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Abstract

Background: Lyme disease (LD) is a bacterial infection transmitted by the black-legged tick (Ixodes scapu-
laris) in eastern North America. It is an emerging disease in Canada due to the expanding range of its tick
vector. Environmental risk maps for LD, based on the distribution of the black-legged tick, have focused on
coarse determinants such as climate. However, climatic factors vary little within individual health units, the
level at which local public health decision-making takes place. We hypothesize that high-resolution environ-
mental data and routinely collected passive surveillance data can be used to develop valid models for tick
occurrence and provide insight into ecological processes affecting tick presence at fine scales.
Methods: We used a maximum entropy algorithm (MaxEnt) to build a habitat suitability model for I. scapularis in
Ottawa, Ontario, Canada using georeferenced occurrence points from passive surveillance data collected between
2013 and 2016 and high-resolution land cover and elevation data. We evaluated our model using an independent tick
presence/absence dataset collected through active surveillance at 17 field sites during the summer of 2017.
Results: Our model showed a good ability to discriminate positive sites from negative sites for tick presence
(AUC = 0.878 – 0.019, classification accuracy = 0.835 – 0.020). Heavily forested suburban and rural areas in the
west and southwest of Ottawa had higher predicted suitability than the more agricultural eastern areas.
Conclusions: This study demonstrates the value of passive surveillance data to model local-scale environmental
risk for the tick vector of LD at sites of interest to public health. Given the rising incidence of LD and other
emerging vector-borne diseases in Canada, our findings support the ongoing collection of these data and
collaboration with researchers to provide a timely and accurate portrait of evolving public health risk.
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Background

Lyme disease (LD), caused by the spirochete Borrelia
burgdorferi sensu stricto (henceforth termed B. burg-

dorferi) and transmitted by the black-legged tick (Ixodes
scapularis) in eastern North America, is the most common

vector-borne disease on the continent and is an emerging
disease in Canada (Schauber et al. 2005, Ogden et al. 2015a,
2015b). Since LD became nationally notifiable in 2009, the
number of cases has increased from 144 (0.4 per 100,000
population) to nearly one thousand in 2016 (2.7 per 100,000
population) (Government of Canada 2017). However, the
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true burden of LD in Canada is likely underestimated due to
under-reporting in emerging areas (Ogden et al. 2015b).

Ecological niche modeling refers to a collection of statis-
tical techniques based on correlating known presences of
an organism with environmental variables to predict habitat
suitability in a particular area. The proliferation of powerful,
easy-to-use software packages such as MaxEnt and Genetic
Algorithm for Rule Set Production (GARP) has led to the
adoption of these models to predict risk areas for vector-
borne diseases such as LD and malaria (Kulkarni et al. 2010,
Mak et al. 2010). To date, many of the published models for
the distribution of the black-legged tick and LD have focused
on climatic variables, particularly temperature, producing
relatively coarse maps with a resolution of kilometers
(Estrada-Peña 1998, Brownstein et al. 2003, Khatchikian et al.
2012, Simon et al. 2014) or following larger administrative
boundaries like census subdivisions (e.g., mean ar-
ea = 285 km2) (Ogden et al. 2008, Leighton et al. 2012) and
counties (Ashley and Meentemeyer 2004). These models have
formed the basis of successful predictions at a variety of spatial
scales, including the presence of ticks in state parks (Brown-
stein et al. 2003), the density of nymphs collected from
woodland rodents (Ogden et al. 2008), and abundance of
questing ticks in small, forested sampling sites (Khatchikian
et al. 2012).

Tick observations are collected through two types of
surveillance: passive and active. In passive surveillance, ticks
found by members of the public (usually attached to them-
selves or a pet) are submitted to public health officials, either
directly or through physicians or veterinarians. Active sur-
veillance occurs when researchers or public health authorities
directly sample field sites by dragging (pulling a piece of
cloth through potential tick habitat) or by trapping hosts such
rodents, birds, and deer and examining them for ticks (Ogden
et al. 2010). Active surveillance data have the advantage of
being more geographically precise and more informative
(e.g., recording tick density), but collecting these data is
expensive and labor intensive, which often limits geographic
coverage. Conversely, passive surveillance data are abundant
and are routinely collected by public health authorities for
tick identification and molecular detection of tick-borne
pathogens. However, there is often uncertainty about the
location of collection (due, in part, to submitter recall bias), a
spatial bias toward collection near populated areas, and
variation in regional collection programs ( Johnson et al.
2004, Ogden et al. 2015a).

Broad-scale climate-based maps have obvious utility to
public health (Ogden et al. 2008, Leighton et al. 2012), but
they are unable to provide insight into the effects of local-
scale variation in key environmental variables such as the
presence of woodland habitats that allow over-winter survival
of ticks and provide habitat for tick hosts. Temperature,
commonly used to predict the distribution of black-legged
ticks at continental scales, varies little at the health unit
level, the scale at which localized public health deci-
sions are made. By comparison, land cover varies at the
scale of meters, and data are available at much higher res-
olutions (e.g., 15 m). Thus, in regions identified as broadly
climatically suitable, high-resolution models built using
land cover data are likely to offer more locally relevant
predictions of vector occurrence. Passive surveillance data
have been used to assess the broad-scale distribution of

medically important ticks and associated diseases in the
province of Ontario (Nelder et al. 2014) and to predict the
locations of establishing black-legged tick populations in
the province of Québec (Koffi et al. 2012), but to date the
construction of risk models to guide public health action at
a fine scale using passive surveillance data has not been
attempted.

In this study, we developed a model for the occurrence of I.
scapularis at high spatial resolution in the region of Ottawa,
Ontario, Canada based on passive tick surveillance data
collected by Ottawa Public Health between 2013 and 2016.
Given the broad climatic suitability of the area (McPherson
et al. 2017), we built the ecological niche model using vari-
ables derived from land cover and elevation potentially im-
portant to tick survival and establishment. We then tested the
ability of the model to predict tick occurrence at 17 active
surveillance sites sampled during the summer of 2017 and
generated a validated map for potential I. scapularis habitat
suitability in the region.

Methods

Study area

The study area was the City of Ottawa Health Unit, which
comprises the city of Ottawa and its surrounding rural com-
munities. Ottawa, located in the eastern portion of southern
Ontario, is within the northern expanding frontier of LD risk
in central Canada (Ogden et al. 2015b, Public Health Ontario
2015b). This region is dominated by farmland and forests,
with elevation ranging from approximately 35–165 m above
sea level.

Data sources

We obtained passive surveillance records from Ottawa
Public Health, which collects voluntarily submitted ticks
from residents within the City of Ottawa Health Unit. Ticks
received by Ottawa Public Health between 2013 and 2015
were submitted through the Public Health Ontario laboratory
to the National Microbiology Laboratory (NML), Winnipeg
for species confirmation and testing for B. burgdorferi. In
2016, ticks were submitted by Ottawa Public Health directly
to the University of Ottawa, where identification and testing
followed protocols identical to those used at NML. The data
were compiled to form a database of submitted ticks con-
taining information on tick instar, stage of engorgement,
result of testing for B. burgdorferi, and probable location of
acquisition. Out of 540 submissions collected between April
2013 and December 2016, 306 were positively identified as
I. scapularis. We retained georeferenced records with a high
level of spatial certainty (e.g., specific address, park, or trail)
on location of acquisition and excluded records with im-
precise spatial locations (e.g., city level), implausible loca-
tions (e.g., highly urban), and locations outside of the study
area. In total, 63 nonduplicate presence points were retained
(Fig. 1).

Land cover and microclimatic variables potentially
influencing the development, survival, and reproduction of
I. scapularis at a fine scale were identified from published
literature (Supplementary Table S1; Supplementary Data are
available online at www.liebertpub.com/vbz). We focused on
these variables as opposed to other possible variables (e.g.,
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monthly vegetation indices) because they are available at
very high resolution and are expected to remain relatively
constant over the period of collection. To generate land cover
variables, we used the Southern Ontario Land Resource In-
formation System dataset, which is based on high-resolution
(15 m) Landsat-7 satellite imagery classified into 30 categories
(SOLRIS Technical Team 2015). We reclassified the 21 land
cover types present in Ottawa into 13 categories as follows: 4
treed types (deciduous, mixed, coniferous, hedgerow), wet-
land, grassland/shrubland, tilled agricultural, undifferentiated
rural, barren/other, built-up impervious, built-up pervious,
roads/highways, and water (Supplementary Table S2). Land
cover data were processed in ArcMap 10.4.1 (ESRI 2016) to
calculate the proportion of each relevant habitat type within a
1000 m circular buffer, as well as the distance to these features
(Supplementary Table S1). Elevation data were extracted from
the Canadian Digital Elevation Model at 90 m resolution and
resampled to the resolution of the land cover data (15 · 15 m)
(Natural Resources Canada 2017).

Niche model development

We applied a presence-only maximum entropy algorithm
using MaxEnt version 3.4.1 (Phillips et al. 2006, 2017) [for a
summary of the approach, see Elith et al. (2011)] to create the
ecological niche model at a resolution of 15 · 15 m. The
outcome of the model is a predicted habitat suitability value
ranging from 0 to 1. The model was trained using the passive
surveillance dataset.

By default, MaxEnt contrasts the environmental charac-
teristics of presence points with those of background points
selected at random from the sampling region, under the as-
sumption that presence points represent an unbiased sample
of the region; however, the collection of presence points is
frequently biased toward easily accessible areas (Phillips
et al. 2009). Unless background points are sampled with the
same bias as presence points, models trained on these data
may exhibit spurious correlations induced by sampling bias

(Kramer-Schadt et al. 2013). In our study, all but one of
the 63 presence points were found within 1 km of a road
(although none were located directly on a road), with the
frequency of observations decreasing exponentially with
increasing distance from the road. Accordingly, background
points were sampled from cells within 15–1000 m of a road
with probability inversely proportional to distance from
the road (Supplementary Methods; see also Supplementary
Table S3 and Supplementary Figs. S1 and S2).

In our model, we considered feature class selection, reg-
ularization multiplier, and variable selection. These settings
control the types of curves MaxEnt can fit (e.g., linear and
quadratic), how tightly the model is fit to the data, and the
choice of variables in the final model, respectively (for a
detailed discussion of settings in MaxEnt, see Merow et al.
2013, Morales et al. 2017). Beginning with the full variable
set, we used AICc (Warren and Seifert 2011, Wright et al.
2015) to determine the best combination of feature classes
and regularization multiplier, as implemented in the enmSdm
package (Smith 2017) in R 3.4.2 (R Core Team 2017). To
improve the interpretability of the model, the variable set was
reduced using regularized training gain as described by Yost
et al. (2008) (Supplementary Methods). The final model was
built using the full passive surveillance dataset.

We used three metrics to evaluate the importance of vari-
ables in the final model as follows: (1) permutation importance,
obtained by randomly permuting the values of each variable in
turn and measuring the decrease training AUC, (2) a jackknife
procedure reporting the regularized training gain of models
built using each variable individually, and (3) a jackknife
procedure reporting the regularized training gain when each
variable is excluded from the model in turn (Phillips 2017).

Model evaluation

Seventeen active surveillance sites (Fig. 2) were selected
for drag sampling in 2017. Due to an unusually wet spring,
sampling began in June and concluded in mid-August. Sites

FIG. 1. Presence points (n = 63)
used to train the Ixodes scapularis
model in Ottawa, Canada. Rivers
and lakes are shown in blue; pop-
ulation centers are outlined in
black; the city of Ottawa and the
suburban center of Kanata are la-
belled.
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were chosen to reflect a range of environments across the
study area, including both forested and urban locations. Sites
included conservation areas, municipal parks, walking trails,
and other green spaces. Each site was drag sampled for three
person-hours with collectors checking drag sheets to collect
and record ticks and note GPS coordinates every 50 m, fol-
lowing the Public Health Ontario protocol (Public Health
Ontario 2015a). In total, 810 georeferenced points corre-
sponding to tick drags were recorded, of which 26 (3.20%)
were positive for at least one I. scapularis tick.

We evaluated our model using this independent active
surveillance dataset. We used the area under the receiver
operating characteristic curve (AUC), which ranges from 0
to 1 and may be interpreted as the probability that a ran-
domly sampled presence point will have a higher predicted
suitability than a randomly sampled absence point. In ad-
dition, we converted continuous predicted suitability values
into binary predicted absence (0) and predicted presence (1)
using a threshold that maximized the sum of sensitivity and
specificity and reported sensitivity, specificity, positive
predictive value, negative predictive value, and classifica-
tion accuracy.

Evaluation was conducted by first classifying each of the
17 active surveillance sites as positive for tick presence
(n = 6) if they had at least one tick observation and negative
(n = 11) otherwise (Fig. 2). Then, we used subsampling to
reduce the impact of autocorrelation within sites in the
evaluation dataset (Segurado et al. 2006, Kramer-Schadt
et al. 2013). We randomly selected one presence point from
each positive site and one absence point from each negative
site, leaving 17 points in the evaluation dataset. This process
was repeated 15 times, reporting the mean and standard
error of the evaluation metrics. Model evaluation was per-
formed using the dismo (Hijmans et al. 2017) package in R,
which provides tools to calculate binary classification sta-
tistics such as sensitivity and AUC given a MaxEnt model
and presence/absence data.

Results

Niche model development

The best fit model based on AICc employed only hinge
features with a regularization multiplier of 1.5. After vari-
able selection, the final model contained the following var-
iables: distance from deciduous forest (decreasing suitability
with increasing distance), distance from coniferous forest
(decreasing with increasing distance), distance from treed
areas (including hedgerows) (decreasing with increasing
distance), distance from tilled agricultural land (low suit-
ability in/adjacent to agricultural land), proportion of tilled
agricultural/undifferentiated rural land (suitability peaks at
low-to-moderate proportion), proportion of water (increas-
ing with increasing proportion), and elevation (peaks at
moderate elevation) (Supplementary Fig. S3). Distance
from treed areas and distance from tilled agricultural land
were the most important variables according to permuta-
tion importance (Table 1).

Model evaluation

Our niche model of tick occurrence developed using
passive surveillance data was evaluated using subsampling
on an active surveillance dataset. The model demonstrated
good discrimination of positive and negative sites for
I. scapularis presence (AUC = 0.878 – 0.019, classification
accuracy = 0.835 – 0.020) and greater sensitivity (0.956 – 0.026)
than specificity (0.769 – 0.028). The negative predictive value
of the model (0.972 – 0.015) exceeded the positive predictive
value (0.705 – 0.026).

Final model

Our final model predicts the suburban and rural areas in the
western and southwestern areas of the City of Ottawa Health
Unit to be most highly suitable for tick occurrence (Fig. 2). This
coincides with heavily forested regions in Ottawa’s west end

FIG. 2. Predicted habitat suit-
ability for I. scapularis in Ottawa,
Canada with tick presence or ab-
sence at active surveillance sites
(n = 17). Positive sites (n = 6) are
denoted with diamonds, and nega-
tive (n = 11) sites are denoted with
circles.
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and southwest localities compared to the more agricultural
eastern areas. However, some localized areas of high suitability
were also predicted across the study area, especially along the
Rideau River. These areas offer a potential corridor to facilitate
the dispersal of ticks northward from highly infested regions
southwest of the Ottawa Public Health Unit, which serve as the
focal point of LD in Ontario (Public Health Ontario 2015b).

Discussion

In this study, we developed a high-resolution ecological
niche model for the occurrence of I. scapularis in the region of
Ottawa, which is on the northern frontier of LD in central
Canada (Ogden et al. 2015b, Public Health Ontario 2015b). The
model was built using passive tick surveillance data collected
by the local public health authority and a variety of land cover
and microclimatic variables, including distance from forests
and elevation. The use of passive surveillance data to build
models of relevance to public health decision-making at fine
scales is not well established, as these data are likely to reflect
sampling bias (Beck et al. 2014). Thus, we evaluated the model
using an independent, active surveillance dataset collected at
17 sites relevant to human tick exposure in Ottawa, Ontario.

The model effectively distinguished sites that were posi-
tive for tick presence from sites that were negative. Although
sensitivity exceeded specificity, negative predictive value
exceeded positive predictive value due to the low overall
prevalence of ticks at sampling sites (6/17). Our choice of
threshold (maximizing the sum of sensitivity and specificity)
may have contributed to this apparent bias toward over-
prediction; however, we believe that overprediction is pref-
erable from a public health standpoint to underprediction in
an area of emerging risk. In addition, we would expect the
appearance of overprediction, as active surveillance may not
detect emerging tick populations in which tick density is very
low (Ogden et al. 2014a). This is an observation common
to other areas of I. scapularis range expansion in Canada
(Gabriele-Rivet et al. 2017). The month of sampling may also
affect detection, as the abundance of each life stage varies
seasonally. The choice of sampling period, June to August,
coincides with a peak in the activity of the nymphal stage (the
stage most associated with human risk) (Falco et al. 1999)
and the period when most cases of LD are reported in Ontario
(Ogden et al. 2015b). Furthermore, in zones of emergence of
I. scapularis populations, it would be expected that not all
locations that are environmentally suitable for the ticks have,
to date, become occupied by tick populations. Overall, our

findings show that ecological niche models based on passive
surveillance data produce accurate fine-scale predictions of
I. scapularis presence/absence at the local level.

Further validation of our model was given by the observed
relationships between fine-scale landscape features and pre-
dicted tick suitability, which are largely consistent with
published literature. Although evidence on the importance of
forests at the municipal scale is mixed (Brownstein et al.
2005, Leighton et al. 2012), our study confirms the central
importance of forests to tick establishment at fine scales, with
both deciduous forests (considered the classical habitat of the
black-legged tick) and coniferous forests appearing in the
model (Killilea et al. 2008, Stone et al. 2017). Although ag-
ricultural fields are inhospitable to ticks due to the risk of
desiccation from low canopy (Bertrand and Wilson 1996,
Das et al. 2002), low-to-moderate intensity agriculture cre-
ates fragmented forest patches promoting the abundance of
ticks and their hosts (Nupp and Swihart 1996, Allan et al.
2003, Brownstein et al. 2005), which is consistent with our
model showing higher tick suitability in areas with low-to-
moderate agricultural intensity. Finally, our model demon-
strated a positive relationship between predicted suitability
and surrounding proportion of water, possibly due to the
habitat requirements of key tick hosts such as white-tailed
deer (Bunnell et al. 2003, Chen et al. 2015).

The accessibility of remote sensing data has resulted in
many national and continental scale predictive models of tick
and mosquito vector distribution for diseases of public health
importance (Porretta et al. 2013, Ogden et al. 2014b), with
several national-scale risk maps for I. scapularis being
available (Ogden et al. 2008, Leighton et al. 2012). High-
resolution models such as the one presented in this study are
likely to offer even more relevant guidance for local public
health decision-making (Kulkarni et al. 2010). The main ap-
plication of this model is to assist in the identification of
current risk areas for LD and areas of potential tick emergence
to prioritize for active surveillance and public health mes-
saging. More generally, this model contributes to the literature
on the determinants of tick and LD emergence at a local scale.
However, inference of LD risk at this scale is impeded by the
fact that risk is a complex function of entomological risk,
human land use, and the proportion of B. burgdorferi infected
ticks, all of which are affected by different factors (Rand et al.
1996, Brownstein et al. 2005, Werden et al. 2014). Habitat
suitability, which is the component predicted by our model, is
just one piece of the puzzle. Nevertheless, to date in this
region of Canada, the arrival of I. scapularis populations has

Table 1. Three Measures of Model Contribution for Covariates in the Ixodes scapularis Model

Full model regularized training gain: 0.7371

Variable
Permutation
importance

Gain without
variable

Gain with
only variable

Distance from treed (including hedgerows) 36.8 0.650 0.433
Distance from tilled agricultural 35.9 0.672 0.211
Proportion of water 10 0.656 0.144
Proportion of tilled agricultural/undifferentiated rural 5.6 0.698 0.112
Distance from coniferous forest 5.3 0.704 0.128
Distance from deciduous forest 3.8 0.724 0.305
Elevation 2.6 0.717 0.039
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been followed by the arrival of B. burgdorferi transmis-
sion cycles and progressive increases in tick abundance and
B. burgdorferi infection prevalence (Ogden et al. 2013).

Finally, risk maps such as the one produced in the current
study should be applied and interpreted cautiously, since
actual tick presence may differ from predicted values for a
variety of reasons unaccounted for in the model, such as
barriers to host dispersal, human habitat modification, and
seasonal variation (Estrada-Peña et al. 2013). In addition,
there is a low baseline risk of tick encounter anywhere that
ticks may be dispersed by their hosts, such as birds and deer
(Madhav et al. 2004, Ogden et al. 2008). Dispersal into
environmentally unsuitable habitats presents major chal-
lenge in predicting the localized distribution of a generalist
parasite such as I. scapularis by introducing noise into the
modeling process. Given that there is no way to account for
local dispersal events simply by measuring environmental
characteristics, it is even more significant that our model is
nonetheless able to distinguish positive and negative sites
for tick presence.

Conclusions

Despite the limitations of passive surveillance data, our
study demonstrated the utility of these data to model local-
scale environmental risk for a tick vector of human disease
and was validated by active surveillance at sites of public
health interest. The types of environmental data used in this
study are widely available, allowing for the possibility of
applying this methodology to disease vectors in other locales.
Our study highlights the benefit of reinforcing research col-
laborations between public health authorities and research-
ers, as passive surveillance data and ecological niche models
based on them have a key role to play in the detection and
mitigation of emerging diseases.

Our findings also raise concerns about the future of LD risk
in the municipality of Ottawa. Since warming temperatures
have rendered the area broadly suitable from a climatic per-
spective (McPherson et al. 2017) and suitable habitat exists
surrounding populated areas, the abundance of ticks and in-
cidence of LD are likely to increase in the future. Therefore,
efforts must be made to increase awareness of the disease and
basic tick-bite prevention measures among healthcare pro-
viders and members of the public, as LD risk expands in
Ontario and the rest of Canada.
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