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Abstract

Epilepsy is a serious brain disorder with diverse seizure types and epileptic syndromes.

AMPA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzoquinoxaline-2,3-dione

(NBQX) attenuates spontaneous recurrent seizures in rats. However, the anti-epileptic

effect of NBQX in chronic epilepsy model is poorly understood. Perineuronal nets (PNNs),

specialized extracellular matrix structures, surround parvalbumin-positive inhibitory inter-

neurons, and play a critical role in neuronal cell development and synaptic plasticity. Here,

we focused on the potential involvement of PNNs in the treatment of epilepsy by NBQX.

Rats were intraperitoneally (i.p.) injected with pentylenetetrazole (PTZ, 50 mg/kg) for 28

consecutive days to establish chronic epilepsy models. Subsequently, NBQX (20 mg/kg,

i.p.) was injected for 3 days for the observation of behavioral measurements of epilepsy.

The Wisteria floribundi agglutinin (WFA)-labeled PNNs were measured by immunohisto-

chemical staining to evaluate the PNNs. The levels of three components of PNNs such as

tenascin-R, aggrecan and neurocan were assayed by Western blot assay. The results

showed that there are reduction of PNNs and decrease of tenascin-R, aggrecan and neuro-

can in the medial prefrontal cortex (mPFC) in the rats injected with PTZ. However, NBQX

treatment normalized PNNs, tenascin-R, aggrecan and neurocan levels. NBQX was suffi-

cient to decrease seizures through increasing the latency to seizures, decrease the duration

of seizure onset, and reduce the scores for the severity of seizures. Furthermore, the degra-

dation of mPFC PNNs by chondroitinase ABC (ChABC) exacerbated seizures in PTZ-

treated rats. Finally, the anti-epileptic effect of NBQX was reversed by pretreatment with

ChABC into mPFC. These findings revealed that PNNs degradation in mPFC is involved in

the pathophysiology of epilepsy and enhancement of PNNs may be effective for the treat-

ment of epilepsy.
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Introduction

Epilepsy is a serious life-shortening neurological disorder, which affects approximately 1% of

general population [1] and leads to an increase of disability and mortality in the world [2]. Epi-

lepsy is a diverse phenotype including more than 15 different seizure types and more than 30

epilepsy syndromes [3]. The core symptom of epilepsy is recurring, unprovoked seizures

induced by the abnormal synchronous activity of cerebral neuronal networks. The abnormal

hypersynchronous activity induced by impaired inhibition increased extracellular potassium

and enhanced excitatory synaptic transmission that are involved in the pathological process in

epilepsy [4].

Glutamate is a predominant neurotransmitter released from excitatory neurons related to

the fast synaptic excitation [5]. The released glutamates diffuse across the synaptic cleft and

generate fast excitatory synaptic potentials (EPSPs) through binding to ionotropic glutamate

receptors. The cumulative EPSPs of individual neurons trigger action potentials, which are

responsible for epileptic field potentials. Glutamate receptors of the AMPA (a-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid) subtype have been evidenced to play a key

role in epileptogenesis [6]. AMPA receptors regulate the fast synaptic excitation in brain

regions that are related to epilepsy [7]. Specifically, AMPA receptor antagonists markedly

reduce epileptiform and inhibit spread of epileptic discharges in both animal seizure models

and human epilepsy [8,9]. In addition, growing evidence validate the critical role of AMPA

receptors in epileptic seizures, and suggest that AMPA receptors may be a potential target

for epilepsy therapy. Rodent models of epilepsy is used and it showed that perampanel, a

potent, selective, orally active non-competitive AMPA receptor antagonist, exhibited a

strong antiseizure activity in the maximal electroshock seizure test, and the 6 Hz seizure test

[10,11]. Moreover, clinical data showed that perampanel with daily dose is effective in

patients with refractory partial-onset seizures [12–14]. NBQX (2,3-dihydroxy-6-nitro-7-sul-

famoyl-benzoquinoxaline-2,3-dione) is a competitive AMPA receptor antagonist and has a

property that suppressed focal electrographic seizures in epileptic mice [9]. Recently, it was

described that NBQX blocks the development of spontaneous recurrent seizures when treat-

ment after neonatal seizures [15]. Consistently, noncompetitive AMPA antagonist perampa-

nel improved the performance of partial seizures, suggesting a remarkable antiepileptogenic

effect [16].

Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures, which sur-

round parvalbumin-positive inhibitory interneurons and play a critical role in neuronal cell

development, activity and growth [17–19]. Chondroitin sulfate proteoglycans (CSPGs) are

crucial components of PNNs [20], which have been suggested to be a critical factor regulating

synaptic plasticity [21]. Aberrant PNN signaling was found to induce the dysfunctions of cen-

tral nervous system such as epilepsy, stroke, Alzheimer’s disease, schizophrenia and addiction

[22,23]. The plant lectins Wisteria floribunda agglutinin (WFA) can be used to visualize PNNs

by binding to N-acetylgalactosamine residue [24]. Therefore, we use WFA-labeled neurons to

evaluate the numbers of PNNs in the current investigation. The three major ECM components

of PNNs are tenascin-R, aggrecan and neurocan, which are important contributors to forma-

tion and stabilization of PNNs functions [25].

Pentylenetetrazole (PTZ), a g-aminobutyric acid antagonist, is widely used to establish

experimental models simulate human epilepsy. PTZ administration increased the glutamater-

gic transmitter and induced generalized tonic–clonic seizures in animals with higher doses

[26,27]. In the current study, we used PTZ at the dose of 50 mg/kg (i.p.) to induce chronic sei-

zures to observe the anti-epileptic effect of NBQX and the possible involvement of PNNs.
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Materials and Methods

Animals

Male Wistar rats that weighed 220–240 g upon arrival were obtained from the Shandong Uni-

versity Experimental Animal Center and were used for all experiments. Rats were individually

housed under constant temperature (23±2˚C) and humidity (50±5%) and maintained on a

12-hour light/dark cycle with free food and water available. Rats were monitored daily by an

experimenter at 8:00–12:00 am each day for eating, drinking, and activity, which were used for

the physical health assessment. There are no animals died before the experimental endpoint.

All of the animal procedures were performed in accordance with the National Institutes of

Health Guide for the Care and Use of Laboratory Animals. The protocol of current animal

experiments was approved by the Ethics of Animal Experiments of Jinan Central Hospital

(Permit Number: SA-2014-008). All surgery was performed under sodium pentobarbital anes-

thesia, and all efforts were made to minimize suffering in animals. All of the behavioral tests

and drug administrations were carried out in the dark phase.

Drugs

AMPAR antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzoquinoxaline-2,3-dione (NBQX),

pentylenetetrazole (PTZ) and chondroitinase ABC (ChABC) were supplied from Sigma-

Aldrich Chemical Company (Sigma, St Louis, Missouri, USA). NBQX was freshly dissolved in

saline as sodium salt. ChABC were dissolved in 0.1 m PBS (vehicle) for microinjection into the

medial prefrontal cortex and prepared in stock solutions of 0.02 U/μl.

Seizures induction and behavioral analysis

Rats were deprived of food but not water 12h before the experiments to prevent aspiration of

food. Rats in PTZ group were treated with a single 50 mg/kg intraperitoneal (i.p.) administra-

tion of PTZ for 28 days. While rats were injected with saline (i.p.) in control group instead.

Behavioral tests and neurochemical analysis were performed on day 29 and 30, respectively

(Fig 1A).

To observe anti-epileptic effects of NBQX in PTZ induced epilepsy, we divided rats into

four groups: rats in saline + saline group were treated with saline only; rats in PTZ + saline

group were treated with 50 mg/kg of PTZ (i.p.) and saline for 28 days; rats in saline + NBQX

group were treated with saline for 28 days, and 20 mg/kg of NBQX (i.p.) for next 3 days; rats in

PTZ + NBQX group were treated with 50 mg/kg of PTZ (i.p.) for 28 days and were treated

with 20 mg/kg of NBQX (i.p.) for next 3 days. Behavioral tests and neurochemical analysis

were performed on the following 2 days (Fig 2A). The doses for PTZ and NBQX were selected

regarding to previous studies [15,28].

To clarify the effects of degradation of PNNs caused by ChABC in mPFC on the seizures,

we used four groups of rats: saline + penicillinase group was treated with saline plus penicillin-

ase into mPFC on d24; saline + ChABC group was treated with saline and microinjection of

ChABC (0.01 U/μg/side/0.5 μl) into mPFC on d24; PTZ + penicillinase group was treated with

PTZ (50 mg/kg) for 28 days and microinjected with penicillinase on d24; PTZ + ChABC

group was treated with PTZ for 28 days and microinjected with ChABC on d24. Behavioral

tests and neurochemical analysis were performed on the following 2 days (Fig 3A).

To determine whether PNNs degradation by ChABC can reverse the anti-epileptic effect of

NBQX, we injected rats with PTZ for 28 days and separated them into four groups: rats in

vehicle group were treated with vehicle without NBQX, and were microinjected with penicil-

linase into mPFC on d 24; rats in vehicle + ChABC group were treated with vehicle plus
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Fig 1. Chronic PTZ treatment reduced PNNs (WFA), tenascin-R, aggrecan and Neurocan in the medial

prefrontal cortex. (A) Schemes of experimental schedules. (B) Numbers of WFA+ PNNs in mPFC of control

and PTZ treatment, scale bar is 50 μm, n = 6 per group. Representative WFA+ images of

immunofluorescence staining are shown on the right. The data are expressed as mean ± SEM. (C) The levels

of tenascin-R, aggrecan and Neurocan in mPFC are shown. Representative Western blot images are shown
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microinjection of ChABC into mPFC on d24; rats in NBQX + penicillinase group were treated

with penicillinase on d24 and were treated with NBQX injection on d 29 to d31; rats in NBQX

+ ChABC group were treated with microinjection of ChABC into mPFC on d24 plus NBQX

(20 mg/kg, i.p.) on d 29 to d31. Behavioral tests were performed on day 32.

The epileptic seizure activity induced by PTZ was evaluated by latency to seizures (s), dura-

tion of the minor seizure onset (s), duration of the major seizure onset (s), and scores for the

severity of seizures in 1h after PTZ injection [28]. The minor seizure onset was termed as iso-

lated myoclonic jerks and clonic seizures accompanied by facial and front extremity muscle

clonus. While the major seizure following the minimal seizure are characterized by head, neck,

and tail extension with the loss of the tonic flexor reflex and tonic flexion–extension following

the protracted clonus [29]. The scores were used to measure the severity of seizures after PTZ

administration according to the following level: 0: no changes in behavior; 1: isolated myolonic

jerks; 2: only atypical minimal seizures; 3: minimal seizures; 4: major seizures without a tonic

phase; and 5:completed tonic–clonic seizures [30]. The performance of each rat was recorded

by a video camera during the entire experimental procedures. The observers for the measure-

ment of seizure scores were blind to the treatment of each group.

Immunofluorescence and image analysis

After the behavioral measurement, rats were deeply anesthetized with sodium pentobarbital

(100 mg/kg, i.p.) and were intracardially perfused with 200–250 ml of 0.1M phosphate-buff-

ered saline, pH 7.4, followed by 200–250 ml of 4% paraformaldehyde phosphate buffer, pH

7.4. The brains were then postfixed at 4˚C for 24 h and dehydrated in 30% sucrose for at least 4

days. Serial coronal 30 μm brain sections that contained the medial prefrontal cortex were cut

on a Leica freezing microtome and stored in a cryoprotectant solution at -20˚C. The sections

were incubated overnight at 4˚C in a solution of biotin-conjugated lectin wisteria floribunda
(WFA, Sigma Aldrich, L1516). All of the sections were then washed 3 times in PBS and then

incubated in FITC-conjugated streptavidin (Sigma-Aldrich, S3762) in 25˚C for 3 h. Four or

five sections from each brain region of each rat were selected. Fluorescence microscope with

an image-analysis program was used for measuring the number of WFA-positive PNNs. The

average number of PNNs on either side of target brain region was taken as the positive immu-

noreactive cell number for each rat as previously reported [31,32].

Tissue sample preparation

Rats were killed 30 min after the last administration of PTZ. Their brains were extracted and

removed. Subsequently, bilateral tissue punches of the mPFC (16 gauge) were obtained from

approximately 1 mm thick coronal sections cut in a Reichert-Jung 2800 Frigocut E cryostat at

-20˚C. The rostral faces of the coronal sections were approximately 3.8 mm from bregma. Tis-

sue punches were homogenized (10–15 s × 3, 5 s interval) with an electrical disperser (Wiggen-

hauser, Sdn Bhd) after being lysed with RIPA lysis buffer with protease-inhibitor (Beyotime

Biotechnology, Beijing, China) for 30 min. Afterward, the homogenate was subjected to 10,000

× g centrifugation at 4˚C for 20 min. All of the above procedures were performed under low

temperature (0–4˚C). The protein concentrations of all samples were determined using the

BCA assay kit (Beyotime Biotechnology). The protein concentration was normalized by dilut-

ing the samples with RIPA lysis buffer.

on the right. The data are expressed as a percentage of the values obtained for the rats treated with saline. *p

< 0.01, different from corresponding saline groups (n = 6).

doi:10.1371/journal.pone.0166672.g001
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Fig 2. NBQX increased PNNs (WFA), tenascin-R, aggrecan and Neurocan in the medial prefrontal cortex in PTZ-treated rats. (A)

Schemes of experimental schedules. (B) Numbers of WFA+ PNNs in mPFC of control and PTZ treatment, scale bar 50 μm, n = 6 per group.

Representative WFA+ images of immunofluorescence staining are shown on the right. The data are expressed as mean ± SEM. The levels of

(C) tenascin-R, (D) aggrecan and (E) Neurocan in mPFC are shown. Representative Western blot images are shown on the right. The data are

expressed as a percentage of the values obtained for the rats treated with saline. *p < 0.01, different from corresponding saline groups, #

p < 0.01, compared with PTZ group (n = 6).

doi:10.1371/journal.pone.0166672.g002
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Western blot assays

Samples were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (8%

acrylamide/0.27% N,N’-methylenebisacryalamide resolving gel) for approximately 30 min at

80 V in stacking gel and approximately 1 h at 120 V in resolving gel. Proteins were transferred

electrophoretically to Immobilon-P transfer membranes (Millipore, Bedford, MA, USA) at

0.25 A for 3 h. Membranes were washed with TBST (Tris-buffered saline plus 0.05% Tween-

20, pH 7.4) before dipping in blocking buffer (5% skimmed dry milk in TBST) overnight at

4˚C. Membranes were then incubated for 1 h at room temperature with anti-tenascin-R

(1:400; Santa Cruz, sc-9875), anti-aggrecan (1:400, Santa Cruz, sc-25674), anti-neurocan

(1:1000, Sigma Aldrich, N0913), and anti-β-actin antibody (1:2000, A5316; Sigma, St. Louis,

MO, USA) in TBST plus 5% bovine serum albumin. After the membrane was shaken in 4 × 6

min washes in TBST buffer, the blots were incubated for 45 min at room temperature with

horseradish peroxidase-conjugated secondary antibody (goat anti-rabbit or mouse IgG; Santa

Cruz Biotechnology and Vector Labs, respectively) diluted 1:5000 in blocking buffer. The blots

were then shaken in 4 × 6 min washes in TBST. Afterward, the blots were incubated with a

layer of Super Signal enhanced chemiluminescence substrate mixture (Pierce Biotechnology,

Rockford, IL, USA) for 1 min at room temperature. Finally, the blots were exposed against X-

Fig 3. PNNs (WFA) were removed by ChABC microinjection into mPFC. (A) Schemes of experimental schedules. (B) Numbers of WFA

+ PNNs in mPFC of control and PTZ treatment, scale bar 50 μm, n = 6 per group. Representative WFA+ images of immunofluorescence staining

are shown on the right. The data are expressed as mean ± SEM. *p < 0.01, compared with saline group; # p < 0.01, compared with PTZ group.

doi:10.1371/journal.pone.0166672.g003
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ray film (Eastman Kodak Company). Band intensities were quantified using Quantity One

software (version 4.0.3) from Bio-Rad Corporation (Hercules, CA, USA).

Intracerebral cannula implantation and intracranial injections

Rats were anesthetized with sodium pentobarbital (60 mg/kg, i.p.), and guide cannulae

(23-gauge, Plastics One, Roanoke, VA, USA) were implanted bilaterally 1 mm above the

medial prefrontal cortex with the following stereotaxic coordinates: anterior/posterior (A/P),

-3.2 mm; medial/lateral (M/L), ± 2.5 mm; dorsal/ventral (D/V), -3.3 mm [33–35]. The rats

were allowed to recover for at least 7 d before intracranial injections. Vehicle or ChABC (0.01

U/μg/side/0.5 μl) were intracranial microinjected using 10 μl Hamilton syringes (Hamilton,

Reno, NV, USA) connected via polyethylene-50 tubing to 30-gauge injectors (Plastics One)

into the mPFC. The dose of ChABC was used as previously evidenced [31]. A total volume of

0.5 μl was infused into each side over 1 min, and the injection syringe was left in place for an

additional 1 min to allow for diffusion. At the end of the behavioral tests, the rats were anesthe-

tized with sodium pentobarbital (100 mg/kg, i.p.) and transcardially perfused. Cannula place-

ments were assessed using Nissl staining with a thickness of 30 μm under a light microscope to

determine the infusion site. Subjects with misplaced cannulae were excluded from the statisti-

cal analysis.

Data analysis

The data are expressed as mean ± SEM and were analyzed using one- or two-way analysis of

variance (ANOVA) followed by Tukey’s post hoc test (for details, see Results section). In the

two-way ANOVA tests, two factors are involved: 1. PTZ and saline groups, 2. NBQX and

saline, or ChABC and vehicle treatment. Values of P < 0.05 were considered statistically

significant.

Results

The behavioral patterns of epileptic seizures induced by PTZ

Chronic PTZ treatment induced significant changes on latency to seizures, duration of the

minor seizure onset, duration of the major seizure onset, and scores for the severity of seizures

in rats. As shown in Table 1, rats in saline group produced a longer latency (600 s) to seizures

than those in PTZ group (102.9 ± 6.5 s, p< 0.001). Additionally, PTZ treatment also induced

an increase in the duration of both minor seizure onset (65.1 ± 4.4 s vs 0 s, p< 0.001) and

major seizure onset (117.8±12.9 s vs 0 s, p< 0.001) compared with saline group, respectively.

Similarly, the scores for the severity of seizures were increased by PTZ injection (4.6 ± 0.26).

These data suggest that rats chronically treated with PTZ exhibited a marked phenotype of epi-

lepsy model.

Table 1. PTZ induced significant changes on latency to seizures (s), duration of the minor seizure

onset (s), duration of the major seizure onset (s), and scores for the severity of seizures in rats.

Group Saline PTZ p value

N 8 8

Latency to seizure (s) 600 102.9±6.5 <0.001

Duration of the minor seizure onset (s) 0 65.1±4.4 <0.001

Duration of the major seizure onset (s) 0 117.8±12.9 <0.001

Scores for the severity of seizures 0 4.6±0.26 <0.001

doi:10.1371/journal.pone.0166672.t001
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Chronic PTZ treatment reduced WFA, tenascin-R, aggrecan and

neurocan in mPFC

After behavioral analysis, rats were killed and their brains were collected for the following

assay for PNNs (Fig 1A). The data from immunofluorescence staining showed that PTZ signif-

icantly decreased the number of WFA+ PNNs in mPFC compared to saline-treated rats (Fig

1B, p< 0.001). Furthermore, Western blot assay revealed that the levels of three components

of PNNs, tenascin-R, aggrecan and neurocan (Fig 1C, p< 0.001) were also reduced in PTZ

group compared with saline group, suggesting that the PNNs was impaired by chronic PTZ

administration.

AMPA receptor antagonist NBQX decreased seizures induced by PTZ

Next, we aimed to identify the effect of AMPA receptor antagonist NBQX on the onset of epi-

leptic seizures induced by PTZ. Data from behavioral tests in Table 2 showed that the

decreased latency to seizure induced by PTZ was increased by NBQX treatment (p< 0.01).

Moreover, the increases in duration of the minor seizure onset (p< 0.01), duration of the

major seizure onset (p< 0.01), and the scores for the severity of seizures (p< 0.01) in PTZ

group were completely reduced by NBQX injection. Two-way ANOVA with the between-sub-

jects factors PTZ (0 and 50 mg/kg) and NBQX (0 and 20 mg/kg) revealed significant effects of

PTZ (F1,28 = 94.5, p< 0.001) and NBQX (F1,28 = 16.5, p< 0.001) on the latency to seizure

and a PTZ × NBQX interaction (F1,28 = 16.5, p< 0.001). In the duration of the minor seizure

onset measurement, two-way ANOVA revealed significant effects of PTZ (F1,28 = 163.1,

p< 0.001) and NBQX (F1,28 = 13.9, p< 0.01), and a PTZ × NBQX interaction (F1,28 = 13.9,

p< 0.001). In consistent, two-way ANOVA revealed significant effects of PTZ (F1,28 = 234.9,

p< 0.001) and NBQX (F1,28 = 18.9, p< 0.001), and a PTZ × NBQX interaction (F1,28 = 18.9,

p< 0.001) on the duration of the major seizure onset. Two-way ANOVA also showed signifi-

cant effects of PTZ (F1,28 = 108.8, p< 0.001) and NBQX (F1,28 = 21.5, p< 0.001), and a

PTZ × NBQX interaction (F1,28 = 21.5, p< 0.001) on the scores for the severity of seizures.

These results indicate that treatment with AMPA receptor antagonist NBQX effectively

reversed the behavioral abnormality of epileptic seizures of chronic PTZ administration in

rats.

NBQX normalized WFA, tenascin-R, aggrecan and neurocan in mPFC

We further assessed the effects of NBQX on the PNNs in the medial prefrontal cortex (Fig 2A).

Rats exposed to NBQX produced a significant increase in the positive staining of WFA-labeled

neurons, which was reduced by chronic PTZ treatment (Fig 2B, p< 0.01). Two-way ANOVA

Table 2. NBQX decreased seizures induced by PTZ on latency to seizure (s), duration of the minor seizure onset (s), duration of the major seizure

onset (s), and scores for the severity of seizures in rats.

Group Saline Saline+NBQX PTZ PTZ+NBQX

N 8 8 8 8

Latency to seizure (s) 600 600 108.3±8.2* 178.6±15.2#

Duration of the minor seizure onset (s) 0 0 67.6±6.0* 37.0±5.6#

Duration of the major seizure onset (s) 0 0 122.0±10.3* 68.1±6.8#

Scores for the severity of seizures 0 0 4.5±0.27* 2.9±0.23#

* p<0.01, compared with saline group;
# p<0.01, compared with PTZ group.

doi:10.1371/journal.pone.0166672.t002
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analysis showed that significant effects of PTZ (F1,20 = 33.1, p< 0.001) and NBQX

(F1,20 = 9.6, p< 0.01), and a PTZ × NBQX interaction (F1,20 = 6.2, p< 0.05) on the WFA
positive stainings. We also measured the three important components of PNNs and found that

the reductions of tenascin-R (p< 0.01), aggrecan (p< 0.01) and neurocan (p< 0.01) in mPFC

of PTZ group were increased by NBQX treatment (Fig 2C–2E). The results suggest that the

anti-epileptic action of NBQX might be through prevention of the reduction of PNNs by

increasing the active components tenascin-R, aggrecan and neurocan.

The degradation of PNNs caused by ChABC in mPFC exacerbated

seizures

To further examine the regulatory role of PNNs in the development and treatment of epileptic

seizures, we used ChABC to degrade PNNs in the mPFC and subsequently measured the

behavioral patterns in PTZ-treated rats. ChABC microinjection into mPFC decreased PNNs

(WFA), and co-treatment with PTZ strengthened this decrease (Fig 3A and 3B). The behav-

ioral results showed that intra-mPFC injection of ChABC alone did induce the onset of sei-

zures with decreased latency to seizure (p< 0.01), increased duration of the minor (p< 0.01)

and major seizure onset (p< 0.01), and increased scores for the severity of seizures (p< 0.01)

in rats (Table 3). Moreover, when ChABC and PTZ were treated simultaneously to one rat, the

onset of seizures was more serious than those two drugs were used alone (Table 3). Two-way

ANOVA with the between-subjects factors PTZ (0 and 50 mg/kg) and ChABC (0 and 0.02 U)

revealed significant effects of PTZ (F1,28 = 78.1, p< 0.001) and ChABC (F1,28 = 23.1,

p< 0.001) on the latency to seizure and a PTZ × ChABC interaction (F1,28 = 6.5, p< 0.05). In

the duration of the minor seizure onset measurement, two-way ANOVA revealed significant

effects of PTZ (F1,28 = 31.8, p< 0.001) and ChABC (F1,28 = 18.2, p< 0.001), and a

PTZ × ChABC interaction (F1,28 = 7.4, p< 0.01). In consistent, two-way ANOVA revealed

significant effects of PTZ (F1,28 = 52.9, p< 0.001) and ChABC (F1,28 = 23.7, p< 0.001), and a

PTZ × ChABC interaction (F1,28 = 4.9, p< 0.05) on the duration of the major seizure onset.

Two-way ANOVA also showed significant effects of PTZ (F1,28 = 66.7, p< 0.001) and

ChABC (F1,28 = 51.8, p< 0.001), and a PTZ × ChABC interaction (F1,28 = 5.6, p< 0.05) on

the scores for the severity of seizures. These results revealed that degradation of PNNs in the

mPFC exacerbated the epileptic seizure induced by PTZ, suggesting that the dysfunction of

PNNs might be involved in the induction of epilepsy.

ChABC reversed the anti-epileptic effects of NBQX in PTZ-induced

seizures

We next examined the potential of degradation of PNNs on the anti-epileptic effects of NBQX

in PTZ-induced seizures. ChABC, NBQX and their vehicles were injected into four groups of

Table 3. ChABC exacerbated the epileptic seizure induced by PTZ.

Group Saline+penicillinase Saline+ChABC PTZ+penicillinase PTZ+ChABC

N 8 8 8 8

Latency to seizure (s) 600 506.9±25.4* 110.5±6.1* 70.1±9.5#

Duration of the minor seizure onset (s) 0 8.5±1.5* 63.9±5.4* 84.0±3.6#

Duration of the major seizure onset (s) 0 18.4±2.8* 123.6±10.1* 167.6±7.4#

Scores for the severity of seizures 0 1.6±0.26* 4.1±0.22* 5#

* p<0.01, compared with saline group;
# p<0.01, compared with PTZ group.

doi:10.1371/journal.pone.0166672.t003
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rats after receiving PTZ treatment. Two-way ANOVA with the between-subjects factors

NBQX (0 and 20 mg/kg) and ChABC (0 and 0.02 U) revealed significant effects of NBQX

(F1,28 = 30.3, p< 0.001) and ChABC (F1,28 = 14.2, p< 0.01) on the latency to seizure and a

NBQX × ChABC interaction (F1,28 = 6.7, p< 0.05). In the duration of the minor seizure onset

measurement, two-way ANOVA revealed significant effects of NBQX (F1,28 = 47.9,

p< 0.001) and ChABC (F1,28 = 29.5, p< 0.001), and a NBQX × ChABC interaction

(F1,28 = 7.1, p< 0.01). In consistent, two-way ANOVA revealed significant effects of NBQX

(F1,28 = 16.6, p< 0.001) and ChABC (F1,28 = 8.3, p< 0.001), and a NBQX × ChABC interac-

tion (F1,28 = 5.6, p< 0.05) on the duration of the major seizure onset. Two-way ANOVA also

showed significant effects of NBQX (F1,28 = 20.8, p< 0.001) and ChABC (F1,28 = 10.6,

p< 0.01), and a NBQX × ChABC interaction (F1,28 = 5.1, p< 0.05) on the scores for the

severity of seizures. NBQX significantly increased the latency to seizures, and decreased the

duration of the minor seizure onset, the duration of the major seizure onset, and the scores for

the severity of seizures (Table 4). However, ChABC blocked the anti-epileptic effects of NBQX

in PTZ-induced seizures, suggesting that normalization of PNNs in the medial prefrontal cor-

tex might underlie the therapeutic action of NBQX.

Discussion

The present study showed that chronic PTZ treatment induced significant changes of seizures

in rats by reducing PNNs (WFA) numbers, and the components tenascin-R, aggrecan and

neurocan in mPFC. However, AMPA receptor antagonist NBQX decreased the onset of sei-

zures through increasing PNNS in mPFC. Moreover, degradation of PNNs by ChABC in

mPFC exacerbated seizures and reversed the anti-epileptic effects of NBQX in PTZ-treated

rats. Thus, the present findings demonstrate the regulatory role of PNNs in mPFC on the

development and treatment of epilepsy. The deficits of PNNs measured by reduced WFA
numbers and decreased tenascin-R, aggrecan and neurocan protein levels might be related to

the pathophysiology of epilepsy induced by PTZ.

The critical roles of the AMPA receptors in epileptic seizures and anti-epileptic treatment

have been previously demonstrated [36,37]. Several selective AMPA receptor antagonists were

demonstrated to have broad spectrum anticonvulsant activity in sound-induced seizures in

rats and in amygdala-kindled rats [38,39]. Similarly, a decrease of phosphorylated AMPA

glutamate receptor subunit (GluA1) was found in the dorsal hippocampus of rats after chronic

pilocarpine treatment [40]. In addition, AMPA receptor antagonists were widely found to be

safe and effective in patients with partial-onset seizures [41], raising a possibility that AMPA

receptor can be a novel target for epilepsy therapy. NBQX, a potent and selective AMPA recep-

tor antagonist, produced effective anticonvulsant protection against sound-induced seizures in

Table 4. ChABC reversed the anti-epileptic effects of NBQX in PTZ-induced seizures.

Group Vehicle+penicillinase Vehicle+ChABC NBQX+penicillinase NBQX+ChABC

N 8 8 8 8

Latency to seizure (s) 109.3±6.3 98.1±4.3 184.6±14.8* 125.4±8.3#

Duration of the minor seizure onset (s) 62.6±4.8 79.1±1.4* 37.6±3.4* 57.6±3.0#

Duration of the major seizure onset (s) 121.0±8.7 133.9±8.2 78.9±7.7* 111.5±6.9#

Scores for the severity of seizures 4.3±0.16 4.6±0.18 3.1±0.23* 4.0±0.19#

* p<0.01, compared with saline group;
# p<0.01, compared with PTZ group.

doi:10.1371/journal.pone.0166672.t004
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mice [42]. Furthermore, systematic administration with NBQX at the dose of 10–40 mg/kg

exhibited strong antiepileptogenic and anticonvulsant actions on kindling in rats [43]. In the

present study, we used PTZ to induce chronic epileptic seizures in rats and found that NBQX

effectively reversed the behavioral abnormality of epileptic seizures. However, NBQX (40 mg/

kg, ip) effectively increased latency to seizures, decreased duration of the minor and major sei-

zure onset, and reduced scores for the severity of seizures in rats. AMPA receptors, located at

excitatory synapses, are involved in the initiation and synchronization of epileptic discharges

by excitatory neurons [44]. Therefore, selective blockade of AMPA receptor-related glutama-

tergic neurotransmission may inhibit neuronal excitability and produce antiepileptic proper-

ties in chronic epilepsy.

PNNs inhibit structural rearrangements at synapses, and consequently contribute to the

maintenance of neuronal networks [19,45]. PNN-expressing perisomatic interneurons also

express AMPA receptors with specific subunits. The excitatory postsynaptic currents (EPSC)

are extremely fast and are mediated by AMPA receptors, thus enabling interneurons to detect

and shape synchronous activity of principal cells [46]. It has been evidenced that the charge of

the synaptic membrane shapes the AMPAR-mediated current by influencing the clearance of

the negatively charged glutamate from the synapse [47]. The structural and molecular organi-

zation of PNNs is heterogeneous and depends on the neuronal cell types consisting of tenas-

cin-R, aggrecan and neurocan that enwraps the perikaryon of several neurons [48,49]. PNNs

dysfunction has been implicated in several neuropsychiatric disorders, including epilepsy

[50,51]. Brain-specific CSPG includs aggrecan and neurocan in the developing and mature rat

brain and has been demonstrated to control axonal extension or regeneration via inhibition of

neuronal cell migration and neurite extension from surviving neurons [52–54]. Tenascin-R, a

member of the tenascin gene family of extracellular matrix proteins, is synthesized by oligo-

dendrocytes with high expression levels during the period of active myelination [55]. It has

been demonstrated that tenascin-R is associated with an episode of pilocarpine-induced status

epilepticus through modulation of mossy fiber sprouting and astrogliosis [54,56]. Further-

more, systemic administration of kainic acid (KA) caused changes in neurocan leading to neu-

ronal degeneration in the limbic structures [51]. We found that PTZ destroyed PNNs in

mPFC with epileptic behaviors, while NBQX increased PNNs (WFA), tenascin-R, aggrecan

and neurocan and exerted anti-epileptic effects. Our results confirmed previous evidence that

prolonged changes in tenascin-R and neurocan in the remodeling of neuronal networks are

related to establishment or enhancement of epileptogenesis. This data revealed a relationship

between PNNs and epilepsy, and suggested that modulation of PNNs in critical brain region

will provide novel therapeutic approaches for epilepsy.

A recent investigation suggested that chondroitin sulfate-degrading enzyme ChABC

enhanced the lateral mobility of the AMPA receptor, and consequently promote short-term

synaptic plasticity [57]. ChABC may degrade various PNNs components, and consequently

destroy the PNNs structure. In the current study, pretreatment with ChABC blocked the anti-

epileptic effects of NBQX in PTZ-induced seizures, suggesting that normalization of PNNs in

mPFC might underlie the therapeutic action of AMPA receptor antagonist NBQX. Further

study is needed to evaluate the effect of upregulation of PNNs in the mPFC on the epilepsy

induced by PTZ and on the treatment benefits of NBQX. The finding that the fast movements

of AMPA receptors are involved in the modulation of synaptic transmission suggests that

AMPAR mobility regulates the availability of naive receptors for synapses. Previous studies

showed that removal of the PNNs leads to an increase of AMPAR exchange between extrasy-

naptic and synaptic sites, and may modulate synaptic properties [57]. Our results revealed that

chronic epilepsy induced a reduction of components of PNNs, tenascin-R, aggrecan and neu-

rocan in mPFC, while AMPA receptor antagonist NBQX increased the levels of these proteins,
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suggesting that PNNs might be essential for the functionality of synaptic transmission. Thus,

future studies targeting at PNNs can shed light on development of novel antiepileptic drugs

with good efficacy and acceptable tolerability for therapy in epilepsy.

Conclusion

In summary, the present data showed that AMPA receptor antagonist NBQX decreased the

onset of epileptic seizures induced by PTZ through regulation of PNNs in the medial prefron-

tal cortex. Degradation of PNNs caused by ChABC in mPFC not only exacerbated seizures but

also reversed the anti-epileptic effect of NBQX in PTZ-treated rats. These findings therefore

revealed that PNNs in the medial prefrontal cortex is related to the anti-epileptic effect of

NBQX and enhancement of PNNs may be effective for the treatment of epilepsy.
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