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Abstract A major challenge in experimental data analysis
is the validation of analytical methods in a fully controlled
scenario where the justification of the interpretation can
be made directly and not just by plausibility. In some sci-
ences, this could be a mathematical proof, yet biological
systems usually do not satisfy assumptions of mathematical
theorems. One solution is to use simulations of realis-
tic models to generate ground truth data. In neuroscience,
creating such data requires plausible models of neural activ-
ity, access to high performance computers, expertise and
time to prepare and run the simulations, and to process
the output. To facilitate such validation tests of analytical
methods we provide rich data sets including intracellular
voltage traces, transmembrane currents, morphologies, and
spike times. Moreover, these data can be used to study
the effects of different tissue models on the measurement.
The data were generated using the largest publicly avail-
able multicompartmental model of thalamocortical network
(Traub et al., Journal of Neurophysiology, 93(4), 2194—
2232 2005), with activity evoked by different thalamic
stimuli.
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Introduction

The complexity of experimental protocols in neuroscience
grows with technology. This enables more voluminous data
collection and their analysis requires increasingly sophisti-
cated approaches. Such methods of analysis remain specu-
lative unless tested properly. Striving to extract knowledge
from experimental data we are often forced to apply analytic
methods beyond their proven applicability domains. For
example, consider multielectrode recordings of extracellular
electric potential which is a common method to inves-
tigate brain activity. Accurate interpretation of recorded
signals is a challenging task, due to the complex rela-
tionship between electric field and the neuronal activity.
The high frequency component of the extracellular signal
is dominated by the spiking activity of neurons near the
recording electrodes (multiunit activity, MUA), while the
low frequency part! (LFP) is believed to reflect mainly post-
synaptic activity, although other non-synaptic events such as
action potentials, calcium spikes, or glial activity, also affect
this signal (Buzséki et al. 2012).

In the analysis of extracellular potentials we may wish
to use signal decomposition methods, such as principal or
independent component analysis for signals coming from
coupled neural populations (Di et al. 1990; Eeski et al. 2010;
Makarov et al. 2010), or other more complex methods which
take into account the physiology, such as laminar population

'LFP came about as the acronym of ’local field potential’, which, as
we know today, is a misnomer. It was shown by many (see Buzsaki
et al. 2012; Einevoll et al. 2013 for an overview) including us Leski
et al. (2007) and Hunt et al. (2011) that due to the long-range nature
of the electric field the same sources are visible in the rat’s brain on
distances of the order of the whole brain, which makes LFP a very
non-local quantity. This is why we suggest to drop the name local
field potential and read LFP as ’low frequency part’ of extracellular
potential, which is the definition of LFP.
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analysis (LPA) (Einevoll et al. 2007; Glabska et al. 2016).
We may wish to localize the neural activity through recon-
struction of current sources from the LFPs (Mitzdorf 1985;
Pettersen et al. 2006; Leski et al. 2007, 2011; Potworowski
et al. 2012), or combine different methods in more com-
plex protocols (Leski et al. 2010; Giabska et al. 2014), and
SO on.

The results of such an analysis of experimental data
might be consistent with our expectations, common sense,
and literature. But how can we be sure that they are not acci-
dental? They may be a consequence of fortuitous selection
of a problem where a confluence of factors makes our analy-
sis plausible even though, in fact, it is incorrect. Or how can
we tell which method gives the best results, for example, in
spike sorting (Einevoll et al. 2012) or CSD analysis (W6jcik
2015)? To answer these questions we must properly validate
the methods of analysis before their application to the data
of interest (Denker et al. 2013). In mathematics we prove
the applicability of a technique, however, in real world sit-
uations this is usually not feasible. We believe the correct
approach is to use simulated ground truth data with mod-
els as close as possible to the systems being studied and
including the models of measurement.

By saying ground truth data we imply that we have
access to the complete state of the system for any simulated
moment, that is, we can access any variable, such as mem-
brane potential, transmembrane current passing through any
channel type, complete set of spike times, etc. In neuro-
science, so far, ground truth data were mostly considered
in the context of spike sorting (Harris et al. 2000; Quian
Quiroga et al. 2004; Gold et al. 2007). There one typically
considers benchmark data consisting of a set of simulated or
recorded extracellular potentials accompanied by indepen-
dent information on spike trains, coming from a simulation
or from an independent, more direct recording, such as
intracellular or juxtacellular (Rossant et al. 2016; Neto et al.
2016). For a broader discussion of ground truth data in
validation of spike sorting methods, calcium imaging, LFP
and CSD data analysis, as well as for related concepts,
see Denker et al. (2013).

If we require validation of every analytic protocol with
the ground truth data we are faced with the task of building
complex network models for systems of interest combined
with models of different experimental modalities. Modeling
the measurement has been a factor largely ignored in the lit-
erature, yet the fact that we are forced to make inference
on the behavior of thousands or millions of cells from tens
of extracellular potential recordings, in our view, requires
building testable links through complex models between
the system’s activity and its measurement. We may believe
in population (field) models providing adequate representa-
tions of measurement but then again, how do we verify this
postulate in the first place?
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In practice, to model the extracellular potential or
other measurement modalities using complex compartmen-
tal models we have two basic approaches. We may specify
the model, define electrode positions, and compute the
potential on the fly. This is the usual approach used, for
example, by Gold et al. (2006), Lindén et al. (2013), and
Parasuram et al. (2016). The advantage is that one avoids
extensive storage of compartmental data. The disadvantage
is that if we need the potential at a new point we must repeat
the whole simulation, which may be difficult if we run a
complex network where each simulation takes hours of run-
time. An alternative, which we follow here, is to record the
complete state of the whole system throughout the duration
of the simulation. The disadvantage is that of large storage
demands, however, we can use such data post hoc to com-
pute multiple measurement modalities, test different models
of field propagation in tissue, etc, without the need to repeat
the simulation. Especially if one wants to use such data as
ground truth for validation of methods of data analysis from
arbitrary multielectrode setups, clearly, one cannot a priori
specify all possible setups. We thus believe that for this kind
of applications the approach we advocate here is superior, or
at least, a useful alternative. For such data to be truly useful
they must be publicly available, well documented, citable,
and easily accessible.

Generating ground truth data requires significant mod-
eling experience, time to prepare, run and document the
simulation, and access to high performance computers. This
whole exercise is often impractical for someone who would
just want to validate applicability of a specific method
of data analysis and apply it to her experimental data.
To facilitate validation and comparisons of different meth-
ods of data analysis here we present a collection of data
generated using a thalamocortical network model based
on Traub et al. (2005), which is the most comprehensive
publicly available model of early sensory systems avail-
able at the time of writing. The data provided here were
used to test a combination of kernel Current Source Density
method with Independent Component Analysis (Glabska
et al. 2014), to study the propagation of electric fields in a
cortical slice (Ness et al. 2015), and to validate the gener-
alized Laminar Population Analysis method (Glabska et al.
2016). The data provided here include intracellular voltage
traces, transmembrane currents, spike times, and morpholo-
gies, which can be used to calculate different measurement
modalities. We also provide a collection of scripts to to
compute the extracellular potential at arbitrary electrode
positions. We intend these data to serve as a proxy for
experimental ground truth data and as benchmarks for vali-
dation and comparisons of different methods of neural data
analysis.

These datasets are provided in the Neuroscience Sim-
ulation Data Format (NSDF) (Ray et al. 2016). NSDF
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is an Hierarchical Data Format version 5 (HDF5) sub-
specification (The HDF Group 1997), providing specific
internal organization for neural simulations. We believe
that providing data in a standardized format will further
aid its scientific merit, as visualization tools and analytic
methods can assume a common interface facilitating their
generalization.

Methods
Thalamocortical Column Model

The data provided here were generated with a network
model of a single cortical column receiving inputs from tha-
lamic neurons based on the work by Traub et al. (2005).
The model consists of 3560 multicompartment neurons
in fourteen populations: twelve cortical populations from
four cortical layers, and two thalamic neuron populations.
The structure of the model is described in Table 1, see
also Traub et al. (2005) and Gtabska et al. (2014). The orig-
inal model was tuned to experimental data from the rat’s
auditory cortex (in vitro) and the barrel cortex (in vivo)
and provided in IBM Fortran (ModelDB, accession num-
ber 45539). To simulate extracellular potentials, where the
placement of neural morphology in space is meaningful,
we combined the versions in NEURON (ModelDB, acces-
sion number 82894) which was well parallelized, and the
NeuroML version (ModelDB, accession number 127353)
from which we took the 3D shapes of neurons. In defining

the multi-compartmental models, we retained the speci-
fication from the NEURON version, where each section
consisted of exactly one segment. Finally, we added mech-
anisms in every segment of every cell to facilitate tracking
of the transmembrane currents which are essential to com-
pute the extracellular potentials and made the necessary
modifications to store these data on an IBM Blue Gene Q.

The axonal gap junctions from the original Fortran model
were turned off for two reasons. First, the NEURON imple-
mentation of the Traub’s model was not tested sufficiently
with gap junctions which could have been a consequence
of significantly greater simulation times. Second, we were
unable to use active gap junctions in the variable time step
simulations which are necessary for precise computation
transmembrane currents when using NEURON 7.1 and 7.2
versions on an IBM Blue Gene Q.

Spatial Organization of the Network

The contribution to the extracellular potential from a cur-
rent source is proportional to its amplitude and inversely
proportional to the distance between the source and the elec-
trode. Therefore, the spatial organization of the sources, in
this case the positions of all the segments, is essential to
compute the extracellular potentials. In the previous ver-
sions of the Traub’s model (ModelDB, accession numbers
45539, 82894, 127353), the spatial location of neurons was
not specified. To allow computation of extracellular poten-
tial we placed the cells so that somas of a given population
were distributed uniformly in cylinders of diameter 400 um

Table 1 Cell types used in the model, abbreviation used in the datafiles, numbers of sections per cell and numbers of cells per population for the

full model, and the positions of their somas

Soma location  Population

Abbreviation  Sections per cell

Cells per population Soma position (@ m)

pyramidal regular spiking pyrRS23 74 1000
pyramidal fast rythmic bursting pyrFRB23 74 50

Layer 2/3 superficial interneurons basket bask23 59 90 0-400
superficial interneurons axoaxonic axax23 59 90
superficial interneurons low threshold spiking LTS23 59 90

Layer 4 spiny stellate spinstel4 59 240 400-700
pyramidal tufted intrinsic bursting tuftIBS 61 800

Layer 5 pyramidal tufted regular spiking tuftRSS 61 200 700-1200
deep interneurons basket bask56 59 100

Layer 5/6 deep interneurons axoaxonic axax56 59 100 700-1700
deep interneurons low threshold spiking LTS56 59 100

Layer 6 pyramidal nontufted regular spiking nontuftRS6 50 500 1200-1700

Thalamus thalamocortical relay TCR 139 100

Thalamus nucleus reticularis nRT 59 100 4900-5200

Note that in this model there is one segment per section. In most of the datasets (1-23 of Table 2), all the above 3560 cells were used. In some
datasets (2428 of Table 2), only 10 % of the cells from each population were used
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and height corresponding to the vertical extent of the layers
as described in Table 1.

Simulations

The simulations were carried out with the NEURON simu-
lator (Hines and Carnevale 1997) version 7.2 on a Blue Gene
Q computer utilizing 512 cores. Random ectopic axonal
action potentials were turned on Traub et al. (2005).

To achieve high precision of computation (monitored by
tracking the sum of all the currents) we used the variable
time step integration implemented with CVODE (Cohen
and Hindmarsh 1996) in NEURON. The values thus

Table 2 An overview of the datasets provided

obtained at variable time steps were linearly interpolated
with a NEURON function with 0.1 ms time step and saved.
In several datasets we used one tenth (in terms of the num-
ber of cells) of the model, henceforth referred to as the small
model, to decrease the size of the data accumulated.

To bring layer 5 and layer 6 pyramidal cells to fire we
injected a constant depolarization current of amplitude 1 nA
(or 0.5 nA for the small model) to the layer 5 pyramidal cell
somas and 0.75 nA (or 0.375 nA for the small model) to
the layer 6 pyramidal cell somas (Table 3, Datasets 1-8, 17—
28). Without such a depolarization these cells would remain
silent even after prominent input. These values were con-
sistent with the default NEURON version of this model and

No. Simulation type

Size (%) Stop (ms) Stim. delay (ms) Stim. duration (ms) Depol pop5 (nA) Depol pop6 (nA)

1 Oscillations 200Hz 100 700 100
2 Oescillations 100Hz 100 700 100
3 Oescillations 50Hz 100 700 100
4 Oscillations 25Hz 100 700 100
5  Oscillations 12.5Hz 100 690 100
6  Oscillations 8Hz 100 700 100
7  Oscillations 4Hz 100 700 100
8  Oscillations 2Hz 100 700 100
9  Oscillations 200Hz no depol 100 700 100
10 Oscillations 100Hz no depol 100 700 100
11 Oscillations 50Hz no depol 100 700 100
12 Oscillations 25Hz no depol 100 700 100
13 Oscillations 12.5Hz no depol 100 700 100
14 Oscillations 8Hz no depol 100 700 100
15 Oscillations 4Hz no depol 100 700 100
16  Oscillations 2Hz no depol 100 700 100
17 Oscillations 12.5Hz input pop23 100 700 100
18  Oscillations 12.5Hz input pop4 100 700 100
19  Oscillations 12.5Hz input pop5 100 700 100
20  Oscillations 12.5Hz input pop6 100 700 100
21  Oscillations 12.5Hz no input 100 700 100
22 Oscillations 12.5Hz input 20 % of TCR 100 700 100
23 Pulse stimulus 100 210 70

24 Pulse stimulus 10 % model 10 600 300
25  Pulse stimulus passive current 10 600 300
26 Pulse stimulus passive soma & axon 10 600 300
27  Pulse stimulus passive axon 10 600 300
28  Pulse stimulus blocked Na current 10 600 300

600 1 0.75
600 1 0.75
600 1 0.75
600 1 0.75
600 1 0.75
600 1 0.75
600 1 0.75
600 1 0.75
600 0 0

600 0 0

600 0 0

600 0 0

600 0 0

600 0 0

600 0 0

600 0 0

600 1 0.75
600 1 0.75
600 1 0.75
600 1 0.75
600 1 0.75
600 1 0.75
2 1 0.75
2 0.5 0.375
2 0.5 0.375
2 0.5 0.375
2 0.5 0.375
2 0.5 0.375

These are described in detail in Section “Datasets”. For all the datasets here, recordings begin at 0 ms. In the column Size, 100 % size corresponds
of 3560 cells and 10 % size to 356 cells. Next columns define: Stop — the end of the recordings as well as the end of the simulation; Stim. delay —
the beginning of the stimulus; Stim. duration — the duration of the stimulus. Depol pop5 — a constant depolarization current injection to layer 5
pyramidal cell somas to depolarize these cells to fire, and likewise Depol pop6 — a constant depolarization current injection to layer 6 pyramidal
cell somas, for them to fire. The following abbreviations are applicable here: depol — depolarization current injection, 7CR — thalamocortical
relay cells, pop23 — pyramidal cells in layer 2/3, pop4 — pyramidal cells in layer 4, pop5 — pyramidal cells in layer 5, pop6 — pyramidal cells

in layer 6, Na — Sodium

@ Springer
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correspond to the parameter awake set to 1. (or to 0.5 for
the small model). For comparison, we also provide datasets
without this current injection (Table 2, Datasets 9-16).

In addition to the transmembrane currents and the mem-
brane potentials from all the segments, we recorded spike
times of all the cells. In some simulations of the small model
we also recorded the contributions to the currents from dif-
ferent channel types (potassium, sodium, calcium) and other
sources (through synapses GABA A, NMDA and AMPA;
capacitive currents, passive currents). For details of channel
mechanisms included in specific cells consult the original
paper (Traub et al. 2005) and the provided code.

Stimuli

During the first 50 to 60 ms (in some cases even longer)
the network exhibits a transient turn-on behavior following
which the spiking activity settles down. We then stimu-
lated the network with two types of stimuli: 1) a sinusoidal
current injection to thalamocortical relay (TCR) cells (oscil-
lations), or 2) a short constant current injection to TCR
cells (pulse). The sinusoidal stimulus was used to study the
properties of the network and to increase the diversity of
the datasets, while the pulse stimulus emulates an evoked
response in the network, e.g. a response of the rodent bar-
rel cortex to deflection of a few whiskers. Further details are
provided in Section “Datasets”.

Transmembrane Currents

Following the Kirchoff’s current law, the sum of all trans-
membrane currents in a cell must be zero. However, this
does not hold true for contributions from individual channel
types. This makes analysis of such contributions challeng-
ing, nevertheless, there is some interest in such analysis
in the community (Reimann et al. 2013). To allow stud-
ies of contributions to extracellular potential from different
partial currents (passive, active, synaptic, etc.) we tracked
the capacitive and passive currents as well as the cur-
rents through every channel present in the Traub’s model
(sodium, potassium, calcium currents, NMDA, AMPA,
GABA A, anomalous rectifier currents, two types of low
threshold T type currents Traub 2003; Traub et al. 2005), as
well as steady bias and ectopic currents (Traub et al. 2005).

Calculation of Extracellular Potential

Our main goal with these simulations was to provide a col-
lection of datasets to validate different methods of analysis
of extracellular recordings (LFP, multi-unit activity, spike
trains). Since we cannot foresee specific arrangements of
electrodes needed, specific bands to filter signals, models
of field propagation, etc, we provide the recorded currents

with a Python script to compute the extracellular potential at
required positions. Figure 1 shows an example plot of extra-
cellular potential in 2D plane spanned by a regular grid of
16 x 20 electrodes placed 25 um away from the cylindri-
cal axis of the cortical column, as in a multielectrode array
(MEA), at 301 ms after the start of recorded simulation, i.e.,
just after the onset of stimulus.

The script can be easily modified to indicate arbitrary
electrode positions, use selected cortical cell populations,
or even select specific currents to compute their contribu-
tions to the simulated recordings. For example, one can
evaluate the contribution to the extracellular potential from
capacitive currents of all pyramidal cells, etc. In these
computations, we assume infinite homogeneous resistive
extracellular medium recorded by ideal point electrodes and
use the point source formula (Nunez and Srinivasan 2005):

1 5 Lo
px, 1) ="——) —,
4ro = |X — Xp|

ey

where N is the number of all the segments in the corti-
cal part model, /,, is the transmembrane current from the
n-th current source positioned at Xp, o is the extracellular
conductivity. We assumed o = 0.35/m. The point sources
were placed at the centers of every segment. This script is
provided only as a starting point for exploration. The users
may want to consider more complex models of extracel-
lular potential computation, such as the line source model
for LFP (Holt and Koch 1999), or more complex models
of tissue, such as a cortical slice in a multielectrode array
dish (Ness et al. 2015), or frequency dependence of field
propagation (Gomes et al. 2016), and the provided data
could still be used.

Sample Scripts Accompanying the Data

To show how to access the data we provide several exam-
ple scripts in the Github repository https://github.com/
Neuroinflab/Thalamocortical. In folder figures we pro-
vide scripts to generate the figures from this manuscript.
Here, in the folder analysis_ scripts we provide four
scripts performing several basic tasks. These scripts are spe-
cific to the presented data but they can be easily extended to
generic NSDF files.

Ifp_parameters.py Here you select the dataset to be used,
1D, 2D, or 3D geometry of electrode setups probing the
field generated by the cortical column, and the cell popula-
tions and the model size to be used for computing the LFP
in the next steps. The default parameters used by the rest of
the files are set here.

calc_Ifp.py Computes the extracellular potentials using the
transmembrane currents from the selected populations of

@ Springer
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Fig.1 Here we show simulated

Morphology and electrodes

Time=301.0 ms

2D multielectrode recording of
the extracellular potential
generated by the studied
network. On the left, the small
red diamonds represent the
electrode array (16 x 20) placed
25 pm away from the 0
cylindrical axis of the cortical
column, while the black circles
indicate the mid points of the
segments of the cortical cells
from the down-scaled network
model (dataset 24). The inset
figure is the extracellular
potential recorded on two
selected electrodes marked by
red and blue squares. The x and
y axis of the inset figure are
time (ms), and potential (m V).
On the right, we have linearly
interpolated extracellular
potential recorded at 301 ms
from the onset of recorded
simulation, which is indicated in
the inset figure on the left plot
with a vertical black line
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cortical cells. The electrode positions and the populations
to be used are taken from 1fp parameters.py file.
We also provide here a function to convert the LFP calcu-
lated here into a NEO object list (Garcia et al. 2014), which
can be used, e.g., in elephant (http://neuralensemble.org/
elephant/) or other compatible software.

In this script we use the point source approximation, i.e.,
the segments are treated as point sources placed at the mid
point of the segments. We also provide here the low pass fil-
ter function we used to compute the LFP from extracellular
potentials (2nd order Butterworth filter).

create_plot.py Plots the measured potentials for 1D and
2D electrode setups. It also shows the midpoints of the seg-
ments used in the LFP computation, marks the electrode
positions, and shows interpolated potentials recorded using
the 1D and 2D probes. The plot displayed for 1D case (lam-
inar probe) shows potentials (y axis) versus time (x axis),
and for the 2D case it shows interpolated potential in the
plane of simulated MEA at a selected time point.

raster_spikes.py Shows the raster plot for the whole net-
work. The different colors represent different neuron types.
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Up arrow indicates an excitatory neuron. Down represents
an inhibitory neuron.

These scripts do not constitute a toolbox although they
may grow in the future. We provide these scripts to facilitate
the uptake of the data provided here and implementation of
other models of measurement. For more information read
the provided Readme file and the scripts.

File Format

The datasets are available in the Neuroscience Simulation
Data Format (Ray et al. 2016), version 1.0. NSDF is a sub-
specification of Hierarchical Data Format version 5 (The
HDF Group 1997), which introduces an organization of
data within HDF5 in a way useful for storing the results
of neuroscience simulations. HDF5 itself was developed
particularly for storing scientific data, it is flexible, hierar-
chical, self describing, and allows efficient reading, writing,
and storage of data. According to the NSDF specification
the data must include some essential information about the
simulation as attributes. These include units, start time,
and time step of the simulation, units of the time step etc.
Additionally, NSDF datasets must have meta-data attributes,
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which include the software used, the methods used, the
name of the creator of the dataset, license and so on.

Each dataset includes the following data: 1)
morphology information i.e., segment geometry and
position, stored as HDF5 compound arrays under
data/static/morphology/ of the NSDF file;
2) spike times (1-24 in Table 2) and/or input spikes
(17-20 and 25-28 in Table 2) stored as variable length
arrays stored under data/event; and 3) transmem-
brane currents and membrane potentials stored in
data/uniform/pop name. For some datasets (24—
28 in Table 2) individual ionic current contributions to
transmembrane currents are also included here. The abbre-
viation used here for pop name are from Table 1. For
instance, the total transmembrane currents for all the
pyramidal regular spiking layer 2/3 cells are located in
a 2D array at data/uniform/pyrRS23/1i. In these
2D arrays, the rows correspond to the unique segment id
(for arrays in data/static and data/uniform), or
the cell name (for arrays in data/event). These unique
id’s are stored as lists in map. The connection between

data

the arrays in data and map is via the HDF5 standard
Dimension Scales specification as per NSDF. For example,
the array in data/static/morphology/pyrRS23
are row-wise mapped onto the elements
in map/static/pyrRS23 names using Dimension
Scales, and likewise /data/uniform/pyrRS23/1i, and
/data/event /pyrRS23/spikes to map/uniform/
pyrRS23 namesandmap/event /pyrRS23 spikes,
respectively. This organization is illustrated in Fig. 2.
For the sake of simplicity, this figure shows the NSDF
file architecture only for the down-scaled version of the
model for two cell populations. The units for the arrays are
included as array attributes according to the NSDF speci-
fication, for example /data/uniform/pyrRS23/1
array attribute for “unit” is “nA”.

Datasets

In total, we present 28 datasets as listed in Table 2, 22 of
these are responses to oscillatory input currents of different

ROOT

map
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7’ X Y
4 N
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1 pyrRS23 N
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nRT event
S
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ek spl01] [ .. | spr0.23] @ =
- “ b
-
B N
| N B sp[99,311|

Fig. 2 An illustration of the hierarchical storage of data in NSDF
for an example subset of two cell populations from the down-scaled
model. Note that the datasets we provide include data from all the
cell populations. The left side indicates the paths to the data arrays
under the data. The unique id’s of the segments or cell names on the
right are stored as arrays under map. For instance, the morphology
information for pyramidal regular spiking layer 2/3 cells is stored as a
compound array atdata/static/morphology/pyrRS23. Each
row in this compound array is a segment whose unique id is located in
the respective row of the /map/static/pyrRS23 names array.
Here, the columns as indicated, x0, yO0, ..., d compose the header for

the compound array; correspond to the proximal (x0, y0, z0) coordi-
nate, the distal (x1, y1, z1) coordinate and the diameter d of the seg-
ment. The connection between the arrays in data/ and map/ is given
by the HDF5 Dimension Scales according to the NSDF specifica-
tion. Likewise, data/uniform/pyrRS23/1 contains transmem-
brane currents through each segment (rows) over time (columns) and
map/uniform/pyrRS23 names has the respective segment ids.
Similarly, data/event/pyrRS23/spikes is a variable length
array where each row corresponds to a cell and has the instances when
it fired. The units for all the arrays are attached as the corresponding
array attributes
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frequencies (oscillations), and the other 6 are responses
to pulse stimulus (pulse).

Datasets 1-16

A sinusoidal current
1(t) = Linj sSin@m f(t — 10))O(t — t9), ()

of amplitude I;5; = 2 nA was injected into all of the TCR
cells 7g = 100 ms after the onset of simulation. This caused
an oscillatory response in the cortex. The frequency of these
stimuli was f = 200, 100, 50, 25, 12.5, 8, 4 or 2 Hz in the
different datasets. Here, ®(¢) is the Heaviside function. In
datasets 1-8, during the simulation, the somas of layer 5
and layer 6 pyramidal cells were depolarized with 1 nA and
0.75 nA current, respectively. These data were used to study
the meaning of independent components of current source
density reconstructed from LFP (Glabska et al. 2014). They
were also used to validate the generalized Laminar Popu-
lation Analysis (Gtabska et al. 2016). The activity of the
network recorded in the dataset 5 (12.5Hz oscillatory stim-
ulus with depolarized infragranular pyramids) is shown in
Fig. 1 of Glgbska et al. (2016), while the dataset 2 is used in
Figs. 2 and 5A of Glabska et al. (2014).

Datasets 9-16 correspond to sets 1-8, except they were
simulated without depolarization currents in infragranular
pyramidal cells and are provided for comparison.

Datasets 17-21

Generalized Laminar Population Analysis (Glabska et al.
2016) uses LFP and MUA from laminar recordings to
decompose network activity into physiologically meaning-
ful components. This can be interpreted as contributions
to extracellular activity arising from the cells active in a
specific layer. To validate this method we started with the
simulation leading to the dataset 5 (12.5 Hz oscillatory input
with depolarized infragranular pyramids). We then disabled
all the connections and used the spiking activity from indi-
vidual populations in dataset 5 to activate the network. In
this way we generated four datasets corresponding to inputs

<«Fig. 3 Dataset 24. a raster plot of the network activity. Up and down
pointing triangles are excitatory and inhibitory neurons, respectively,
the black vertical line shows the stimulus onset (b-1) contributions to
the extracellular potentials as recorded by 28 electrodes with inter-
electrode distance of 92.6um, left y-axis shows electrode number, right
y-axis shows depth; (b) LFP and contributions to LFP (extracellular
potential filtered below 100 Hz using second order Butterworth filter)
from specific currents, respectively: (¢) NMDA + AMPA (d) GABA
(e) capacitive, (f) potassium, (g) passive, (h) calcium, (i) sodium
(j) two kinds of calcium low threshold T type currents not causing
[Ca2+] influx (k) anomalous rectifier, (1) all other currents, such as
ectopic currents and depolarizing currents. Note that the scales used in
different panels differ to emphasize the individual contributions

from pyramids in layer 2/3 (dataset 17), spiny stellate cells
in layer 4 (18), pyramids in layer 5 (19) and pyramids in
layer 6 (20). To get a baseline LFP, another dataset (21)
was generated with no population input. The spiking activ-
ity and the LFPs obtained from these simulations are shown
in Fig. 5 in Glabska et al. (2016).

Dataset 22

These are the data from a simulation similar to that of the
dataset 5, except that only 20 % of the TCR cells received
the oscillatory input, (Eq. (2)), here. This resulted in less
correlated network activity.

Dataset 23

To simulate the cortico-thalamic responses to a whisker
deflection in a rodent we injected a constant current pulse
of amplitude 3 nA for a duration of 2 ms into the TCR cells,
70 ms from the start of the simulation. Layer 5 and 6 pyra-
midal cells’ somas were depolarized with 1 and 0.75 nA
currents, respectively, during the simulation. Such a stimu-
lus caused a brief (about 5 milliseconds) activation of the
TCR cells. The activity then propagates to the spiny stel-
late cells in layer 4, the deep basket interneurons in layers
5-6, and the nucleus reticularis in the thalamus. Then, the
activation appears in the fast rhythmic bursting cells in
layer 2/3 and several milliseconds later in tufted pyramidal
intrinsic bursting and regular spiking cells in layer 5, pyra-
midal regular spiking cells and interneurons in layer 2/3.
Finally, the stimulus reaches the rest of the cortical cells:
nontufted pyramidal regular spiking neurons in layer 6 and
the interneurons in layer 5/6. After 50 ms from the onset of
the stimulus the network settles down again. In this case we
used the whole model and recorded only the spike times,
the membrane potential and the total transmembrane current
in every segment. The simulationends at 180 ms when the
evoked activity dies out. Figure 2 in Glabska et al. (2014)
shows the raster plot for this kind of simulation.

Dataset 24

This is similar to the dataset 23, however, only 10 % of
the cells were used and layer 5 and layer 6 cells were
depolarized by 0.5 nA and 0.375 nA respectively to obtain
firing rates consistent with the full model. The stimulus was
applied 300 ms from simulation onset after initial transient
died out. In this dataset we recorded the sum of transmem-
brane currents, membrane potential, as well as different con-
tributions to the transmembrane currents: current flowing
through synapses GABA A, NMDA and AMPA, capacitive,
passive, potassium, sodium, calcium, two kinds of calcium
low threshold T type currents (not causing [Ca2+] influx),
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anomalous rectifier, and other currents (e.g. steady bias +
ectopic currents). Figure 3 shows the raster plot from this
simulation, the LFP (extracellular potential filtered below
100 Hz using second order Butterworth filter), and the com-
ponents of the LFP which originate from the different types
of recorded current sources.

Datasets 25-28

The simulations in which these data were obtained are
all similar to those leading to the dataset 24. They were
obtained to investigate how the transmembrane currents
through active channels are reflected in extracellular record-
ings. For this we performed simulations with active chan-
nels turned off in: every segment (dataset 25), in somas and
axons (26), only in axons (27), or we turned off only fast
sodium currents in every segment (28). Since closing these
channels silenced the network, we stimulated the system
with spikes recorded in dataset 24. Thus these datasets can
be used to identify the differences in LFP where the same
synaptic stimuli are provided while different combinations
of the active channels are closed. The LFP resulting from
these simulations are presented in Fig. 4. The stripy struc-
tures visible in panel A (unfiltered extracellular potential)
are the extracellular signatures of spiking (not shown but
can be visualized with the provided data).

Discussion

Traub’s model of the thalamo-cortical column (Traub et al.
2005) is one of the largest and most popular conduc-
tance based multi-compartmental models that is publicly
available. It serves as an important benchmark for every
simulator and its established position is apparent by the fact
that the original FORTRAN model has been translated into
NEURON, MOOSE, and NeuroML versions. This model
has its limitations, some of which were discussed in the
original paper (see Discussion in Traub et al. 2005), some
were discovered later on Gleeson et al. (2013), some are
consequences of translations to new platforms (see Fig. 10,
Gleeson et al. 2010). A number of difficulties with differ-
ent translations of this model were documented and tested
by the research community outside the laboratories where
the model was originally developed (Gleeson et al. 2013).
This model is a good starting point for modeling thalamo-
cortical system, as it illustrates the complexity of such large
scale modeling studies.

Here we presented 28 simulation datasets of Traub’s
thalamo-cortical model. In all the datasets positions of
the cells, cell morphologies, membrane voltage poten-
tial, transmembrane currents, and the spiking information
are provided. In three datasets, 22-24, we also provide
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contributions from individual channel types to the trans-
membrane current.

Some of these datasets were used or are equivalent to
those used in our previous research. In particular, datasets
1-8 and 23 or equivalent were used in a study of physiolog-
ical meaning of independent components of current source
density reconstructed from LFPs (Glabska et al. 2014). In
a study of the effects of physical and geometrical proper-
ties of a cortical slice in saline on extracellular potentials
recorded with multielectrode arrays and for reconstruction
of current source density in such a setup (Ness et al. 2015)
we used data from the dataset 3. We also used the datasets 1—
8 and 17-21 to validate the generalized Laminar Population
Analysis (Gtabska et al. 2016).

The data provided here can be used to test and com-
pare different spike detection algorithms, or to test the
validity of hybrid methods for calculating the extracellular
potentials, where combinations of point neurons with sin-
gle multicompartmental neuron models are used. These data
may also be used to investigate the relationship between
the actual transmembrane currents and the reconstructed
CSD (e.g. Glabska et al. 2014, Fig. 4), serve as a ground
truth for analysis methods based on the reconstructed CSD,
or used to compare different methods of current source
density estimations using the extracellular potentials they
generate.

Due to the latest advancements in microelectrode tech-
nology, sophisticated configurations of electrode place-
ments are possible. With the help of the provided data it
is possible to model simultaneous extracellular potential
recordings in these configurations. For example, it is possi-
ble to compare the recordings of a laminar probe placed next
to the cortical column, on a 2D electrode grid of multishank
electrode, but one could also investigate contributions to
ECoG or EEG. However, this would require more complex
models of field propagation taking into account geometry
and conductivity of the cranium, scull and scalp. We hope
that the availability of these data would facilitate under-
standing of the relationship between the network activity
and measurement, would help with the interpretation of the
results of specific analytic methods and lead to new insights.

The data are provided in NSDF (Ray et al. 2016), a
well documented subspecification of HDF5, developed for
storage of the data from simulations. Any visualization or
analysis tools developed to support HDFS in general, such
as HDFView, will be applicable to these datasets.

The first 16 datasets show responses of the network to 8
different stimuli in two network states (with extra depolar-
ization of infragranular pyramids and without). To facilitate
validation of more involved methods of data analysis we
performed additional simulations for injection of 12.5 Hz
sinusoidal current. Datasets 17-21 attempt to uncover what
part of the whole network activity is driven by specific
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populations (Gtabska et al. 2016). These contributions can-
not be obtained experimentally, as they require the use of
spikes from a population functioning in a fully connected
network to drive the network of disconnected cells. In exper-
iment, even if we were able to silence connections within the
network except from those coming from a particular popula-
tion, system activity would change, so the network response
would also change.

Driving all the TCR cells with the same oscillatory stim-
ulus imposes strong correlations on the network activity.
Since the correlations in spiking activity and input currents
affect the extracellular potential power spectrum and the
spread of the signal (Leski et al. 2013), we generated addi-
tional datasets where only 20 % of the TCR cells were
driven (dataset 22). That was enough to observe a response
in the whole network which was less correlated.

Datasets 24-28, can be used to test different hypothe-
ses and interpretations of LFP on the model data, study the
relation of LFP to postsynaptic currents, identification of
currents contributing the most to the LFP, relation between
spiking and the LFP, etc. To facilitate investigations of such
questions, we recorded all of the transmembrane currents
separately. Since the size of these datasets is substantial, we
decided to run a down-scaled version of the Traub model
with only 10 % of the cells. Interestingly, the largest contri-
butions to the extracellular potential comes from excitatory
synaptic currents as well as from the active currents, and
they are an order of magnitude larger than the final LFP,
see Fig. 3. However, due to extensive but nontrivial can-
cellations, all the currents, including passive and capacitive
currents, contribute significantly to the LFP, which makes
interpretation of the LFP signal a challenging task. In the
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Fig.4 Potentials as recorded by 28 electrodes with inter-electrode dis-
tance of 92.6um distance, left y-axis is electrode number, right y-axis
is its depth (a) Extracellular potential from dataset 24 (b) the same as
A but filtered below 100 Hz (LFP) using second order Butterworth fil-
ter. The following panels show not filtered extracellular potential from

Time (ms)

Time (ms)

data sets (c¢) 25 (d) 26 (e) 27 (f) 28. The stripy structures visible in
panel A (unfiltered extracellular potential) are the extracellular signa-
tures of spiking (not shown but can be visualized with the provided
data)
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datasets 25-28 we prevent spiking behavior of the net-
work using different approaches, (for details see Section
“Datasets” or Table 1), but we provided the same synaptic
stimulus as in the dataset 24. In every case the high fre-
quency signal in extracellular potential was reduced. With
the exception of the case where we blocked all the active
channels (dataset 25, Fig. 4 c¢), the low frequency part of
the potential remained similar as in the original simulation
(dataset 24, Fig. 4 b). This is a strong evidence that the LFP
is evoked by synaptic activity, while at the same time we
see that, at least in these model data, active channels in the
dendrites play a critical role in setting up the LFP signal.

To obtain the data presented here, powerful computa-
tional resources are needed, that are not easily accessible to
every researcher. Even if these computational resources are
available, it is impractical and wasteful to duplicate efforts
to set up and run such large simulations for a single lab-
oratory use. For example, we performed the computations
on the IBM Blue Gene Q computer at the Interdisciplinary
Center of Modeling, University of Warsaw, using 64 nodes,
each equipped with 16 cores and 16 GB of memory. The
wait time to avail of these resources was typically 1-3
days and the simulations lasted typically 8—10 hours. We
hope that if the interest in this model sustains and other
researchers perform new simulations with parameters dif-
ferent from those listed here, a more extensive collection
of ground truth data will be established, to further facilitate
studies of relations between system internals and mea-
surements, and for validation of complex methods of data
analysis, called for by the results of the present day exper-
iments. The data provided here were generated with public
resources and the results of such an endeavor rightfully
belong to the community at large.

Information Sharing Statement

The complete collection of datasets provided here is avail-
able at http://dx.doi.org/10.18150/repod.6394793, hosted
by RepOD (RRID:SCR_014697). These files are available
under the Open Database License (ODbL 1.0 license). We
provide the NEURON (RRID:SCR_005393) code used to
generate these datasets at https://github.com/Neuroinflab/
Thalamocortical. We also provide here Python scripts to
convert IBM Blue Gene Q computer output of NEURON to
NSDF file format, and some Python based analysis scripts
to generate LFP for 1, 2, and 3 dimensional electrode lay-
outs, raster plots, NEO objects, etc, for an NSDF file. These
scripts are available under the GNU GPL 3.0 License.
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