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Introduction
“Disseminated intravascular coagulation (DIC) is an acquired syndrome character-
ized by the intravascular activation of coagulation with loss of localization and arising 
from different causes. It can originate from and cause damage to the microvasculature, 
which if sufficiently severe, can produce organ dysfunction” (defined by the International 
Society on Thrombosis and Haemostasis, ISTH) [1]. DIC is often regarded as a serious, 
life-threatening and complex clinical condition [2, 3], which is elicited by malignancies, 
serious infections, trauma, obstetric diseases, liver diseases, etc. [4]. Mortality is remark-
able to increase in patients who develop DIC, and the risk of death is doubled in criti-
cally ill patients [5].

The diagnostic criteria, the DIC score (by ISTH scoring system) is widely used in clini-
cal practice [6], similar scoring algorithms have been developed and widely evaluated 
in various countries, like the Japanese Ministry of Health and Welfare (JMHW) and 
Japanese Association for  Acute Medicine (JAAM) [7]. However, no single clinical or 
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laboratory test has adequate sensitivity and specificity to confirm or reject a diagnosis 
of DIC [3]. Because of the poor prognosis of DIC, it is necessary to identify its potential 
risk factors. The diagnosis and treatment of DIC are therefore important and an early 
diagnosis of DIC as pre-DIC may help improve patient survival. Therefore, it is clinically 
important to identify high-risk patients with DIC promptly and perform the appropriate 
intervention.

Recently, artificial intelligence has been widely applied to the prediction of various 
clinical events and including DIC. For example, Yoon et al. [8] exploited several machine 
learning approaches including logistic regression, linear regression, ridge regression, 
random forest, and gradient boosting machine to diagnose DIC and prove that machine 
learning (ML) could optimize the use of clinical parameters for DIC diagnosis. Hasegawa 
et  al. [9] used ML techniques to evaluate predictive accuracies of ML (support vector 
machine, random forest, and neural network) and conventional approaches (logistic 
regression) for the progression of coagulopathy in septic patients. It is unearthed in our 
study that a convolutional neural network (CNN) can provide robust long-term fore-
casting results in the time-series analysis due to its capability of essential feature learn-
ing, distortion invariance, and temporal dependence learning [10].

However, applying CNN to the prediction of DIC based on the densely collected clini-
cal data, especially with the visual interpretation of reasons underlying the prediction 
results has been scarcely investigated. In this study, we developed CNN to predict the 
risk of DIC in ICU patients using readily available data from electronic health record 
(EHR). In addition, Gradient-weighted Class Activation Mapping (Grad-CAM) [11] 
technique was used to improve the interpretability of the model and to obtain a heat 
map of the input features.

Materials and methods
Data sources

The study cohort included ICU patients from West China Hospital of Sichuan University 
between January 1, 2019, and January 1, 2022. West China Hospital is a 4300-bed aca-
demic hospital in Southwest China and one of the largest hospitals in China. All patient 
data were obtained from the EHR of the hospital.

Data selection

As patients with DIC were the target cohort of this study, we included all the patients 
who had more than 18 years old and had at least one ICU stay. The diagnosis of DIC 
(D65) was defined according to the International Classification of Diseases-Tenth Revi-
sion (ICD-10) code. Patients with multiple ICU admissions, a hospital stay of ≤ 1 day, 
or missing data by more than 30% [12] was excluded. The patient selection process was 
shown in Fig. 1.

Feature matrix construction

We extracted 136 features to predict future ICD based on the EHR, including labora-
tory test values, demographic characteristics, and clinical events. SQL Server data-
base software and python data preprocessing packages [13–17] were used to sort out 
the patient time series data matrix. According to the time since the patient entered 
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the ICU, the maximum length of the time series is 953 time steps and the matrix is 
953 * 136 [18] (Fig. 2). The data were randomly divided into a training dataset, valida-
tion dataset and test dataset in a ratio of 7:2:1.

Missing data and filling

In time series analysis, missing data is a very common problem in time series [19]. 
Considering the limitations of traditional missing data imputation methods and the 
reality of missing data in this study, we adopted the forward imputation method [20] 
and random forest imputation [21].

Analysis platform

The current general-purpose deep learning framework PyTorch is used to build pre-
dictive models. Every aspect of PyTorch is a normal Python program under the full 
control of the user [22].

The predictive model was built on a personal desktop computers (operating system: 
windows 11; central processing unit: 12th Gen Intel(R) Core(TM) i7-12700F; random 
access memory 32 G; graphics processing unit: NVDIA GeForce RTX3060Ti).

Fig. 1  The patients’ selection process
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Artificial intelligence models

XGBoost model

XGBoost (Extreme Gradient Boosting) is a scalable machine learning system for 
tree boosting [21]. It is adept at handling classification and regression tasks. Opti-
mizing the value of the objective function is the core of the algorithm. XGBoost has 
the advantages of full-scene scalability, speed and performance [23]. Based on the 
python toolkit (XGBoost Documentation- XGBoost 1.6.1 documentation), we built 
the XGBoost model. The two-dimensional time series matrix is processed into one-
dimensional data into the input model for classification and recognition, where the 
parameters are set to n_estimators = 50; max_depth = 5; learning_rate = 0.01.

Fig. 2  Construction of the feature matrix. (PLT: Platelet, TT: Thrombin time, FIB: fibrinogen, AT-III: Antithrombin 
III)
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LSTM model

Long short-term memory neural network (LSTM) was developed by Hochreiter and 
Schmidhuber [24]. It can capture long and short dependencies in time series and is not 
affected by gradient disappearance [25]. LSTM also has feedback loops, but moreover, 
it uses a gating mechanism to delete or add information to the model state, and con-
trols model state update and change through the ‘forgetting gate’, ‘input gate’ and ‘output 
gate’ [26]. It is suitable for processing and predicting events with time series data [25]. 
We build a Pytorch-based LSTM time series model. The model consists of two layers of 
LSTMs, each of which consists of 128 hidden units. The binary cross-entropy was used 
as a loss function and the Adam optimizer was used together with a learning rate of 0.01 
(Fig. 3).

CNN model

CNN consists of three main neural layers, namely convolutional layers, pooling layers, 
and fully connected layers that can be stacked according to their functions. CNN make 
use of knowledge about specific input types rather than focusing on the entire problem 
domain. This facilitates to set up of simpler network architectures [27]. The advantage of 
CNN is that it minimizes the number of parameters, which greatly improves the perfor-
mance of the algorithm [28].

In this study, the CNN model adopts the convolution kernel size of 3 * 1 (Fig.  4), 
only abstracts the features in time series, and retains the feature map consistent with 
the model input features. This will help to improve the interpretability of models using 
Grad-CAM technology [10], as well as ensure that the resulting feature maps are con-
sistent with the input features. The maximum pooling layer is used to effectively reduce 
the size of the parameter matrix and adjust the number of channels and convolution ker-
nel size in the last convolution layer. The 1 * 1 convolution kernel [29] is used for dimen-
sionality reduction and aggregating across channels so that the model gets a feature map 
with the number of features * 1 dimension before entering the fully connected layer. It 
can be regarded as a feature of all indicators of the patient. Then the classification result 

Fig. 3  LSTM model
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was obtained by inputting the final fully connected layer. The binary cross-entropy was 
used as a loss function and the Adam optimizer was used together with a learning rate of 
0.01. The parameters are shown in Table 1.

Model visualization

Gradient-weighted Class Activation Mapping (Grad-CAM) is a visual interpretation 
technique for decisions from CNN-based models, making them more transparent [10]. 
It generates location maps using back-propagated gradients of specified class prediction 
scores to highlight important decision regions of the input matrix. Each feature was fed 
into the CNN model to generate a predicted score for a class, and the score was back-
propagated to the convolutional layer of the model to assign importance values to each 
input feature. In our study, Grad-CAM uses the gradient information flowing into the 
last convolutional layer (136 * 1) of the CNN to assign the importance of each feature 
(neuron) for the decision of interest. Using Grad-CAM, explain how predictive mod-
els identify patients with DIC, i.e., determine which features are more likely to trigger 
patients to develop DIC. The decision-making basis of the model is displayed in the form 
of a heat map.

Fig. 4  CNN model

Table 1  The CNN parameters

Layer Filters Size Stride Output

Conv1(convolution  + BatchNorm + ReLu 16 (3,1) (2,1) 16 * 476 * 136

Conv2(convolution  + BatchNorm + ReLu 32 (3,1) (2,1) 32 * 237 * 136

Conv3(convolution  + BatchNorm + ReLu 64 (3,1) (2,1) 64 * 118 * 136

Maxpool (118,1) 64 * 1 * 136

Conv4(convolution  + ReLu) 1 (1,1) (1,1) 1 * 1 * 136

Fully-connected layer – – – 136

Output layer – – – 2
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The term LCgrad−CAMR
u×v of width u and height v was used to distinguish between DIC 

and Non-DIC patients. The score gradient was first calculated for class c and yc (before 
SoftMax), with respect to feature maps Ak in the final convolutional layer. These gradi-
ents were global average pooled to obtain neuron importance weights ack:

representing the importance of a feature map k in a target class c. A weighted combina-
tion of forwarding activation maps was then performed, followed by a ReLU, to obtain 
the final heat map:

In a deep network, heat maps can be used to visualize any area that contributes to clas-
sification results, thereby increasing interpretability, as was the case in this study.

Statistics

Categorical variables are presented as counts and percentages, and continuous variables 
are presented as mean and standard deviation (SD). Comparisons between groups were 
performed by 2-tailed t-test for continuous variables and chi-square test for categorical 
variables. All statistical analyses were performed in the python package SciPy (SciPy) 
[30]. The statistical significance was considered as P < 0.05.

Results
Patient characteristics

The cohort included 6631 ICU patients, of whom 1539 patients (23.2%) developed DIC. 
There were more males than females in this cohort (DIC: 60.0% male vs 40.0% female; 
Non-DIC: 60.2% male vs 39.8% female). The mean age of DIC patients and Non-DIC 
patients was 52.6 and 51.3 years old, and BMI was 21.88 and 22.79, respectively. There 
was no statistical significance (P > 0.05). The basic demographic characteristics of the 
cohort was shown in Table 2.
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Table 2  Base characteristics of the included patients

*Chi-square test

Variables (mean ± SD) DIC Non-DIC P

Sex > 0.05*

 Male 923 (60.0%) 3069 (60.2%)

 Female 616 (40.0%) 2023 (39.8%)

Age (years) 52.60 ± 21.24 51.35 ± 23.25 > 0.05

BMI 21.88 ± 4.49 22.79 ± 4.35 > 0.05

Surgery 842 4443 < 0.001

Ventilator use 684 718 < 0.001

ICU stay 10.76 (13.20) 5.77 (11.33) < 0.001
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Model performance

For the CNN model, the Loss value decreases gradually with epoch and stabilizes at 35 
epochs, and the accuracy reaches 95% on both the training and validation sets (Fig. 5).

Figure 6 shows the area under the receiver operating characteristic (AUROC) curves 
for these predictive models. Among the three models, the CNN model showed the best 
area under the curve (AUC) (0.986), accuracy (95.7%) and F1 (0.935), which was statisti-
cally significant with XGBoost (P < 0.01) (Table 3).

Model interpretation

To understand the contribution of features to the model predictions, Grad-CAM was 
used to interpret the CNN predictions, as shown in Fig.  7. Figure  7a showed the 136 
features of the input model (Additional file 1); Figure 7b showed the activation features 
on all samples in the CNN model. Grad-CAM analysis identified that the top ten fea-
tures for DIC prediction were CK (creatine kinase), GLU (glucose), AST (aspartate ami-
notransferase), NRBC-rate (nucleated red blood cells rate), NRBC, IG-rate (immature 
granulocyte rate), ALP (Alpha-fetoprotein), β-HB (β hydroxybutyric acid), BPC-imped-
ance (blood platelet count), IG (immature granulocyte). The higher the value of Grad-
CAM, the higher the risk of model output (increased risk of DIC).

Figure 8 showed an example of real-time sequential prediction using the CNN model 
on different patients (chronic kidney disease, liver abscess, sepsis, type 2 diabetes keto-
sis). With data from each time point after a patient enters the ICU, the model provides 
a real-time assessment of the risk and uncertainty of future DIC episodes. This demon-
strates that the model can detect DIC up to 12 h in advance, which is important for clini-
cians to take preventive action before an event occurs.

Discussion and conclusions
DIC represents the end-stage of different coagulation disorders. It is a complex syn-
drome involving the dysfunction of multiple physiological systems and processes. The 
characteristics of the multiple coagulopathies described may differ considerably depend-
ing on the pathophysiology and time in the disease course.

In our study, DL and ML algorithms were used to perform early prediction of DIC. The 
patient’s temporal data during ICU is processed into a two-dimensional matrix, and a 
convolutional network is used to convolve the temporal sequences on each dimensional 

Fig. 5  Loss and accuracy curve for the CNN model
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feature. This can also be seen as combining features from different temporal points or 
convolving the receptive field of the kernel to perform feature abstraction over the tem-
poral sequence. In addition, the data size and model complexity in our study are not 
high, and both RNN and CNN networks can obtain good classification performance for 
such a size study. The results show that the development of models to identify patients 

Table 3  Comparison of prediction performance among the three models

Model XGBoost LSTM CNN P (XGboost 
vs. LSTM)

P (XGboost 
vs. CNN)

P (CNN vs. LSTM)

AUC​ 0.851 (0.035) 0.983 (0.022) 0.986 (0.018) < 0.001 < 0.001 > 0.05

Accuracy 82.03% (1.63%) 95.13% (0.69%) 95.68% (0.71%) < 0.001 < 0.001 > 0.05

F1-score 0.771 (0.058) 0.915 (0.061) 0.935 (0.044) < 0.001 < 0.001 0.0197

Fig. 7  Input feature and heat map
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who are at high risk of developing DIC early in ICU patients is clinically important to 
predict the prognosis. The results might be explained by the time window for the anti-
coagulant therapy [31], since the use of anticoagulation at an early stage may be most 
effective [32, 33]. Early diagnosis of DIC is important for the restoration of coagulation 
abnormalities and patient survival [34]. Thus, the prediction of coagulopathy develop-
ment is clinically important for the proper selection of patients and anticoagulation time 
window.

In order to facilitate clinical application and help clinicians to understand, CNN mod-
els are visualized. Combined with Grad-CAM technology, the important features that 
affect decision-making are displayed in the heat maps [35]. The CNN model not only 
explains the decision-making process of deep learning models but also provides visuali-
zation of the feature selection process.

Since DIC is an acquired syndrome, various underlying causes may influence the clinical 
manifestations of DIC and may produce different accents on the laboratory findings [36, 

Fig. 8  Heat map of different diseases
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37]. A group-level activation heat map was obtained by Grad-CAM, and some differences 
in activators of DIC induced by different diseases could be found (Fig.  8). Although the 
findings demonstrate good performance and accuracy of the CNN prediction model, it still 
needs multi-centre validation before it can be used in clinical practice.

However, our study also has some limitations. First, this model was developed at a single 
center, which reduces effectiveness and may require retraining when applying the model to 
other hospitals. Secondly, the results of different DIC risk predictions are often difficult to 
compare due to their different data sources, inconsistent data inclusion criteria, and differ-
ences in data types. In addition, the study was retrospective and requires further validation 
in prospective clinical studies. In future studies, more variables such as medications [38] 
and protein sequences [39] will be used in early prediction models for DIC.

In the study, we propose a CNN Grad-CAM model for the early prediction of DIC. 
The model uses Grad-CAM technology to visualize and interpret the prediction results. 
It provides a faithful visual explanation of the decisions of the DIC prediction model. 
Further studies should conduct external validation of the model to ensure its suitability 
for clinical application.
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