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Abstract

Background: The Framingham risk models and pooled cohort equations (PCE) are widely used and advocated in
guidelines for predicting 10-year risk of developing coronary heart disease (CHD) and cardiovascular disease (CVD)
in the general population. Over the past few decades, these models have been extensively validated within
different populations, which provided mounting evidence that local tailoring is often necessary to obtain accurate
predictions. The objective is to systematically review and summarize the predictive performance of three widely
advocated cardiovascular risk prediction models (Framingham Wilson 1998, Framingham ATP III 2002 and PCE 2013)
in men and women separately, to assess the generalizability of performance across different subgroups and
geographical regions, and to determine sources of heterogeneity in the findings across studies.

Methods: A search was performed in October 2017 to identify studies investigating the predictive performance of
the aforementioned models. Studies were included if they externally validated one or more of the original models
in the general population for the same outcome as the original model. We assessed risk of bias for each validation
and extracted data on population characteristics and model performance. Performance estimates (observed versus
expected (OE) ratio and c-statistic) were summarized using a random effects models and sources of heterogeneity
were explored with meta-regression.

Results: The search identified 1585 studies, of which 38 were included, describing a total of 112 external validations.
Results indicate that, on average, all models overestimate the 10-year risk of CHD and CVD (pooled OE ratio ranged from
0.58 (95% CI 0.43–0.73; Wilson men) to 0.79 (95% CI 0.60–0.97; ATP III women)). Overestimation was most pronounced for
high-risk individuals and European populations. Further, discriminative performance was better in women for
all models. There was considerable heterogeneity in the c-statistic between studies, likely due to differences
in population characteristics.

Conclusions: The Framingham Wilson, ATP III and PCE discriminate comparably well but all overestimate the
risk of developing CVD, especially in higher risk populations. Because the extent of miscalibration substantially
varied across settings, we highly recommend that researchers further explore reasons for overprediction and
that the models be updated for specific populations.
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Background
Cardiovascular disease (CVD) is a major health burden,
accounting for 17.5 million deaths worldwide in 2012
[1]. To effectively and efficiently implement preventive
measures such as lifestyle advice and lipid-lowering
drugs, early identification of high-risk individuals for
targeted intervention using so-called CVD risk prediction
models or risk scores is widely advocated [2]. Evidently, it
is crucial that predictions of CVD risk provided by these
models are sufficiently accurate. Inappropriate risk-based
management may lead to overtreatment or undertreat-
ment. Clinical guidelines from the National Cholesterol
Education Program and the American College of Cardi-
ology and American Heart Association (AHA) advise
using the Framingham Adult Treatment Panel (ATP) III
model [3] or the pooled cohort equations (PCE) to predict
10-year risk of CVD for all individuals 40 years or older
[2]. Also, most clinical research focused on studying the
Framingham Wilson model [4, 5].
All three models have been externally validated nu-

merous times across different settings and populations,
with most studies showing that their predicted risks are too
high (i.e. poor calibration, see Table 1) [6–9], while other
reports found adequate calibration for these same models
[10, 11]. Previous reviews have summarized existing models
for cardiovascular risk prediction without undertaking any
formal comparison or quantitative synthesis [5, 12–14] or
focussed solely on the performance of the PCE [15].
Systematic reviews, followed by a quantitative synthesis,
have become a vital tool in the evaluation of a predic-
tion model’s performance across different settings and
populations, and thus to better understand how the
implementation of a developed model may affect clinical
practice [16]. It may therefore help researchers, policy
makers and clinicians to evaluate which models can be
advocated in (new) guidelines for use in daily prac-
tice, and to what extent they should be updated prior
to implementation.
In this review, we focus on the ATP III and PCE

models as these are advocated in the clinical guidelines
in the USA [2, 3]. Although Framingham Wilson is not
mentioned in the clinical guidelines, it is relevant to
review this prediction model, since many studies in the
field of CVD risk prediction have externally validated
this prediction model and have used it to assess the
incremental value of new predictors or for comparison
with newly developed prediction models [5]. We did
not include other prediction models such as the
SCORE [21] or QRISK [22] models in this review, as
these were developed on European populations and
we wanted to focus on truly competing models for
the American population.
We, therefore, compared the predictive performance of

the originally developed Framingham Wilson, Framingham

ATP III and PCE models (see Additional file 1 for details
on these prediction models and our review question). We
conducted a systematic review, including critical appraisal,
of all published studies that externally validated one or
more of these three models, followed by a formal meta-
analysis to summarize and compare the overall predictive
performance of these models and the predictive perfor-
mance across pre-defined subgroups. We explicitly did not
intend to review all existing CVD risk prediction models
but focused on these three most widely advocated and
studied models in the USA.

Methods
We conducted our review based on the steps described in
the CHecklist for critical Appraisal and data extraction for
systematic Reviews of prediction Modelling Studies
(CHARMS) [23] and in a guidance paper on the systematic
review and meta-analysis of prediction models [16]. A
review protocol is available in Additional file 2. This review
is reported according to the MOOSE reporting checklist
(Additional file 3).

Search and selection
We started with studies published before June 2013 that
were already identified in two previously published sys-
tematic reviews [5, 12]. Studies published after June 2013
were identified according to the following strategy, deve-
loped by an information specialist working for Cochrane.
First, a search was performed in MEDLINE and Embase
(October 25, 2017, Additional file 4). In addition, a
citation search in Scopus and Web of Science was
performed to find all studies published between 2013 and
2017 that cited the studies in which the development of
one of the original models was described (Additional file 4).
All studies that were identified both by the search in
MEDLINE and Embase, and the citation search were
screened for eligibility, first on title and abstract by one
reviewer and subsequently on full text by two independent
reviewers. Disagreements were solved in group discus-
sions. The reference lists of systematic reviews identified
by our search were screened to identify additional studies.

Eligibility criteria
Studies were eligible for inclusion if they described the
external validation of Framingham Wilson 1998 [4],
Framingham ATP III 2002 [3] and/or PCE 2013 [10].
Studies were included if they externally validated these
models for fatal or nonfatal coronary heart disease
(CHD) in the case of Framingham Wilson and ATP III,
and hard atherosclerotic CVD (here referred to as fatal
or nonfatal CVD) in the case of PCE, separately for men
and women, in a general (unselected) population setting.
For Framingham Wilson and ATP III, we thus excluded
external validation studies that used the combination of
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CHD and stroke as an outcome, while we included
studies with so called ‘hard CHD’ (myocardial infarc-
tion + fatal CHD). For PCE, we excluded studies that
used CHD as outcome. Studies regarding specific patient
populations (e.g. patients with diabetes) were excluded.
Studies in which the model was updated or altered (e.g.
recalibration or model revision [24, 25], see Table 1)
before external validation were excluded if they did not
provide any information on the original model’s perfor-
mance. Studies in which the models for men and women
were combined in one validation (with one performance
measure reported for men and women together instead of
two separate performance measures) were excluded.
Studies that assessed the incremental value of an
additional predictor on top of the original model were
also excluded, unless the authors explicitly reported
on the external validity of the original model before
adding the extra predictor. When a study population was
used multiple times to validate the same model (i.e.
multiple publications describing a certain study cohort),
the external validation with eligibility criteria and pre-
dicted outcome that most closely resembled our review
question was included, to avoid introducing bias because
of duplicate data [26].

Data extraction and critical appraisal
For each included study, data were extracted on study de-
sign, population characteristics, participant enrolment,
study dates, prediction horizon, predicted outcomes, pre-
dictors, sample size, model updating methods and model
performance (Additional file 5). Risk of bias was assessed
based on a combination of the CHARMS checklist [23]
and a preliminary version of the Cochrane Prediction study
Risk Of Bias Assessment Tool (PROBAST) [27, 28] (Add-
itional file 5). Risk of bias was assessed for each validation,
across five domains: participant selection (e.g. study design,
in- and exclusions), predictors (e.g. differences in predictor
definitions), outcome (e.g. same definition and assessment
for every participant), sample size and participant flow (e.g.
handling of missing data), analyses (e.g. handling of censor-
ing). After several rounds of piloting and adjusting the data
extraction form in a team of three reviewers, data were ex-
tracted by one of the three reviewers. Risk of bias was inde-
pendently assessed by pairs of reviewers. Disagreements
were solved after discussion or by a third reviewer.
Information was extracted on model discrimination and

calibration, before and, if reported, after model updating,
in terms of the reported concordance (c)-statistic and total
observed versus expected (OE) ratio. If relevant infor-
mation was missing (e.g. standard error of performance
measure or population characteristics), we contacted the
authors of the corresponding study. If no additional
information could be obtained, we approximated missing
information using formulas described by Debray et al. [16]

(Additional file 6). If reported, calibration was also
extracted for different risk categories. If the OE ratio
was reported for shorter time intervals (e.g. 5 years),
we extrapolated this to 10 years by assuming a Poisson
distribution (Additional file 6).

Table 1 Terminology

Definition

Case-mix/patient
spectrum

Characteristics of the study population
(e.g. age, gender distribution)

Prediction horizon Time frame in which the model predicts the
outcome (e.g. predicting 10-year risk of developing
a CVD event).

External validation Estimating the predictive performance of an
existing prediction model in a dataset or study
population other than the dataset from which the
model was developed.

Predictive performance Accuracy of the predictions made by a prediction
model, often expressed in terms of discrimination
or calibration.

Discrimination Ability of the model to distinguish between people
who did and did not develop the event of interest,
often quantified by the c-statistic.

Concordance
(c)-statistic

Statistic that quantifies the chance that for any two
individuals of which one developed the outcome
and the other did not, the former has a higher
predicted probability according to the model than
the latter. A c-statistic of 1 means perfect
discriminative ability, whereas a model with
a c-statistic of 0.5 is not better than flipping a
coin [17].

Calibration Agreement between observed event risks and
event risks predicted by the model.

Observed versus
expected (OE) ratio

The ratio of the total number of outcome events
that occurred (e.g. in 10 years) and the total
number of events predicted by the model. The OE
ratio can be calculated for the entire study
population (further referred to as ‘total OE ratio’), or
in categories of predicted risks.

Calibration slope Measure that gives an indication of the strength of
the predictor effects. The calibration slope ideally
equals 1. A calibration slope < 1 indicates that
predictions are too extreme (low-risk individuals
have a predicted risk that is too low, and high-risk
individuals are given a predicted risk that is too
high). Conversely, a slope > 1 indicates that
predictions are too moderate [18, 19].

Model updating/
recalibration

When externally validating a prediction model,
adjusting the model to the dataset in which the
model is validated, to improve the predictive
performance of the model.

Updating the baseline
hazard or risk

When externally validating a prediction model,
adapting the original baseline hazard or intercept
of the prediction model to the dataset in which
the model is validated. This updating method
corrects for differences in observed outcome
incidence between the original development and
external validation dataset.

Updating the
common slope

When externally validating a prediction model,
adapting the beta coefficients of the model using a
single correction factor, to proportionally adjust for
changes in predictor outcome associations [20].

Model revision Taking the predictors of an existing previously
developed model and fitting these in the external
dataset by estimating the new predictor-outcome
associations (e.g. regression coefficients).
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Statistical analyses
We performed meta-analyses of the OE ratio and the
c-statistic for 10-year risk predictions. Based on previous
recommendations [16, 29], we pooled the log OE ratio
and logit c-statistic using random-effects meta-analysis.
Further, we stratified the meta-analysis by model and
gender, resulting in six main groups: Wilson men, Wilson
women, ATP III men, ATP III women, PCE men, PCE
women. We calculated 95% confidence intervals (CI) and
(approximate) 95% prediction intervals (PI) to quantify
uncertainty and the presence of between-study hetero-
geneity. The CI indicates the precision of the summary
performance estimate, and the PI provides boundaries on
the likely performance in future model validation studies
that are comparable to the studies included in the
meta-analysis, and can thus be seen as an indication of
model generalizability (Additional file 7) [30]. The
observed and predicted probabilities were plotted in
risk categories against each other and combined into a
summary estimate of the calibration slope using mixed
effects models (Additional file 7).
Since between-study heterogeneity in estimates of

predictive performance is expected due to differences in
the design and execution of validation studies [16], we
investigated whether the c-statistic differed between
validation studies with different eligibility criteria or
actual case-mix. Furthermore, we performed univariable
random effects meta-regression analyses to investigate
the influence of case-mix differences (e.g. due to
differences in eligibility criteria) on the OE ratio and
c-statistic (Additional file 7). Several pre-specified sensi-
tivity analyses were performed in which we studied the
influence of risk of bias and alternative weighting methods
in the meta-analysis on our findings (Additional file 7).
All analyses were performed in R version 3.3.2 [31]
using the packages metafor [32], mvmeta [33], metamisc
[34] and lme4 [35].

Results
Identification and selection of studies
We first identified 100 potentially eligible studies from
previously conducted systematic reviews. An additional
search identified 1585 studies since June 2013 (Fig. 1). Of
these 1685 studies, 304 studies were screened on full-text
and data were extracted for 61 studies, describing 167 vali-
dations of the performance of one or more of the three
models. Finally, 38 studies (112 validations) met our
eligibility criteria [6–11, 36–67].

Description of included validations
In 112 validations (Additional file 10), the Framingham
Wilson model was validated 38 times (men 23, women
15), Framingham ATP III 13 times (men 7, women 6) and
PCE 61 times (men 30, women 31). One study performed

a direct (head-to-head) comparison of all six prediction
models [7] and one other study performed a direct com-
parison of the ATP III and PCE models [6]. Study parti-
cipants were recruited between 1965 and 2008 and
originated from North America (56), Europe (29), Asia
(25) and Australia (2). All outcome definitions are
described in Additional file 8. The median event rate
across the included validations was 4.4% (IQR 2.8%–7.9%)
and ranged between 0.5 and 29.4%. We excluded 18 and 9
external validations because the OE ratio and c-statistic,
respectively, were not available, and subsequently ex-
cluded 20 and 26 external validations for the OE ratio and
c-statistic, respectively, because cohorts were used mul-
tiple times to validate the same model (Additional file 9).
This resulted in the inclusion of 74 validations in the
analyses of the OE ratio and 77 validations in the analyses
of the c-statistic (Fig. 1, Additional file 14).

Risk of bias
For participant selection, most validations scored low risk
of bias (n = 60 (81%) and n = 64 (83%) for validations
reporting OE ratio and c-statistic, respectively, Fig. 2). Risk
of bias for predictors was often unclear (n = 22 (30%) and
n = 24 (31%) for OE ratio and c-statistic) due to poor
reporting of predictor definitions and measurement
methods. Most validations scored low risk of bias on out-
come (n = 53 (72%), n = 59 (77%)). More than three quar-
ters of the validations scored high risk of bias for sample
size and participant flow (n = 59 (80%) and n = 60 (78%)),
often due to inadequate handling of missing data (i.e. sim-
ply ignoring). Low risk of bias was scored for the analysis in
51 (70%) and 50 (65%) validations, for OE ratio and
c-statistic respectively. In total, 62 (84%) and 63 (82%) vali-
dations scored high risk of bias for at least one domain, and
4 (5%) and 6 (8%) validations scored low risk of bias for all
five domains, for OE ratio and c-statistic, respectively.

Calibration
Figure 3 shows the calibration of the six main models,
as depicted by their 10-year total OE ratio. For 24 out
of 74 validations (32%), maximum follow-up was shorter
than 10 years. For 20 out of these 24 (83%), information
was available to extrapolate the OE ratio to 10 years. Most
studies showed overprediction, indicating that 10-year risk
predictions provided by the models were typically higher
than observed in the validation datasets. For the Wilson
model, the number of events predicted by the model was
lower than the actual number of events in two studies
(one in healthy siblings of patients with premature
coronary artery disease [66], and one in community-
dwelling individuals aged 70–79 [60]). For the PCE,
underestimation of the number of events occurred in
Chinese [51] and Korean [47] populations.
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Meta-analysis revealed a considerable degree of between-
study heterogeneity in OE ratios (Fig. 3), but with clear
overprediction, as summary OE ratios ranged from 0.58
(Wilson men and ATP III men) to 0.79 (ATP III women).
Additional analyses revealed that overprediction is more
pronounced in high-risk patients for all models (Fig. 4).
The results of the summary calibration slope suggest that

miscalibration of the Framingham Wilson and ATP III
models, and PCE men model was mostly related to
heterogeneity in baseline risk (as the summary cali-
bration slope is close to 1), while for PCE women we
found a slope around 0.8, suggesting that this model was
overfitted or does not transport well to new populations
(Additional file 11).

Fig. 1 Flow diagram of selected studies. Two searches were performed; one in MEDLINE and Embase and one in Scopus and Web of Science.
Only studies identified by both searches were screened for eligibility, supplemented with records identified from previous systematic reviews.
One study could describe more than one external validation (e.g. one for men and one for women); therefore, 61 studies described 167 external
validations. Calibration was reported in 94 validations (41 directly reported, 19 provided by the authors on request, 34 estimated from calibration
tables and calibration plots), and discrimination in 103 validations (91 c-statistics directly reported, 12 provided by the authors on request. Precision of
c-statistic: 45 directly reported, 24 provided by the authors, 32 estimated from the sample size and 2 not reported). Some external validations were
excluded because cohorts were used more than once to validate the same model (Additional file 9). *For example, no cardiovascular outcome and
not written in English. †The Framingham Wilson and ATP III models were developed to predict the risk of fatal or nonfatal coronary heart disease, and
the PCE model was developed to predict the risk of fatal or nonfatal cardiovascular disease. External validations that used a different outcome were
excluded from the analyses (Additional file 8)
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Discrimination
For all models, discriminative performance was slightly
better for women than for men, although there was
considerable variation between studies (Fig. 5). One head-
to-head comparison of all three models showed worse dis-
criminative performance for the Wilson model compared
to the ATP III and PCE models [7].

Sensitivity analyses
Sensitivity analyses revealed no effect of study quality and
different weighting strategies on the pooled performance
of the models, both for calibration and discrimination
(Additional file 12).

Factors that influence performance of the models
For women, the highest c-statistics were reported in
studies with a large variety in case-mix. For men, such a
trend was not visible (Fig. 6). The OE ratio for the
Wilson model in the USA was closer to 1 compared to
Europe, but the number of external validations per sub-
group was very small (Additional file 13). Furthermore,
the OE ratio appeared to decrease (further away from 1,
i.e. more overprediction) with increasing mean total
cholesterol. No evidence was found of an association
between the OE ratio and other case-mix variables or
the start date of participant recruitment. The c-statistic
appeared to decrease with increasing mean age, mean
systolic blood pressure and standard deviation of HDL
cholesterol, and to increase with increasing standard
deviation of age and total cholesterol (Additional file 13).
No statistically significant associations were found
between the c-statistic and other variables.

Performance after updating
For 40 validations, the model was subsequently updated,
of which 24 reported the OE ratio and 15 reported the
c-statistic after updating (Fig. 7). We found that substan-
tial improvements in OE ratio were often obtained by
simply re-estimating the baseline hazard or the common
slope. More advanced methods of updating (e.g. entire
revision of the model) did not offer much additional im-
provements. For the c-statistic, only advanced methods
of updating resulted in limited improvement.

Discussion
Summary of findings
We systematically reviewed the performance of the
Framingham Wilson, Framingham ATP III and PCE
models for predicting 10-year risk of CHD or CVD for
men and women separately in the general population.
We found only small differences in pooled performance
between the three models, but large differences in per-
formance between validations of the same model across
different populations. Although we mostly had to rely on
indirect comparisons of the models, we found that per-
formance of all three models was consistently better in
women than in men for both discrimination and cali-
bration. We found that all models overestimated the risk
of CHD or CVD if they were not updated locally prior
to implementation. This overestimation was more
pronounced in European populations compared to the
USA. Overprediction clearly declined when the validated
models were adjusted (e.g. via updating the baseline
hazard) to the validation setting at hand. This indicates
that although the Framingham models and PCE have the

Fig. 2 Risk of bias assessment. Summary of risk of bias assessments for validations included in the meta-analyses of OE ratio (74 validations) and
c-statistic (77 validations)
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potential to be effective tools for patient management in
clinical care, their use should be preceded by local
adjustments of the baseline hazard. If aforementioned
models are implemented as originally developed to guide
treatment decisions, over- or undertreatment of indivi-
duals may occur and therefore introduce unnecessary
costs or even harm. Unfortunately, current guidelines do
not recommend local tailoring of Framingham and PCE
and may therefore lead to suboptimal decision making.
Although it was not possible to identify key sources of

heterogeneity, we found that discriminative performance
tends to increase as populations become more diverse,
i.e. with a wider case-mix. This effect has previously
been explained [69–71].

Comparison with previous literature
Our findings are in agreement with previous studies,
which also found that the Framingham prediction
models overestimate the risk of CHD in the general
population [12, 13] and that (overall) calibration is better

Fig. 3 Forest plots of the OE ratio in external validations. Ninety-five percent confidence intervals and 95% prediction intervals per model are
indicated. The performance of the model in the development study is shown in the first rows (only reported for PCE). This estimate is not included in
calculating the pooled estimate of performance. *Performance of the model in the development population after internal validation. The first row
contains the performance of the model for Whites, the second for African Americans. **Standard error was not available. CHD: Coronary heart disease,
CVD: cardiovascular disease
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in the USA than in European populations [14]. Further-
more, the overestimation of risk was more pronounced
in more recent populations than in earlier study popu-
lations [12, 13]. A recent study found that the PCE
overestimate the risk of CVD [15], and in another study,
the better discrimination seen in women was attributed to
a stronger association between risk factors and CVD in
women compared to men [72]. In addition to these pre-
vious reviews, we compared the predictive performance of
the three prediction models that are currently in the
medical guideline and that are most often evaluated in
external validation studies, and found that these models

have similar performance. Further, we did an extensive
evaluation of factors possibly associated with hetero-
geneity in predictive performance and we found that
predictive performance improved if these existing models
were being updated.

Reasons for overprediction
There could be several reasons for the observed over-
prediction. These reasons have also been extensively
discussed previously with regard to the PCE [15, 73]. First,
differences in eligibility criteria (e.g. the exclusion of par-
ticipants with previous CVD events) across validation

Fig. 4 Calibration plots of the Framingham Wilson, ATP III and PCE models. Each line represents one external validation. The diagonal line
represents perfect agreement between observed and predicted risks. All points below that line indicate that more events were predicted than
observed (overprediction) and points above the line indicate fewer events were predicted than observed (underprediction). The vertical black line
represents a treatment threshold of 7.5% [68].
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studies may have affected calibration. Second, the three
prediction models have been (partly) developed using data
from the 1970s, and since then, treatment of people at
high risk for a CVD event has changed considerably, such
as the introduction of statins in 1987 [74]. The increased
use of effective treatments over time aimed at preventing
CVD events will have lowered the observed number of
events in more recent validation studies, resulting in over-
estimation of risk in these validation populations [39, 75,
76]. This would also explain why overprediction was most

pronounced in high-risk individuals and why we found
more overprediction in studies with increasing mean total
cholesterol levels. We hypothesized that the degree of
overprediction would increase over the years [12, 13, 77];
however, this could not be confirmed statistically. About
one third of validations of the PCE excluded participants
receiving treatment to lower CVD risk at baseline, but we
found no difference in performance between validations
that did or did not exclude these participants. However, as
the use of risk-lowering medication during follow-up was

Fig. 5 Forest plots of c-statistic in external validations. Ninety-five percent confidence intervals and 95% prediction intervals per model are indicated.
The performance of the model in the development study is shown in the first row(s) (not reported for the ATP III model) and is not included in the
pooled estimate of performance. *Performance of the model in the development population (Wilson (no standard error reported)) and after 10 × 10
cross-validation (PCE). For the PCE, the first row contains the performance of the White model and the second the African American model. **Standard
error was not available. CHD: coronary heart disease, CVD: cardiovascular disease
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rarely reported in these studies, we cannot rule out an ef-
fect of incident treatment use on model performance [76].
Following the recently issued Transparent Reporting of a
multivariable prediction model for Individual Prognosis or
Diagnosis (TRIPOD) guideline [78, 79] and the guidance
on adjusting for treatment use in prediction modelling
studies [75, 76, 80], we also strongly recommend in-
vestigators of future prediction model studies to record
the use of treatment during follow-up. Third, in agree-
ment with previously published reviews [12–15], we

found more overestimation of risk in European popu-
lations compared to those of the USA whereas in some
Asian populations an underestimation was seen. Both
suggest that differences between these populations in, for
example, unmeasured CVD risk factors and in the use of
preventive CVD strategies (e.g. medical treatment or
lifestyle programs) are responsible. Unfortunately, not
enough information was available to study the role of
ethnicity on the heterogeneity of the models’ predictive
accuracies. Finally, rather than overprediction by the

Fig. 6 C-statistic for different combinations of eligibility criteria. The open squares, circles and triangles represent validations of the ATP III, PCE
and Wilson model, respectively. The black circles and triangles represent the performance of the PCE models for Whites and African-Americans,
and Wilson models, in the development populations. Lower part: for age, white means a broad age range was included (difference between
upper and lower age limit > 30 years), black means a narrow age range was included (difference between upper and lower age limit ≤ 30 years)
and grey means age was not reported. For CVD, white means no exclusion of people with CHD or CVD, grey means people with previous CHD
events were excluded from the study and black means people with previous CVD events were excluded from the study. For diabetes, cancer and
major disease, white means that no restrictions were reported and black means that people with these conditions were excluded. For treatment,
white means no restrictions and black means people who were receiving any treatment to lower their risk of CVD (e.g. anti-hypertensives) were
excluded from the study
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models, there could also be issues in the design of the
external validation studies that give rise to a lower number
of identified events. Underascertainment or misclassifi-
cation of outcome events, unusually high rates of people
receiving treatment, short follow-up duration, and in-
clusion of ethnicities not included in development of the
models, have been mentioned as reasons for the over-
prediction we also observed [57, 81–84]. Also outcome
definitions can be different between the development and
validation studies. This seems particularly a problem for
the Framingham Wilson model, as half of the validation
studies did not include angina in their outcome definition.
Researchers have however shown that overestimation
can often not fully be explained by treatment use and
misclassified outcome events [39, 85].

Implications for practice and research
According to the ACC-AHA guidelines [2], risk-lowering
treatment is considered in people 40–75 years old, without
diabetes, with LDL cholesterol levels between 70 and 189
mg/dl and with 10-year predicted risk of CVD ≥ 7.5%.
After a discussion between clinician and patient about
adverse effects and patient preferences, it is decided
whether risk-lowering treatment is initiated. The over-
prediction observed in this review is problematic as this
might change the population eligible for risk-lowering
treatment. Unfortunately, this is true for all three CVD

risk prediction models. As the meta-analysis indicates that
overprediction does not consistently occur across different
settings and populations, there is no simple solution to
address this problem. From the studies that provided data
on calibration in subgroups, we found that overestimation
was more pronounced in high-risk individuals. When the
(over)estimation of the absolute risk is already beyond the
treatment probability threshold, it will not influence treat-
ment decisions. However, overestimation of CVD risk
might still influence the intensity (dose and frequency) of
administered treatments and affect the patient’s behaviour.
Although excessive risk estimates could stimulate patients
to adopt a more healthy lifestyle (similarly to patients with
more risk factors [86]), it could also cause unnecessary
anxiety for future cardiovascular events. For people at
lower risk, this might, however, result in crossing the
treatment probability boundary when, actually, they are at
lower risk. If we assume that the observed risks reported
in the validation studies are not influenced by factors that
changed during follow-up such as treatment use, we can
state that in 82% of individuals the average predicted and
observed percentages were both below or both above the
treatment boundary of 7.5% (i.e. concordant points); in 1%
of individuals, the predicted risk was below 7.5% and the
observed risk was above 7.5% which would, on average,
lead to undertreatment in these groups of individuals; and
in 17% of individuals, the average predicted risk was above

Fig. 7 Performance of models before and after update. The x-axis is sorted by performance before updating. The lines connect performance of
models in the same cohort before and after updating
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7.5% while the average observed risk was below 7.5%
which would, on average, lead to overtreatment. Though
this does not mean that 17% of individual will receive
unnecessary treatment, it is important that doctors realize
that some patients may receive unnecessary treatment,
resulting in adverse effects, patient’s burden and extra
costs of treatment and monitoring.
The clinical implications of a certain c-statistic are even

more difficult to predict. A low c-statistic (i.e. close to 0.5)
indicates that the model discriminates no better than a
coin toss, while a high c-statistic (close to 1.0) indicates
that the model can perfectly separate people who develop
an event from people who do not develop an event. If we
have four pairs of individuals visiting the doctor, of which
one individual will develop CVD in future (case) and one
not (noncase), a c-statistic of 0.75 means that for 3 of
these pairs, the case would indeed receive a higher
predicted risk (which could still be too low or too high),
while in one pair, the case would receive a lower predicted
risk compared to the noncase.
In general, the performance of prediction models tends

to vary substantially across different settings and popu-
lations, due to differences in case-mix and health care
systems [87]. Hence, one external validation may not be
sufficient to claim adequate performance and multiple va-
lidations are necessary to get insight in the generalizability
of prediction models [71]. Primary external validation
studies already showed the need for recalibration to
improve a model’s calibration and better tailor it to the
setting at hand. In this systematic review, we now show
that this also holds when all studies are pooled together in
a meta-analysis. We found that none of the models offer
reliable predictions unless (at least) their baseline risk or
hazard (and, if applicable, population means of the predic-
tors in the model) are recalibrated to the local setting.
Studies that reported performance of the model before
and after update showed that performance indeed im-
proves after update; however, the necessary adjustments
vary from setting to setting and thus need to be evaluated
locally [8, 11, 36, 47, 48, 54]. As previously emphasized,
more extensive revision methods are often not needed
[24, 25, 88]. Hence, it appears that conventional predic-
tors, such as age, smoking, diabetes, blood pressure and
cholesterol, are still relevant indicators of 10-year CHD or
CVD risk, and their associations with CVD events have
largely remained stable. The need for updating CVD risk
prediction models has already been discussed more than
15 years ago [11, 89], but still nothing has changed. We
believe this should change now, especially since nowadays
applying simple model updating is becoming increasingly
possible, due to improvements in the storage of the in-
formation required to update a model. Clinical guidelines
should advocate that the performance of the models is not
appropriate for every patient population, and recalibration

before using the models is necessary. Nice examples of
the tailoring of CVD risk prediction models to specific
populations are the Globorisk prediction model, which
can easily be tailored to different countries using
country-specific data on the population prevalence of
outcomes and predictors [90], and the SCORE model,
which has been tailored to many European countries
using national mortality statistics [21, 91–93].
Furthermore, it is very important to gain insight into

factors that cause the observed overestimation of events.
This can be studied in empirical data, like the study by
Cook et al. [38] where hypothetical situations are created
in which a number of events are missed or prevented by
risk-lowering drugs. Also simulation studies might give
more insight into reasons for the overestimation of
CVD risk.
These suggestions, however, offer no short-term solu-

tion for practitioners currently using the three reviewed
prediction models. For now, we advise practitioners in
the USA to continue using the PCE, though being aware
of the potential miscalibration especially in high-risk
individuals. The PCE are currently advised to be used by
the ACC-AHA clinical guidelines, which is understand-
able because alternatives have not been studied in
enough detail. However, the actual value of the PCE in
clinical practice is limited by their calibration. We there-
fore advise to recalibrate the model in the near feature
to specific populations. Fortunately, systematic reviews
have shown that the prevalence of common CVD risk
factors decreases (e.g. cholesterol levels drop) in popu-
lations where CVD risk prediction models and their
corresponding treatment guidance are being used [94, 95].
Furthermore, statins have been proven effective with lim-
ited adverse events [96]. Finally, we advise practitioners to
choose a model that predicts a clinically relevant outcome
(for example, according to the AHA, CVD rather than
only CHD, since stroke and CHD share pathophysiological
mechanisms [10, 97]), consists of predictors available in
their situation and is developed or updated in a setting
that closely resembles their own setting.

Limitations
This study has several limitations. First, we focused on
the three most validated and used prediction models in
the USA, while in Europe many more prediction models
are currently used for predicting cardiovascular risk,
such as QRISK3 [22] and SCORE [21]. The differences
between all these models are however limited, as most
models include the same core set of predictors. There-
fore, we believe our results can be generalized to other
prediction models. Second, we had to rely on what is
reported by the authors of primary validation studies and
we unfortunately had to exclude relevant validations from
our meta-analyses because of unreported information
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which we could not obtain from the authors. Only 19 out
of 61 authors were able to provide us with additional
information, and we had to exclude 9 validations for the
c-statistic and 18 for the OE ratio. Sometimes, incomplete
reporting made it difficult to judge whether a study should
be included in our analyses, for example when there was
no explicit reference to the validated model and when it
was not clear whether changes were made to the model
before validation. In one specific study (D’Agostino et al.
2001 [14]), we decided to include the study because the
validated model was similar in predictors and outcome
definition. Although its eligibility could be debated, the
exclusion of this study would not alter our conclusions
regarding the performance of the Framingham Wilson
model. Due to poor reporting, many validations scored
unclear risk of bias, especially for the domain predictors
and outcome. Many other validations scored high risk of
bias which may hamper our conclusions. Unfortunately,
evidence on the impact of these issues on model perfor-
mance is still limited [98], which makes it difficult to argue
in which direction the predictive performance of the
models will change if all validations had low risk of bias.
Third, the total OE ratio, while commonly reported, only
provides an overall measure of calibration. To overcome
this problem, we extracted information on the OE ratio in
categories of predicted risk, which showed there was more
overestimation of risk in the highest categories of pre-
dicted risk. Based on this information, we calculated the
calibration slope, which suggested that miscalibration of
the Framingham Wilson and ATP III models and PCE
men model was mostly related to heterogeneity in baseline
risk, while for PCE women the model is overfitted or does
not transport well to new populations. In addition, more
clinically relevant measures, such as net benefit, could not
be considered in this meta-analysis due to the lack of
reporting of these measures [5]. Fourth, because of the
low number of external validation studies, we did not per-
form meta-regression analyses for the ATP III model. Un-
fortunately, the relatively small sample size makes it
difficult to draw firm conclusions on the sources of ob-
served heterogeneity. Fifth, the exclusion of non-English
studies could have influenced the geographical representa-
tion. However, since only one full-text article was ex-
cluded for this reason, we believe the effect on our results
is limited.

Conclusions
The Framingham Wilson, Framingham ATP III and PCE
prediction models perform equally well in predicting the
risk of CHD or CVD, but there is large variation between
validations and only few direct comparisons have been
performed so far. All three prediction models overestimate
the risk of CHD or CVD if no local adjustments are made,

which could lead to overtreatment in clinical practice.
Therefore, we recommend that future studies should
investigate reasons for overprediction and that guidelines
offer advise how to make better use of existing models
and subsequently tailor or recalibrate them to the setting
at hand.
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