Cross-contamination from green positive plugs into
green negative plugs from the Braille display (11 cycles as shown in b). d Cross
contaminations of plugs for three different chips: The ratio between fluorescence
intensities of a blue or green negative plug and the previous blue or green positive
plug was analyzed to quantify the level of cross-contamination between sequential
samples (n = 99,n = 80, andn = 171, respectively). e Fluorescence signals of droplets
containing combinatorial mixtures. Scatterplot representing the fluorescence
intensities measured for droplets generated from only Cascade-Blue labeled plugs
and only Alexa-488 injected from the autosampler, measured at the droplet outlet
(n = 91,899). f Fluorescence signals of droplets from (e) shown for 180 individual
combinations. Colors represent cycles of 20 drug plugs combined with one drug
from the autosampler. The boxplots show the median and first and third quartiles
as a box, and the whiskers indicate the most extreme data points within 1.5 lengths
of the box. M1–M3 indicate positions as shown in Fig. 1c. Source data are provided
as a Source Data file.
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combination. In order to obtain three replicates, the whole process
was performed three times.

Each ligated barcode was used to reverse transcribe the tran-
scriptomes from perturbed cells (Fig. 1a). After data preprocessing
(Methods Gene-expression data preprocessing) and initial quality
controls (Median read and gene count per sample of 3.47 × 105 and
3229, respectively, Supplementary Fig. 5) we performed dimension
reduction using t-distributed stochastic neighbor embedding (t-SNE,

Fig. 3a) on the demultiplexed count matrix. To analyze whether
some systematic bias arises based on the injection source (auto-
sampler or Braille valves), we analyzed samples according to the
autosampler drug (Fig. 3a, top left panel), the Braille valves drug
(Fig. 3a, top right panel), the “ordered” drug combination (where
we made a distinction between e.g., Imatinib-Trametinib and
Trametinib-Imatinib combination), and the “unordered” drug combi-
nation (where Imatinib-Trametinib and Trametinib-Imatinib samples

a b
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c

Ordered combinations 
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were not distinguished). While the injection mode for single drugs
from the autosampler (Fig. 3a, top left panel) or the Braille valves
(Fig. 3a, top right panel) has only a moderate impact on the clustering
of individual data points, their pairwise combinations (Fig. 3a, bottom
panels) is the stronger determinant on the cohesion and separation
between samples.

To further quantify the extent of sample clustering based on
injection source for ordered and unordered combinations, we per-
formed silhouette analysis (Fig. 3b, and Methods Clustering-based
quality control of gene expression data). As the distribution of sil-
houette scores are dependent on the number of clusters (4 for drugs,
16 for unordered, and 10 for ordered combinations), we compared the
silhouette scores of clustering to random distributions created by
permuting the sample labels. The silhouette scores for single drugs
and combinations were significantly higher (p values <0.01) than the
background distributions, showing that samples cluster together
based on the used drugs and combinations. Consequently, also the
barcodingmode for single drugs injected from the Braille valves or the
autosampler encoded either with barcoded RT or PCR primers do not
introduce a bias, since their impact on clustering and hence gene
expression, is indistinguishable. Contrary to this, pairwise combina-
tions were driven by clustering of the samples, showing that both
drugs were detected together in an unbiased way. We also performed
hierarchical clustering using the 100 most highly expressed genes
across samples, which also showed drug and combination-based
clustering of the samples (Supplementary Fig. 6). Additionally, treated
samples were generally well separated from DMSO controls in a prin-
cipal component analysis (PCA, Supplementary Fig. 7). To further
demonstrate that our experimental pipeline does not introduce sig-
nificant technical biases, we performed the small 4 × 4 screen with
swapped barcodes (Braille valves drugs supplemented with BC-PCR
and autosampler drugs supplemented with BC-RT). We observed
similar quality (Supplementary Fig. 8) and clustering of samples based
on tSNE and top 100 expressed genes (Supplementary Figs. 9a, b, 10).

To further analyze the gene expression signatures of cells treated
with different combinations, we calculated pathway activity changes
for each sample, using the PROGENy method17–19. PROGENy calculates
pathway activities from gene expression data for 14 cancer-related
pathways. Hierarchical clustering of samples based on pathway activ-
ities (Fig. 3c) also showed the drug and combination-based clustering.
We observed two main clusters, one corresponding to combinations
including YM155,while the otherwas dominatedbyTrametinib treated
samples. Analyzing the associations between pathways activity chan-
ges and drugs (Fig. 3d), we found a decreased activity of the Hypoxia
pathway in all YM155 treated samples, while all Trametinib (MAPK
inhibitor) treated samples showed strong inactivation of MAPK
(Fig. 3e, p value froma linearmodel: 0.03), and related EGFRpathways.
Moreover, when correlating the MAPK pathway activity scores from
the small 4 × 4 screen (Fig. 3e) and the swapped 4 × 4 screen (Supple-
mentaryFig. 9e),we founda significant correlation (r =0.637,p = 0.01),
demonstrating reproducible detection of pathway activities (Fig. 3f).
The pathway analysis suggests that the observed gene expression

changes correspond to the known mechanism of action of the used
drugs,whichwe further delineate in the discussion below. In summary,
the results support the use of our screening method to analyze
combination-induced gene expression changes in a high-throughput
manner, enabling the characterization of drug responses in much
greater detail as compared to phenotypic assays used previously14.

Benchmarking the performance of Combi-Seq
In order to assess the robustness of the Combi-Seq pipeline, we
compared pathway activities from the 4 × 4 Combi-Seq drug screen in
droplets to the activities from the same screen performed in a multi-
well plate (median read count 1.07 × 106). Hierarchical clustering of
correlations between pathway activities from bulk (Supplementary
Fig. 11) and droplet (Fig. 3c) data resulted in two main clusters driven
by positive correlations in pathway activities: For both formats, one
cluster was formed by positive correlations between YM155 treated
cells and the other cluster was driven by positive correlations of Ima-
tinib treatments (Fig. 4a). Hence, we could demonstrate that low input
droplet-based drug screens using shallow sequencing as a readout
captures the main features of bulk high-input deep sequencing data at
the functional level of pathway activities. Furthermore, we compared
the Combi-Seq barcoding strategy with conventional polyA-based
mRNA capturing (PolyA) in the bulk format. Gene expression between
Combi-Seq and PolyA data showed correlation coefficients between
0.576 and 0.646 (Supplementary Fig. 12), comparable to the results of
previous comparisons of different RNA-Seq sequencing approaches
(e.g. Prime-Seq vs. True-Seq: R2 = 0.64)20, suggesting that the Combi-
Seq approach does not introduce major biases during library pre-
paration steps.

To test the sensitivity and accuracy of the Combi-Seq approach,
we furthermore made use of a library of 92 different DNA sequences
from the External RNA Controls Consortium (ERCC). We spiked in
ERCC molecules into droplets and analyzed the accuracy (Fig. 4b,
correlation between ERCC molecule concentration and measured
expression) and sensitivity (Fig. 4d, the threshold for ERCC molecule
detection).We observed an increasing accuracy (Fig. 4c, 0.63, 0.65, 0.7
Pearson’s correlation for 125, 250, and 500 input cells, respectively)
and sensitivity (Fig. 4e, 2.55, 2.06, and 1.48 log10(attomoles/ul)
detection limit for 125, 250, and 500 input cells, respectively) of
Combi-Seqmethod with increased input material (number of cells per
droplet, where the amount of added ERCC spike-ins was increased
proportionally to the number of cells). These results are within the
range of other low input RNA-Seq approaches21.

High-throughput gene expression-based combinatorial drug
screen
Based on the promising results of the 4 × 4 drug combination experi-
ment, we performed a high-throughput screen, using a total of 420
different combinatorial treatment conditions. For this study, we pur-
posely selected drugs with low logD values (Supplementary Fig. 13
and Supplementary Data). This way, undesired exchange of typically
hydrophobic compounds can be minimized22. Additionally, we

Fig. 3 | Validations of gene expression-based combinatorial drug screens.
a TSNE plots of normalized gene expression data. Samples are color-coded based
on Autosampler drug (top left panel), Braille valves drug (top right panel), ordered
combination (bottom left panel), andunorderedcombination (bottom right panel).
Color code is labeled for autosampler and Braille valves drugs (top panels).
b Silhouette scores of sample clustering based on autosampler/Braille valves drugs
and ordered / unordered combinations. Silhouettes scores are compared to ran-
dom distributions (color code) created by permuting sample labels. c Pathway
activity heatmap of samples. PROGENy pathway activities were calculated for each
sample (z-scores of pathway activities, color code), and the pathway activity matrix
was hierarchically clustered. Drugs of combinations are color-coded (light-green:
autosampler drug, blue: braille valves drug, cyan: Same drug from autosampler and

Braille valves). d Drug-induced pathway activity changes. A linear model
(pathway_activity ~YM155 + Imatinib + Trametinib) was fitted for each pathway, and
the linear model coefficients (color code) for each drug is plotted as a heatmap.
e Drug-induced MAPK activity changes. MAPK activity (y-axis) grouped based on
autosampler drug (x-axis) and Braille valves drug (color code), n = 3 biological
independent experiments for all samples, except for YM155_Imatinib and
DMSO_Imatinib n = 2. The boxplots show themedian and first and third quartiles as
a box, and the whiskers indicate the most extreme data points within 1.5 lengths of
the box. f Correlation of MAPK pathway activities between two 4 × 4 screens, per-
formedwith swapped barcode assignments (r =0.637, p =0.01, andR2 = 0.406), the
shaded area shows a 95% confidence interval of the regression estimate. Source
data are provided as a Source Data file.
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performed a series of systematic experiments to test if drug exchange
impacts our readout. In particular, we mixed droplets containing only
one drug and cells (treated) with droplets containing only DMSO and
cells (DMSO controls) and incubated them for 24h at 37 °C (Supple-
mentary Fig. 14a). Additionally, droplets with DMSO and cells were
incubated and processed separately as a positive control for an
untreated phenotype (separate DMSO controls). Subsequently, cells
were lysed and barcodes ligated to perform reverse transcription for
whole transcriptome sequencing (Supplementary Fig. 14b). Projec-
tions of the data using UMAP, separated the treated from the DMSO
control samples, with themajority ofDMSOcontrol samples clustering
together (Supplementary Fig. 14c). This indicates that over an incu-
bation period of 24 h, the effect of drugs can only be observed for
droplets that contained the drug in the first place, but not in droplets
that contained only DMSO. Convincingly, the untreated DMSO sam-
ples thatwere incubatedwith droplets containingdrugs, clusteredwell
with the DMSO controls that were handled separately, even for drugs
with positive LogD values such as Imatinib. In order to estimate opti-
mal drug concentrations for large-scale combinatorial screens, we
generated dose-response curves using K562 cells to determine their
35% growth inhibition values (GR) for each single drug. Compared to
the traditional metric, the IC50 value, the GR50 (or, in our case, the
GR35) is not sensitive to the number of divisions that occur during the
drug treatments, which might vary depending on cell lines and con-
ditions (Supplementary Data)23. Drugs were assigned to the Braille
valves or autosampler to achieve a balanced distribution of drugs with
high and low GR35 values. Drugs loaded on the Braille valves or
autosampler were supplemented with BC-RT or BC-PCR, respectively.
We aimed at generating 250 droplets containing a single-cell for each
of the 420 treatment conditions and incubated droplets for 12 h at

37 °C before performing picoinjection for cell lysis, barcode ligations,
and RT (Fig. 1a). This process was performed three times to obtain
replicates.

After initial preprocessing and quality control (median reads and
genes per sample of 32892 and 547, respectively, Supplementary
Fig. 15), we performed the same dimensionality reduction (Fig. 5a) and
silhouette analysis (Fig. 5b), as for the 4 × 4 screen. Again, samples
clustered significantly better based on the used combination, than
randomly expected (p values of silhouette scores vs. random dis-
tribution: <0.01, 0.47, and <0.01 for autosampler drug, Braille valves
drug, and combination, respectively). We also found that the low cell
numbers did not impact the ability to distinguish treated from non-
treated cells based on gene expression (Supplementary Fig. 16a).

To further investigate whether the gene expression values of the
high-throughput screen are biologically meaningful, we compared the
obtained gene expression signatures to those available for the same
drugs in the public LINCS-L1000 dataset8. As LINCS-L1000 contains
only expression signatures of monotherapy drug treatments, we cal-
culated consensus signatures for each drug of our high-throughput
screen (Methods Functional genomic analysis of gene expression sig-
natures) and compared these to consensus signatures generated from
the LINCS-L1000 database across all available cell lines and con-
centration doses (note that LINCS-L1000 does not include data
obtained directly from K562 cells). For 32 drugs used in our micro-
fluidic screen, corresponding data on LINCS-L1000 was available.
To compare signature similarities of these, we calculated Spearman’s
correlation coefficients for all pairs of drugs across the two
datasets. Our ROC analysis showed that signatures of the same drugs
from the two screens (true positives) are more similar, than signatures
of unrelated drug pairs (Fig. 5c, ROC AUC: 0.59), and this area
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Fig. 4 | Assessing the robustness, sensitivity, and accuracy of Combi-Seq.
a Heatmap of correlations between pathway activities of bulk and droplet Combi-
Seq data: PROGENy pathway activities were determined for each sample and cor-
relations formatched samples using either data obtained inmicrotiterplates (rows)
or droplets (columns)were calculated (color codeblue to red) and used to perform
hierarchical clustering. Drugs of combinations are color-coded (light green: Auto-
sampler drug, blue: Braille valves drug, cyan: Same drug from autosampler and
Braille valves). b Accuracy of spike-in detection as a correlation between ERCC
input concentration and measured transcripts per million (TPM) for 250 cells per
sample, shaded area shows 95% confidence interval of the regression estimate. (c)

Summary of correlation coefficients for 125 (R =0.63 and R2 = 0.40), 250 (R =0.65
and R2 = 0.42) and 500 cells (R =0.7 and R2 = 0.49) per sample, n = 5 biological
independent experiments, data are presented as mean values ± 95% confidence
interval. d Sensitivity as the detection probability for spike-in molecules for 250
cells per sample. A spike-in was considered as detected when the probability
reached 50%. e Summary of sensitivities for different amounts (125, 250, and 500)
of cells per sample, n = 5 biological independent experiments, data were presented
as mean values ± 95% confidence interval. Source data are provided as a Source
Data file.
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under the ROC curve is statistically significant compared to a random
distribution created by permuting drug labels (Supplementary
Fig. 17, p =0.019).

Taken together, we demonstrated that for the high-throughput
combinatorial drug screen, the injection (Braille valve or autosampler)
and barcoding mode did not bias the data and that drug signatures
correlation between our data and LINCS-L1000 showed significant
similarity. Consequently, we concluded that our Combi-Seq approach
can be applied to perform combinatorial drug screens at large scale
using low input material and shallow RNA-seq as a readout.

Predicting and validating synergistic and antagonistic
drug pairs
As all used drug concentrations were GR35 values, we expected that
synergistic combinations could lead to decreased cell viability, while in
the case of antagonistic combinations, we expected increased cell
viability values. While we did not measure cell viability directly, the
CEVIChE algorithm (Methods Functional genomic analysis of gene
expression signatures)18 allowed us to infer cell viability changes for all
used drug combinations from gene expression data (Supplementary
Fig. 18), which worked robustly for low cell numbers and was inde-
pendent of the percentage of detected mitochondrial genes (Supple-
mentary Figs. 16b, 19). By comparing predicted decreased viabilities
between drug combinations and single drug treatments, we deter-
mined synergy scores for all 420 combinations (Fig. 6a). We found
several clusters of potential synergistic and antagonistic combinations
(e.g.: Triciribine-Dacarbazine and Razoxane-Trametinib, respectively).

To experimentally validate the predictions on the synergy of the high-
throughput drug screen, we performed 5 × 5 dose matrix combina-
torial cell viability screenswith all possible combinations of Triciribine,
YM155, Razoxane, and Doxorubicin with Dacarbazine, Imatinib, and
Trametinib in a microtiter plate format.

We calculated synergy scores (positive: synergistic, negative:
antagonistic) for the tested 12 combinations using the Bliss indepen-
dence synergy model (Methods Plate-based viability measurements to
validate hits from the microfluidic screen)24. Among the 12 validated
combinations, antagonismwasmore common, which is comparable to
previously published data (Supplementary Fig. 20). Our 12 measured
(plate experiment) andpredicted (fromgene expressiondata obtained
in the microfluidic system) synergies showed a significant correlation
(Fig. 6b, Pearson correlation r =0.66, p =0.018, see Supplementary
Table 2 for values without Razoxane-Trametinib). The comparison
confirmed that the combinations of Trametinib and topoisomerase 2
inhibitors show antagonistic effects, while BCR-ABL inhibition (Imati-
nib) synergizes with increased induction of apoptosis by inhibiting
survivin with YM155, further confirming the discovery potential of our
Combi-Seq platform.

In summary, using our combinatorial microfluidic gene-
expression platform, we showed that (i) the measured gene expres-
sion values cluster based on the chemical perturbation, (ii) the
resulting data is in good agreement with public monotherapy pertur-
bation profiles, and (iii) predicted cell viabilities and drug synergies
could be validated in a multiwell plate format for selected hits. Taken
together, this illustrates how comprehensive information can be

YM155 Blebbistatin YM155 + Blebbistatin 

a

b c

Fig. 5 | High-throughput gene expression-based combinatorial drug screen.
a TSNE plots of normalized gene expression data. YM155 (left panel), Blebbistatin
(middle panel), and YM155-Blebbistatin combination treated samples are labeled as
representative examples. b Silhouette scores of sample clustering based on auto-
sampler/Braille valves drugs and combinations. Silhouettes scores are compared to
random distributions (color code) created by permuting sample labels. (c) ROC

analysis of drug signature similarity to LINCS-L1000 data. For each drug, a con-
sensus signature was calculated and similarity (Spearman’s rank correlation) to
corresponding LINCS-L1000 signatures was calculated. The similarity values were
used as predicted values for ROC analysis, while true positives were the matched
drug pairs between the high-throughput screen and LINCS-L1000. Source data are
provided as a Source Data file.
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gained from gene expression profiles obtained in a highlymultiplexed
microfluidic format, sequencing only about 250 cells per drug treat-
ment. This should make the workflow particularly interesting for use
with very limited material, such as patient samples.

Discussion
Cancer patient stratification for personalizing treatments with che-
motherapeutics and targeted drugs have shown to increase the suc-
cess of cancer therapies25–27. These efforts are largely driven by
dissecting the genomic and transcriptional landscape of tumors or cell
lines in order to identify traits that explain drug sensitivities28,29. While
a variety of identified genomic and/or transcriptomic markers are
successfully used in clinics, they are available for only a small subset of
tumor types and patients1. Furthermore, many patients often suffer
from tumor relapse30, which is largely rooted in intra-tumor
heterogeneity31. The relapse is often driven by the surge of a resis-
tance mechanism to the drug that renders the efficacy of single drugs
short-lived32. While treatments with drug combinations offer the
potential to reduce the risk of drug resistance, their prediction and
empirical evaluation remain challenging.

To advance in solving these challenges, we present here a
microfluidic pipeline enabling highly multiplexed combinatorial drug
screens in single-cell droplets using global transcriptomics as a read-
out. By integrating deterministic barcoding of treatment conditions,
wewere able to assess the efficacy of drug combinations by changes in
gene expression and gained comprehensive readouts from whole
transcriptome sequencing. We applied our pipeline to screen 420
combinatorial treatment conditions in a single tube, illustrating the
high level of multiplexing. Based on assay miniaturization in a droplet
format, only about 250 cells were needed per tested condition, hence
opening a way for personalized screens directly on patient
material and drastically increasing the scale at which combinatorial
screens can be performed on patient-derived cell lines or organoids
and spheroids.

We have designed the microfluidic platform as a modular system
in which the Braille display valves allow us to quickly change between
injected drugs overcoming the limitations of a slow autosampler-
based injection. Since both are combined on the droplet generator,
fast and efficient generation of drug combinations becomes feasible

and allows the encapsulation of single cells into droplets of high che-
mical diversity. Since the autosampler used here injects drugs from
up to three 96 or even 384-well plates, the number of drug combina-
tions can be further scaled up to a theoretical maximum of
3 × 384 × 20= 23,040 combinations in a single experiment. What
becomesmost limiting at that scale are sequencing costs and available
material (when e.g., using primary cells) rather than instrument
throughput.

We see significant added potential by the possibility to screen
such large numbers of drug combinations at the single-cell level:
Integrating fluorescence-based droplet sorting upstream of the
picoinjection (cell lysis) step could, for example, be used to physically
separate and sequence resistant clones for all 420 treatment options in
a single experiment (e.g., implementing the phenotypic Caspase-3
assaywe used previously)14. This way, one could analyze the difference
in their transcriptomic signature as compared to responding cells,
opening the way for highly multiplexed studies to reveal new bio-
markers for resistance and (chemical) sensitizers to overcome
these. As recently demonstrated, single-cell readouts of drug pertur-
bation provide great insights into heterogeneous drug response11.
Performing such screens on patient biopsies will allow us to dissect the
impact of tumor heterogeneity on drug responses and thereby to
define more efficacious drug combinations and additionally gain
insights into their potential resistance mechanisms. In order to enable
the encapsulation of primary tumor cells (or microscopic fragments)
and/or their expansion into spheroids, we aim at integrating
support structures for cell adherence and growth in droplets as pre-
viously shown33,34.

All generated datasets demonstrate that neither the barcoding
approach nor the injection mode biased the gene expression-based
readout. Monotherapies from both injection and barcoding modes
had similar impacts,while their combinations had the strongest impact
on gene expression andwas themain driver of theobserved clustering.
This confirms the highly precise and accurate operation of the pre-
sented microfluidic workflow and the specificity of the deterministic
barcoding approach. Additionally, we found significant similarities
between consensus gene expression signatures of monotherapies
from our large-scale screen with drug signatures from the LINCS-
L1000 dataset, illustrating a high level of reproducibility. In the

b

a

Fig. 6 | Synergy predictions and validation of the high-throughput Combi-Seq
screen. a Heatmap showing predicted synergy scores that were determined by
comparing viabilities from all 420 drug combinations to corresponding single drug
treatments. b Correlation between experimental and predicted cell viability
(Pearson correlation r =0.66, p =0.018, R2 = 0.44). Drug synergy (y-axis) was

measured for 12 combinations in amicrotiter plate format (color code) and plotted
against the predicted synergy value (x-axis), the shaded area shows a 95% con-
fidence interval of the regression estimate. Source data are provided as a Source
Data file.
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pathway activity analysis, we found that the hierarchical clusteringwas
largely driven by the three drugs YM155, Imatinib, and Trametinib,
which further supports the detection of drug-specific effects. The two
main clusters were driven by Trametinib treatments inhibiting MAPK
and EGFR pathway activities, and the opposing effects of YM155
treatments, inducing the upregulations in MAPK and EGFR pathway
activities while inhibiting hypoxia and TRAIL-related pathways. While
the effects of Trametinib on MAPK are expected35, the effects of sur-
vivin inhibition by YM155 are less well understood, due to complex
signaling and incomplete knowledge on survinin36. The increased
MAPK pathway activity is likely to reflect a counteractive mechanism
since survivin expression was described to be regulated by Sp1 and
c-Myc activation through the MAPK pathway37, and a higher con-
centration of the drug target will reduce the drug effect. As survinin
expression has been linked to drug resistance in leukemia, combina-
torial treatment with YM155 and Trametinib could potentially have a
beneficial effect on decreasing the chances for relapse, due to the
inhibition of survivin and putative compensatory expression induced
by the MAPK pathway. Taken together, these findings show that the
described microfluidic pipeline can be applied to disentangle the
effects of drug combinations on pathway activities. Such information
will be of great impact when screening patient biopsies to identify
potential resistancemechanisms and to predict efficacious drug pairs.
Analyzing the pathwayactivities uponperturbationswas limited by the
number of detected genes, and, therefore, to the small 4 × 4 screens,
since these samples were sequenced at higher depth. To detect a
comparable number of genes for all 420 drug combinations, a ten
times higher coverage would have been necessary. We instead used
the large screen to show that shallow sequencing data is sufficient to
determine synergistic drug pairs. We mined the dataset with 420
treatment conditions for drug pairs with synergistic or antagonistic
effects. We found that combining Trametinib with topoisomerase 2
(Top2) inhibitors (Doxorubicin or Razoxane) has antagonistic effects
(Fig. 6b). We hypothesize that the inhibition of the MAPK pathway by
Trametinib and the resulting G1 cell cycle arrest, counteracts the DNA
damage normally caused by Top2 inhibition when cells enter the
subsequent S-phase. Among the predicted and validated synergistic
combinations, we found the combination of Triciribine with Dacar-
bazine and YM155 with Imatinib among the top hits (Fig. 6b). BCR-ABL
(the target of Imatinib) has previously been linked to upregulating the
expression of survivin (the target of YM155)38. Therefore, survivin
antisense silencing was found to reduce the viability and to increase
the efficacy of Imatinib treatment in chronic myeloid leukemia (CML)
cell lines, as well as in myeloid progenitors from CML patients39,40. By
confirming a previously described efficient treatment combination for
CML, that has the potential to prevent the onset of Imatinib resistance,
we further illustrate the potential of our pipeline in identifying clini-
cally relevant drug pairs. Furthermore, we validated that there is a
good correlation between viability scores from the gene expression
data and the experimentally validated synergy scores obtained from
the plate-based drug screen. These results show that it is possible to
use cost-effective low sequencing depth in large transcriptomics
screens to discover synergistic drug pairs.

Together with the inferred pathway activities under perturbation,
this should not only allow for the identification of synergistic combi-
nations but also gain insights into their mechanisms of action. Com-
pared to our previous single-measurement phenotypic assay
platform14, the global transcriptomic readout provides orders of
magnitude more data points per sample, while the cell consumption
could be reduced further by a factor of about sixfold. The higher
content readouts should enable more robust predictions on the best
combinatorial treatments and the discovery of new drug sensitizers
and biomarkers, and the even smaller needs of material further facil-
itate the application in the clinic for patient stratifications and treat-
ment prioritization.

Methods
Braille valve module
All devices used for the valve module were replicated from molds
prepared using soft-lithography with AZ-40XT positive photoresist
(Microchemicals) according to the manufacturer’s instructions.
Structures from 25400 dpi photomasks (Selba) were patterned on
4-inch silicon wafers (Siltronix) in a mask aligner (Suess MicroTec
MJB3) using light with a wavelength of 375 nm. Structures were cov-
ered with a ~1 cm thick layer of PDMS mixed with a curing agent at a
1:10 ratio (Sylgard 186 elastomer kit, Dow Corning Inc) and cured
overnight at 65 °C. In addition, we prepared PDMS membranes by
mixing PDMSwith a curing agent at a 1:10 ratio and distributing it over
a transparent sheet using a spin coater at 500 rpm (Laurell WS 650),
whichwere cured overnight at 65 °C. The drug inlet and waste ports of
the valve chip were punched using 0.75mm biopsy punches (Harris
Unicore),whereas the plug outlet portwaspunchedhorizontally to the
outlet channels using a 0.5mm biopsy punch (Harris Unicore). Chips
were bonded to a PDMS membrane using a plasma oven (Diener
Femto). We inserted PTFE tubings with an inner diameter of 0.4mm
(Adtech) into the horizontally punched outlet port until the tubing
reached the funnel-like structure of the outlet channel. Subsequently,
chips were bound to a glass slide to support chip structures with inlets
and outlets. In order to prevent surfacewetting, channels were treated
with Aquapel (PGG Industries) before use. The valve structures of
Braille chips were aligned (Supplementary Fig. 2a) on topof the pins of
a Braille display (KGS Corporation, Supplementary Fig. 21a) and
mounted using a plexiglas holder (Supplementary Fig. 21b). Using our
“CombinatorialPlugFluidics” LabVIEWTM 2013 software (all required
software can be downloaded from www.epfl.ch/labs/lbmm/
downloads). the movement of the pins was controlled, so that open-
ing the collection channel resulted in the closing of the waste channel
and vice versa. Closing a channel was achieved by a pin pushing into
the elastic PDMS membrane. This could be opened again by moving
the pin down. For all experiments, we used 20 syringes (Becton Dick-
inson) filled with 5ml drug-barcode solutions and four syringes filled
with 5ml HFE oil (Novec™ 7500, 3M). These were connected to the
inlet ports of the valve chip with PTFE tubing, and fluids were injected
at 500 µl h−1 using syringe pumps (Harvard Apparatus). The waste
outlets were connected with a piece of PTFE tubing to direct fluids to a
waste container.

Preparing a drop-maker
Drop-makermoldsweremanufactured fromnegative photoresist SU-8
2075 as described by the manufacturer (Microchemicals). PDMS con-
taining a 10% (w/w) curing agent was poured over themolds and cured
overnight. Inlet ports for cells and HFE were punched vertically using
0.75 or 1mmbiopsy punches for PEEK tubing coming from connecting
the autosampler. Inlet ports for compound plugs from the Braille
valves were punched horizontally using 0.5mm punches. Chips were
first plasma bound to a PDMS membrane and subsequently to a glass
slide. The channel wall hydrophobicity was increased by injecting
Aquapel (PGG Industries) into the channels.

Autosampler operations
To facilitate the injection of drugs frommicrotiter plates into the drop-
maker device, we used aDionex 3000SL Autosampler aspirating drugs
from a 96-well plate. The autosampler was programmed to sequen-
tially aspirate 310 µl of the compound from wells into a 125 µl sample
loop. The large excess of aspirated volume accounted for a needle
volumeof 60 µl and a loop overfill factor of 2. By overfilling the sample
loop by twice its volume, we ensured that the remaining compound
mixture was not diluted by the carrier fluids that remain in the sample
loopafter eachcycle due towashing. The injectionof compounds from
the sample loop into the droplet-maker was driven by a syringe pump
(Harvard Apparatus) injecting PBS (Thermo Fisher) at 500 µl h−1. After
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the aspiration of one drug, a delay time started to ensure that each
drug got injected and combined with all drugs from the Braille display
before the next drug was aspirated.

Deterministic combinatorial barcoding system
Random 10 nt long DNA sequences with balanced base distributions
were generated using the bgen tool (gear.embl.de). Barcoded PCR
primers were functionalized with a 5′-end biotin for purification, fol-
lowed by a spacer sequence, a common primer sequence, a unique
barcode sequence, and a ligation site (Table 2). The reverse comple-
ments (RC) were functionalized with a free 5′-end phosphate to enable
ligation. Barcoded RT primers comprised a dT(20)-VN sequence, a
unique barcode sequence, and a phosphate group at the 5′-end. The
RC for this had a ligation site complementary to the ligation site of the
PCR primers. A list of all barcode sequences can be found in the sup-
plementary materials. Complementary sequences were annealed at
equimolar concentrations by heating mixtures to 95 °C for 10min in a
thermal block (Eppendorf) followed by their cooling to room tem-
perature (RT) for 1 h.

Barcode-drug mixtures used for the Braille valves and
autosampler
Barcode-drugmixtures for the valvemodulewereprepared by diluting
barcoded RT primers in FreeStyle media (Thermo Fisher) to 1 µM.
Drugs dissolved in DMSO were added to their corresponding barcode
at 2x the final concentrations (see supplementary materials). The
barcode-drug mixtures were supplemented with either Cascade-Blue
(Thermo Fisher) or Alexa-488 (Thermo Fisher) at 10 µM formonitoring
purposes and subsequently aspirated into 5ml luer-lock syringes (BD)
connectedwith PTFE tubings using 27G¾needles (BD). Barcode-drug
mixtures for the autosampler-based injection were prepared in round
bottom 96-well plates by diluting barcoded PCR primers to 4 µM in
FreeStyle media and the corresponding drugs to 4x the final con-
centrations. Mixtures were supplemented with Alexa-488 at 10 µMand
plates were sealed with adhesive qPCR seals (Thermo Fisher).

Preparation of cell suspensions
K562 cells (ATCC, CCL-243) were cultured in IMDM media (Thermo
Fisher) supplemented with 10% FBS (Thermo Fisher) and 1% Penicillin-
Streptomycin (Thermo Fisher). On the day of the experiments, cells
were washed twice in PBS and resuspended in FreeStyle Media
(Thermo Fisher) supplemented with 4% FBS. The concentration of the
cell suspension was adjusted to 2 × 106 cells ml−1 and subsequently
aspirated into a 3ml luer-lock syringe (BD).

Operations of the microfluidic pipeline for combinatorial drug
screens
Syringes containing drug-barcode mixtures and HFE oil were con-
nected to the Braille valve chip as shown in Fig. 1c and all injected at
500 µl h−1. The default mode for all compound valves was to direct
fluids to the waste outlets and two HFE oil valves to direct fluids to the
outlet tubing. The length of outlet tubing of the Braille valve was
adjusted to harbor all 20 compound plugs spaced out with HFE oil and
then connected to the Braille inlet on the drop marker chip (Supple-
mentary Fig. 21b). A syringe containing cells weremounted on a pump
and connected to the drop-maker and injected at 500 µl h−1. Cell

sedimentation was prevented by low-speed rotations of the magnetic
disc using the Multi Stirrus™ system (VP Scientific). Autosampler out-
put tubing and HFE carrier phase supplemented with 1% Pico-Surf1
(Sphere Fluidics) were connected via the respective inlets and injected
at 500 and 6000 µl h−1, respectively. The droplet-maker chip was
mounted on a microscope (Nikon, Eclipse Ti2-E) with an optical setup
for measuring fluorescence intensities of compound plugs or
droplets14. Lasers with a wavelength of 375 or 488 nm were used to
excite dyes and emitted light (450 or 520nm) was measured using
photomultiplier tubes. Lasers were focused at one of the three posi-
tions (M1–M3) shown in Fig. 1c to measure fluorescent dyes that were
injected togetherwith thedrug-barcodemixtures into thedrop-maker.
At positions M1 and M2, fluorescence signals were recorded using the
PlugAcquisition LabViewTM 2014 software. Fluorescence signals from
droplets were acquired at position M3 using the DropletAcquisition
LabViewTM 2014 software (all required software can be downloaded
from www.epfl.ch/labs/lbmm/downloads).

A CSV file containing the Braille valve opening sequence (Table 3)
was loaded into the sample on-demand software. Thenumber of cycles
was set to 21 since we were combining all 20 drugs from the Braille
valves with 21 drugs from a 96-well plate. Once all tubings were con-
nected andfluidswere injected into thedropmarker (carrierfluid from
the autosampler and HFE oil from the Braille valves), plug production
and autosampler-based injection were started simultaneously. 20
plugs were produced into the delay tubing (180 s) and subsequently
injected into the drop-maker, by opening two HFE oil valves (tot. flow
rate of 1000 µl h−1). This ensured a continuous and stable flow rate for
plug injections, and, therefore, resulted in a laminar flow of com-
pounds from the Braille valves, autosampler compounds, and cells
from which droplets were generated at the flow focusing junction
(Movie S1). Droplets of ~800 pl were collected in an Eppendorf tube
which was kept on ice. Once 420 combinations were generated
(~100min) the Eppendorf tube was placed in a humidified incubator at
37 °C and a 5% CO2 atmosphere to incubate cells for 12 h.

Picoinjection for cell lysis, barcode ligation, and reverse
transcription
Chips for picoinjectionwere producedby replicating SU-8molds using
PDMS with a curing agent as described above. Casts were plasma
bound to glass slides and treated with Aquapel. Chips were heated to
95 °C, andfirst lowmelting solder and secondcableswere inserted into
the ports for the two electrodes (Supplementary Fig. 22). The chip was
mounted on the microscope of a microfluidic station and the power
electrodewas connected to a high voltage amplifier,while the chipwas
grounded over the grounding electrode.

After an incubation of 12 h, droplets containing cells, drug com-
binations, and corresponding DNA barcodes were transferred into a
3ml syringe and injected through the droplet inlet port into a
picoinjection chip (Supplementary Fig. 2). Droplets were flushed at
180 µl h−1 and individual droplets were spaced out by injecting HFE oil
with 1% PicoSurf surfactant at 700 to 1000 µl h−1 over the oil inlet. For
cell lysis, barcode ligation, and reverse transcription ofmRNA released

Table 2 | Sequences used in the barcode fragments

BC-PCR 5′-biotin-TTTTTTTAAGCAGTGGTATCAACGCAGAGTACNNNNNNNN
NNgcggc
RC: 5′-Phos-NNNNNNNNNNGTACTCTGCGTTGATACCACTGCTTAA
AAAAA

BC-RT 5′-[Phos]NNNNNNNNNNTTTTTTTTTTTTTTTTTTTTVN
RC: 5′-NNNNNNNNNNgccgc

Table 3 | Braille valve operations

Valves
to open

Opening times Outcome Number of cycles

A 7 s Compound Plug 21x
Can be adapted to the
number of drugs in the
96-well plate

2x oil 2 s Oil Spacer

B 7 s Compound Plug

2x oil 2 s Oil Spacer

17x

T 7 s Compound Plug

2x oil 120 s Plug injection
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from lysed cells, we pico-injected a one-pot reaction mix containing
0.9% Igepal (Sigma Aldrich), 3x ligation buffer (NEB), 60,000U/µl T4
Ligase (NEB), 1.5mM dNTPs (Thermo Fisher), 7.5 µM Template
Switching Oligonucleotide (IDT), 12 U/µl Maxima -H reverse tran-
scriptase (Thermo Fisher) and 6000U/µl NxGen RNase Inhibitor
(Lucigen). Flow rates for the reagent mix were adjusted according to
thedroplet frequency and size in order to inject the equivalent of 1/3 of
the final droplet volume (Movie S3). In order to achieve the injection of
reagents into the droplets passing by the injector nozzle, we applied a
continuous electrical field of 0.1 V using a function generator (Rigol).
Picoinjection was performed over ~1 h during which all droplets
(injection and collection)were kept on ice. Subsequently, the emulsion
was kept at RT for 30min and then incubated for 90min at 42 °C.

Drug exchange
Drug exchange experiments were performed like the described com-
binatorial drug screens with small adaptations: The different drugs
were only injected from the autosampler while only media supple-
mented with BC-15 or BC-O and DMSO were injected continuously
from the braille inlet, using a normal syringe pump instead of the
braille display. Emulsions of all samples were collected in individual
wells of 96-well plates, incubated for 24 h at 37 °C in a 5% CO2 atmo-
sphere, pooled, and then processed as described for the combinatorial
drug screens.

Bulk Combi-seq combinatorial drug screen
First, 10 µl of BC-PCR and 5 µl BC-RT, both 20 µM, were added to the
respective wells of a 96-well plate, followed by 4 µl from one of the
corresponding 50-fold drug stock of Imatinib, Trametinib, or
YM155 (Table S4). K562 cells were resuspended in FS-media with 1%
(wt/vol) FBS to a concentration of 1050 cells/µl. For each well
containing the mixture of drugs and barcodes, 181 µl of this cell
suspension were added and then incubated at 37 °C in a 5% CO2

atmosphere for 12 h. To increase the efficiency, cell lysis and liga-
tion were done first, followed by purification and washing steps,
before carrying out reverse transcription. In particular, 20 µl of
cells were transferred to a well containing 10 µl of a 0.9% Igepal
(Sigma Aldrich), 3x ligation buffer (NEB), 60,000 U/µl T4 Ligase
(NEB), and 6000 U/µl NxGen RNase Inhibitor (Lucigen) for cell lysis
(10min on ice) and barcode ligation (30min at RT). About 200 µl of
6x SSC were added to the mixtures before transferring them to
1.5 ml Eppendorf tubes for centrifugation at 2000×g for 5 min.
Supernatants were transferred to fresh Eppendorf tubes supple-
mented with 50 µl of C1 dynabeads at 10 µg µl−1 in 6x SSC buffer
and incubated for 15 min at RT on a nutator (VWR). Beads were
washed three times in 6x SSC buffer, briefly centrifuged in a
benchtop centrifuge, and then resuspended in 80 µl of reverse
transcription mix, containing 1x Maxima RT buffer (Thermo
Fisher), 4% Ficoll-PM 400 (Sigma Aldrich), 1 mM dNTPs, 2000 U/µl
NxGen RNase Inhibitor (Lucigen), 2.5 µM Template Switching Oli-
gonucleotide (IDT) and 4 U/µl Maxima -H reverse transcriptase
(Thermo Fisher). Mixtures were incubated under nutation (VWR)
for 30min at RT and for 90min at 42 °C. Beads were washed twice
in TE-SDS (10mM Tris pH 8.0, 1 mM EDTA, and 0.5% SDS) and
twice in nuclease-free water (Thermo Fisher) before cDNA from
different conditions was pooled and processed for library pre-
parations as described in the section “Library preparation and
sequencing”.

PolyA and Combi-seq bulk experiments
K562 cells were cultured as described in section “Preparation of cell
suspensions”. On the day of the experiments, cells werewashed in PBS
and resuspended in FreeStyle Media (Thermo Fisher)”, supplemented
with 1% FBS. For comparing Combi-seq and PolyA-based RNA capture
strategies, 250 cells/μl were transferred into an Eppendorf tube and

mixed with a 5μl solution, containing the corresponding drugs or
DMSO, together with Combi-Seq or PolyA-Seq barcodes suspended in
FreeStyle Media, 1% FBS. After 16 h incubation at 37 °C and 5% CO2

atmosphere, cellsweremixedwith 15μl of the solution containing lysis
buffer, ligase, and reverse transcriptase as in the droplet experiment
(see section “Picoinjection for cell lysis, barcode ligation and reverse
transcription” for details).

ERCC spike-in experiments
ERCC spike-ins (Thermo Fisher, Cat No. 4456739) were diluted at 1:100
in RNase-free water. Then 30μl of the diluted ERCC spike-ins were
added to a total of 600μl of the one-pot reaction mix. This reaction
mix was pico-injected at a ratio of 1:3 to a droplet as described in
section “Picoinjection for cell lysis, barcode ligation and reverse
transcription”.

Library preparation and sequencing
Upon reverse transcription of mRNA, all cDNA was barcoded
according to drug treatments, and therefore, we broke the emulsion
by adding 0.5 to 1ml of 1H,1H,2H,2H-Perfluorooctanol (Abcr). The
supernatant was transferred into a fresh Eppendorf tube, supple-
mented with 1x the volume of C1 dynabeads (Thermo Fisher) at
2.5 µg µl−1 in 6x SSC buffer (Thermo Fisher), and incubated at RT for
20min. Beads were washed 2x in TE-SDS (10mM Tris pH 8.0, 1 mM
EDTA, and 0.5% SDS) and 2x in nuclease-free water (Thermo Fisher).
Beads were resuspended at 5 µg µl−1 followed by MseI (NEB) diges-
tion according to the manufacturer’s instructions. The supernatant
was purified 2x using SPRIselect beads (BD), first at 0.6x and then at
0.8x the volume of cDNA, and finally amplified in KAPA HiFi ready
mix (Roche) with 0.8 µM of SMART primer (Supplementary Table 3)
over a total of 13 cycles (PCR program in Supplementary Table 4).
Products were purified on 0.6x the volume SPRIselect beads and
then analyzed using high sensitivity DNA chips on a 2100 Bioana-
lyzer (Agilent). Fragmentation of cDNA was performed to shorten
the fragments and to introduce linker sequences. This was achieved
using a Tn5-based tagmentation protocol for 3′ end libraries
developed in house41. Fragments were amplified using a P5-SMART
primer (Supplementary Table 3) and an i7 indexed P7 adapter pri-
mers (Illumina, Supplementary Table 3) at 0.75 µM in KAPA HiFi
ready mix (PCR program, Supplementary Table 4). Fragments were
purified on 1x the volume of SPRIselect beads, and size distributions
were determined using a Bioanalyzer. All replicates were pooled at
equimolar ratios and sequenced on a NextSeq 500 (Illumina)
machine together with 10% PhiX spike-ins. Paired-end sequencing
was performed by sequencing the barcode combination (Read 1,
26 bp) using the sequencing custom primer (Supplementary
Table 3) and the mRNA (Read 2, 59 bp).

Statistics
In boxplots, the center line represents the measured median, and
the upper box and lower box hinges correspond to the first and
third quartiles. The whiskers extending from the lower and upper
hinges of the box represent the 1.5-fold interquartile range. The dots
with the lines shown in the violin plot in Fig. 2d correspond to the
mean with standard deviation for each of the measured cross
contaminations.

Gene-expression data preprocessing
Weused the SCANPYpipeline42 for gene expression preprocessing and
quality control. Samples with low gene count and a high ratio of
mitochondrial genes (>15 percent) and genes with a high dropout rate
were filtered out. Read counts were normalized based on sequencing
depth and z-score transformed. The batch effect (replicates) was
removed by using the combat function of SCANPY. For dimension
reduction, we used Principal Component Analysis, followed by

Article https://doi.org/10.1038/s41467-022-32197-0

Nature Communications |         (2022) 13:4450 12



t-distributed stochastic neighbor embedding (TSNE)43. Additional data
analysis was performed in custom Python 3.7 scripts using NumPy44,
and pandas as statsmodels libraries.

Clustering-based quality control of gene expression data
To analyse the clustering of samples based on the different factors
(Autosampler Drug, Braille Valves Drug, Combination) we used sil-
houette score analysis. Silhouette coefficient (b − a)/max(a,b) was cal-
culated for each sample, where a was the mean intra- and b was the
mean nearest-cluster distance. For each clustering factor, the average
of Silhouette Coefficients were calculated (scikit-learn Python library).
As silhouette score is dependent on the number of clusters,we created
random clusters by permuting sample labels, thus cluster
membership.

Functional genomic analysis of gene expression signatures
Pathway activities were calculated using PROGENy method17–19. Indi-
vidual drug-specific pathway activities were calculated by fitting a
linear model (pathway_activity ~ YM155 + Imatinib + Trametinib).

To compare the similarity between gene expression signatures
from the high-throughput screen and LINCS-L1000 dataset8, we cal-
culated consensus signatures for each drug of the high-throughput
screen. To calculate consensus signatures, we fitted a linear model
(gene_expression ~ Drug1 + Drug2 +… + Drugn) for each gene of the
expression matrix and used the linear model coefficients as drug-
specific signatures. To compare signature similarities, we calculated
Spearman’s rank correlation coefficient between the drug signatures
of the high-throughput screen and LINCS-L1000 signatures. The
similarity values were used as predicted values for ROC analysis, while
true positives were the matched drug pairs between the high-
throughput screen and LINCS-L1000.

For cell viability predictions, we used the CEVIChE method.
CEVIChE predicts cell viability fromgene expression changes based on
a linear model, trained on a large compedion of matched cell viability
and gene expression dataset18. As the measured genes of the high-
throughput screen showed low overlap with the genes used by the
original CEVIChE model, we retrained CEVIChE using only the genes
measured in the high-throughput screen. This retrained CEVIChE
model showed comparable performance (Pearson correlation
between predicted and observed cell viability: 0.31) to the original
method.

Plate-based viability measurements to validate hits from the
microfluidic screen
Drug-plates were prepared in advance in a 4 × 4 checkerboard for
each combination, such that after the addition of cells, each drug
was present at its GR35 concentration and a fourfold dilution series
thereof. Each plate also contained media and DMSO negative con-
trols and monotherapies for each drug. K562 cells were passaged
the day before each experiment. On the day of the experiment, cells
were washed once with PBS, then resuspended in FreeStyle 293
media (Thermo Fisher), containing 1% FBS. Cells were added using
the multistep function of a multichannel pipette to each pre-
prepared drug plate, such that each well had a 200 µL final volume
and ~2 × 104 cells. The reservoir from which to aspirate cells was
frequently refilled with a freshly resuspended stock solution to
ensure that cells remained in suspension. Plates were sealed with a
gas-permeable foil (Sigma) and incubated for 48 h. To prevent
evaporation, plates were kept in the incubator within a box with
~1 cm water, within the box, the plates rested on tip boxes. After
incubation, 22 µL PrestoBlue (Thermo Fisher) cell viability reagent
was added to each well, and plates were resealed and returned to
the incubator for 1 h. Plates were then read using a Tecanmicroplate
reader with excitation/emission wavelengths of 535/615 nm (20 and

10 nmwavelength bandwidth, respectively). Based on themeasured
cell viability for monotherapies, we calculated expected cell
viabilities using the Bliss independence model24 for each combina-
tion, for each concentration pair. The difference between expected
andmeasured cell viability for combinations was averaged across all
concentrations and was given as a synergy score.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
TheRNA-Sequencing data generated in this study have beendeposited
in the GEO database under accession code GSE174696. The fluores-
cence spectrometric data acquired on the microfluidic stations and
viability measurements of cells in plates generated in this study are
provided in the Source Data file. The logD values of drugs used in this
study are available in theChEMBLdatabase45. Sourcedata are provided
with this paper.

Code availability
Microfluidic control software can be downloaded from www.epfl.
ch/labs/lbmm/downloads. The CAD files for the microfluidics chips
are available from Zenodo: https://zenodo.org/record/6845607#.
YtWZlMFBz1K. The code used to analyze the transcriptomic data
can be downloaded from https://github.com/saezlab/Combi-Seq-
analysis46.
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