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a b s t r a c t 

In this paper, we present a comprehensive guide for implementing artificial intelligence (AI) techniques in tradi- 

tional East Asian medicine (TEAM) research. We cover essential aspects of the AI model development pipeline, 

including research objective establishment, data collection and preprocessing, model selection, evaluation, and 

interpretation. The unique considerations in applying AI to TEAM datasets, such as data scarcity, imbalance, and 

model interpretability, are discussed. We provide practical tips and recommendations based on best practices and 

our own experience. The potential of large language models in TEAM research is also highlighted. Finally, we 

discuss the challenges and future directions of AI application in TEAM, emphasizing the need for standardized 

data collection and sharing platforms. 

1

 

p  

b  

h  

e  

a  

s  

t  

a

 

g  

i  

t  

q  

t  

l

 

h  

m  

o  

d  

i  

t  

K

a  

m  

r  

c  

p

 

f  

T  

p  

s  

m  

m  

a  

m  

l  

c  

(  

d  

r

2

 

s  

W  

h

R

A

2

(

. Introduction 

Traditional East Asian medicine (TEAM) is characterized by its em-

hasis on the body as an integrated whole, the dynamic interactions

etween various bodily systems, and the importance of maintaining

armony and balance within the body and between the body and its

nvironment. One of the major strengths of TEAM lies in its holistic

pproach, which considers multiple variables simultaneously to under-

tand the complex interactions within the human body. However, objec-

ively and quantitatively analyzing these complex interactions has been

 challenging task. 

To address these challenges, recent advancements in artificial intelli-

ence (AI) technologies, such as machine learning (ML) and deep learn-

ng (DL) methodologies ( Table 1 ), are offering new opportunities to fur-

her advance TEAM research. These AI techniques enable objective and

uantitative pattern identification in complex, multi-dimensional data,

hereby allowing for a more comprehensive understanding of the under-

ying mechanisms of TEAM theories and practices. 

In this paper, we aim to provide guidance for TEAM researchers on

ow to effectively and appropriately apply AI techniques in their do-

ain, taking into account the unique characteristics of TEAM. We focus

n the most critical and potentially error-prone elements of the AI model

evelopment pipeline, from data preparation to model evaluation and

nterpretation. By drawing upon best practices and lessons learned from

he broader field of AI in healthcare, we offer practical insights, tips,
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nd recommendations based on the unique characteristics and require-

ents of TEAM research and our own experience. Our goal is to assist

esearchers in harnessing the power of AI while ensuring that the appli-

ation of these techniques aligns with the fundamental principles and

ractices that define TEAM. 

We begin by discussing the research objectives establishment step,

ollowed by data selection/collection and preprocessing steps specific to

EAM datasets ( Fig. 1 ). We then provide guidance on selecting appro-

riate AI models for specific TEAM research needs, considering factors

uch as data characteristics and research objectives. Next, we delve into

odel evaluation strategies and techniques for improving model perfor-

ance, such as cross-validation (CV), hyperparameter tuning ( Table 1 ),

nd handling data imbalance. We also emphasize the importance of

odel interpretation in the context of TEAM. Furthermore, we high-

ight the need for qualitative assessment of model outputs to ensure their

linical relevance and validity. The potential of large language models

LLMs, Table 1 ) in TEAM research is also gained attention. Finally, we

iscuss the challenges and future directions of AI application in TEAM

esearch. 

. Research objectives establishment 

Effective planning is crucial when embarking on AI-integrated re-

earch. Clearly define research questions and objectives at the outset.

ell-defined goals will guide the data selection/collection process and
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Table 1 

Glossary of key terms 

Terms Explanations 

Artificial Intelligence (AI) a broad field focused on designing and developing computer systems that can mimic human intelligence. It encompasses algorithms and 

technologies that can perform cognitive functions such as learning, reasoning, and problem-solving. AI encompasses various subfields, 

including ML and DL, which have driven significant advancements in recent years across diverse domains. 

Machine learning (ML) a subset of AI that involves training models to learn patterns and make predictions or decisions from data, without being explicitly 

programmed. ML algorithms can be categorized into supervised learning (learning from labeled data), unsupervised learning (discovering 

patterns in unlabeled data), and reinforcement learning (learning through interaction with an environment). 

Deep learning (DL) a subfield of ML that utilizes artificial neural networks with multiple layers to learn hierarchical representations of data. DL models can 

automatically extract relevant features from raw data, enabling them to learn complex patterns and achieve state-of-the-art performance on 

tasks such as image classification, natural language processing, and speech recognition. 

Large language model (LLM) a type of DL model trained on vast amounts of text data to understand and generate human language. LLMs, such as GPT (Generative 

Pre-trained Transformer), can perform various natural language processing tasks, including text generation, translation, summarization, 

and question answering, by learning the statistical patterns and structures of language from the training data. 

Supervised learning a type of ML where the model is trained on labeled data, meaning that the desired output for each input is provided. The goal is to learn a 

function that maps input data to the correct output labels. Examples include classification tasks (e.g., identifying spam emails) and 

regression tasks (e.g., predicting housing prices). 

Unsupervised learning a type of ML where the model is trained on unlabeled data, meaning that no desired output is provided. The goal is to discover hidden 

patterns or structures in the input data. Examples include clustering (e.g., grouping similar customers) and dimensionality reduction (e.g., 

compressing high-dimensional data while preserving important information). 

Data dimensionality the number of features or attributes in a dataset. High-dimensional data refers to datasets with a large number of features, which can make 

it challenging to train models effectively due to the "curse of dimensionality." Feature selection and dimensionality reduction techniques 

can help address this issue. 

Hyperparameters user-specified values that define the structure or learning process of a model. They are distinct from the weights and biases that the model 

optimizes during the learning process. Examples include the maximum depth of a decision tree, the number of neighbors in k-nearest 

neighbors, the learning rate, batch size, and the number of hidden layers in a DL model. 

Overfitting a common problem in ML where a model learns the noise in the training data to the extent that it negatively impacts the performance of 

the model on new data. This means that the model is too closely fit to the training data and fails to generalize well to unseen data. 

Overfitting often occurs when the amount of training data is insufficient to capture generalized patterns or when the model is excessively 

complex relative to the given problem. 

Ensemble models ML models that combine multiple individual models to improve predictive performance. By combining the predictions of several models, 

ensemble models can achieve higher accuracy than any single model while improving generalization ability. 

Fig. 1. Research Flow and Key Topics in AI-based Traditional East Asian Medicine Studies. 

A circular diagram depicting the research flow, consisting of six interconnected steps: Research Objectives Establishment, Data Selection/Collection, Data 

Preprocessing, Model Selection/Development, Model Evaluation, and Model Interpretation (left). A table detailing the topics covered in each step of the research 

process (right). 
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nsure the gathering of the most relevant information for AI models.

o stimulate potential research directions for readers, we will briefly

ntroduce some research topics of AI applications in TEAM. 

.1. Research based on clinical medical data 

In research based on clinical medical data, AI techniques have been

ctively employed to analyze patient data, including symptoms, con-

titution, diagnosis, and treatment information. The most representa-

ive form is to develop predictive models that enhance the objectivity

nd reproducibility of traditional diagnostic methods, such as pattern

dentification. Data-driven AI predictions can improve the objectivity

nd standardization of pattern identification diagnosis and reduce hu-

an errors in the diagnostic process. 1–5 Similarly, in the field of con-

titutional medicine, which emphasizes the importance of diagnosing

atients’ constitutional types, research on AI-assisted constitution diag-

osis is actively being conducted. 6 In treatment prediction or clinical

ecision support system research, models are constructed to predict the

ptimal acupuncture and/or herbal medicine treatment method based

n patients’ pattern types, constitutional types, past treatment records,

nd clinical indicators. 7 , 8 This can support TEAM practitioners’ clinical

ecision-making and maximize treatment effectiveness. Furthermore,

ubtype identification studies within a single disease are actively be-

ng conducted, primarily using unsupervised learning ( Table 1 ). 9 This

s particularly based on the theory of TEAM that different subtypes exist

ithin a patient group with the same disease. 

.2. Research based on herbal medicine bioinformatics data 

Research based on herbal medicine bioinformatics data leverages

iverse data sources and analytical methods to predict and optimize

he safety, efficacy, combinations, and mechanisms of action of single

edicinal herb or herbal formula. Diverse bioinformatics data sources

nclude herbal component information, such as, omics (genomics, tran-

criptomics, proteomics, and metabolomics) data related to herbal treat-

ents as a result of pharmacological experiments or literature findings.

n efficacy prediction, ML is used to predict the pharmacological ac-

ions and efficacy of individual herbs or herbal combinations, and to

nalyze interactions between multiple herbs, synergistic/antagonistic

ffects, and more. 10–14 In drug repurposing, AI is used to predict new in-

ications for existing herbs and to develop new drugs utilizing the syner-

istic effects of herbal combinations. 15–17 Finally, in predicting adverse

rug reactions, AI is used to predict potential side effects and toxicity of

erbs or formulas, and to assess the possibility of adverse reactions due

o drug interactions. 18 

.3. Basic theory research 

In addition to the two main categories of research based on usage

ata, AI techniques are being explored as new approaches to establish

he scientific basis for TEAM basic theories. For example, the Yin-Yang

heory, which is closely related to the Cold-Heat pattern diagnosis in

EAM, has been investigated using a systems biology approach, reveal-

ng that hormones are predominant in the Cold network, immune factors

re predominant in the Heat network, and these two networks are con-

ected by neuro-transmitters, providing a molecular basis for the Yin-

ang theory in the context of the neuro-endocrine-immune system. 19 

imilarly, the concept of Qi, which is central to TEAM, has been inves-

igated using network pharmacology-based approaches to understand

he unique functions of Qi-invigorating herbs. 20 Network pharmacolog-

cal approach can also be applied to elucidate the essence of Sasang

onstitutional medicine theory by identifying constitution type-specific

ompounds and biomarkers. 21 , 22 Furthermore, text mining and natural

anguage processing techniques are being employed to extract core con-

epts and relationships of TEAM theories from classical literature. 23–25 

n our previous work 26 , we modeled pattern identification from a ML
3

erspective. We proposed that interpreting traditional theory through a

L lens offers a novel framework for mathematically understanding the

nderlying mechanisms of TEAM’s theory and practice, while broaden-

ng the scope of inquiry. 

. Data selection/collection 

The second step in conducting AI-based research is selecting or col-

ecting appropriate data that aligns with the research objectives. In

he medical AI field, six major categories of data have been identi-

ed for leveraging AI for health: multi-omics, clinical (e.g., medical

mages, EHR, physiologic data such as EKGs, EEGs), behavioral (e.g.,

ocial media, video and conversational data, mobile sensor data), envi-

onmental (e.g., air pollution exposures), pharmaceutical research and

evelopment (e.g., chemical compounds, clinical trials, spontaneous re-

orts such as information on adverse events), and biomedical literature

ata. 27 While the data utilized in the field of TEAM is similar to these

ategories, there are also some aspects specific to TEAM. In TEAM, clin-

cal data often takes a relatively qualitative form due to the nature of

xamination items, leading to extensive use of questionnaire data for

iagnosis and evaluation purposes. Regarding pharmaceutical research

nd development, herbal medicine-related databases are actively uti-

ized as valuable resources. Moreover, TEAM boasts an extensive repos-

tory of classical literature accumulated over its long history, providing a

ich source of textual data for mining insights and knowledge extraction

hrough AI techniques. 

Representative examples of publicly available databases in Korean

edicine include the following. The Korea Institute of Oriental Medicine

KIOM) provides the Korean Medicine Data Center data, which encom-

asses a comprehensive collection of clinical information, including sur-

ey data, anthropometric measurements, device-based assessments, and

iological data. KIOM also offers TM-MC, 28 which provides information

bout the chemical compounds in medicinal materials from chromato-

raphic articles in PubMed. Additionally, the National Institute of Ko-

ean Medicine Development offers extensive databases on various as-

ects of herbal medicine. These include detailed information on herbal

omponents, in vitro and in vivo pharmacodynamic test results, toxi-

ology study outcomes, and digitized historical medical texts. Further-

ore, the field of Traditional Chinese Medicine (TCM) contributes sev-

ral databases that are valuable for network pharmacology research and

erbal medicine-related bioinformatics studies. Notable among these

re the Traditional Chinese Medicine Systems Pharmacology Database

nd Analysis Platform (TCMSP 29 ) and the Bioinformatics Analysis Tool

or Molecular mechANism of Traditional Chinese Medicine (BATMAN-

CM. 30 ) 

While existing databases provide valuable resources, they may not

lways meet the specific needs of every research project. Given these

onstraints, researchers often develop custom datasets, where several

ey considerations come into play to ensure data quality and relevance.

o address data quality management, researchers can refer to resources

uch as the National Information Society Agency of Korea’s guidelines

or AI training data quality. In the context of clinical data collection,

esearchers can refer to frameworks such as the Kahn framework, 31 

hich addresses data quality issues in secondary use of Electronic Health

ecords, and the DQ4HEALTH framework, 32 which is tailored to the

urrent state of healthcare data in Korea. 

When implementing these data quality principles in practice, several

ey considerations emerge. One critical aspect researcher must address

s the potential for data mismatch issues that could affect the generaliz-

bility of AI models, such as dataset shift and sample selection bias. 33 

o mitigate these, it’s crucial to gather comprehensive metadata, in-

luding details about the data collection, annotation process, patient

emographics and environmental factors. This metadata helps identify

iases and adjust for confounding variables. Additionally, ensuring di-

erse sampling and standardizing data acquisition protocols can further

nhance the robustness of AI models across different clinical settings.
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tandardization is also essential in data collection, requiring consistent

emplates, clear data entry rules, and uniform coding schemes. When

easible, incorporating multi-modal data can provide a more compre-

ensive view, though it increases sample size requirements and ana-

ytical complexity. Planning for data annotation and curation needs is

rucial. Researchers should determine necessary annotations (e.g., con-

titutions, diagnoses, prescriptions) and allocate sufficient resources for

ata labeling, often securing multiple independent labelers to ensure re-

iability. Collecting data from multiple centers enhances generalizability

nd robustness, encompassing diverse patient populations and clinical

ractices. Throughout this process, researchers must prioritize the pro-

ection of participants’ rights and privacy, ensuring secure storage and

nonymization of personal information. 

In the context of TEAM research, additional considerations arise. It’s

ital to include all clinically relevant features without prematurely fil-

ering based on presumed significance, as our previous work 34 has re-

ealed disparities between features TEAM doctors deemed important

nd those identified as crucial by ML models. Many clinical features

n TEAM involve qualitative judgements by doctors, such as strength

n a patient’s voice and overall color and tone of the skin. When de-

igning data collection protocols for these qualitative assessments, re-

earchers face a trade-off between information granularity and assess-

ent burden. Information granularity refers to the level of detail in mea-

urements, such as using a 3-point versus a 5-point scale for evaluating

ymptoms. While finer scales provide more detailed information, they

lso increase the cognitive load on doctors and potentially the time re-

uired for assessment. Researchers must carefully balance these factors,

stablishing clear, objective criteria for each scale point to minimize

nter-practitioner variability. 

. Data preprocessing 

Data preprocessing can be broadly divided into two main stages: data

leaning and feature engineering, which includes feature encoding, fea-

ure construction, feature extraction, feature selection, and feature scal-

ng. 

The obtained or collected data often exists in an incomplete state

ith substantial noise. The data cleaning process involves removing un-

ecessary information, correcting errors, and standardizing data formats

o improve data quality. Handling missing values is crucial as it can af-

ect the accuracy of the research. Interpolation methods or substitution

alues are used to maintain data integrity, and typically, cases or vari-

bles with more than 20 % missing values are removed. This threshold

alue can vary depending on the research topic and data situation, and

esearchers should select appropriate criteria. As there can be various

cenarios of data missingness, domain knowledge should be utilized to

roceed in a direction that does not introduce bias. Common missing

alue handling methods include zero imputation, mean/median impu-

ation, and multiple imputation. 35 

Next, feature engineering is a critical step that directly impacts

odel performance. We will examine this process by breaking it down

nto feature encoding, feature construction and extraction, feature selec-

ion, and feature scaling. Feature encoding is the process of converting

ategorical variables into numerical values that the model can under-

tand. One-hot encoding, which transforms categorical data into binary

ectors, and ordinal encoding, which assigns an order to the categories,

re commonly used. 36 

Feature construction leverages domain knowledge to generate new

nformative features from existing ones beyond the data itself. For in-

tance, in clinical medical data, deriving the body mass index feature

rom height and weight measurements offers a standardized metric for

ssessing obesity risk. Combining multiple disease codes can generate a

major disease category’ feature (e.g., diabetes and hypertension codes

apped to metabolic/circulatory disorders), facilitating disease-specific

nvestigations. Incorporating such constructed features, informed by do-

ain expertise, plays a crucial role in enriching the dataset, enhanc-
4

ng the predictive power and interpretability of ML models applied to

ata analysis. Feature extraction techniques, on the other hand, focus

n automatically discovering latent features from high-dimensional data

ithout relying on domain knowledge. These methods aim to capture

he most informative aspects of the data while reducing its dimension-

lity. By leveraging these extracted features, ML models can better cap-

ure the underlying structure of the data, leading to improved predictive

erformance and novel insights into disease mechanisms. 

Feature selection is employed to identify important features and re-

ove unnecessary ones, thereby reducing model training time and the

isk of overfitting ( Table 1 ). Filter and wrapper methods are represen-

ative approaches. 37 Filter methods assess and select features based on

tatistical measures (e.g., correlation coefficient, Chi-square, feature im-

ortance). These methods evaluate the relevance of each individual vari-

ble to the target variable without considering the interactions or com-

ined effects of variable subsets, resulting in lower computational com-

lexity at the cost of neglecting potential synergistic effects between

ariables. Wrapper methods, on the other hand, select feature subsets

ased on model performance (e.g., recursive feature elimination, Boru-

aShap). 38 , 39 These methods evaluate the performance of various vari-

ble combinations, taking into account the combined effects of vari-

bles, but require higher computational resources compared to filter

ethods. The dataset used for selecting features via filter or wrapper

ethods should not overlap with the dataset used for evaluating model

erformance. Otherwise, the selected variables may be overfitted to the

valuation dataset, resulting in inflated performance. It’s worth noting

hat in scenarios where data is limited, the aforementioned feature engi-

eering techniques – particularly feature construction, extraction, and

election – become even more crucial. These methods can effectively

ugment the available information, create more meaningful representa-

ions of the data, and identify the most relevant features, thereby im-

roving model performance despite data constraints. 

Finally, before inputting the data into the model, feature scaling pro-

esses are applied. In many cases, features in a dataset can have vastly

ifferent scales, which can negatively impact the performance of some

L models. To address this issue, standardization (z-score normaliza-

ion) or min-max scaling are commonly applied before inputting the

ata into the model. Standardization transforms the feature values to

ave a mean of 0 and a standard deviation of 1, while min-max scaling

djusts the feature values to a specific range, typically between 0 and

. Effective feature scaling can significantly improve the convergence

peed and model performance for scale-sensitive algorithms, making

his process a crucial step in the feature engineering pipeline. 

. Model selection and development 

AI model selection is a crucial aspect of data analysis, as no single

odel is universally optimal for all data and objectives. When selecting

 model, several factors should be considered, including the problem

ype, data characteristics, model interpretability, and computational ef-

ciency. This section presents practical tips for model selection, focusing

n the challenges and considerations commonly encountered in medical

I research (For a comprehensive survey of model selection techniques,

efer to. 40 ) 

When data scarcity is prevalent, as commonly seen in TEAM re-

earch, it necessitates a more meticulous approach in model selection

nd development. Limited data samples increase the risk of overfitting,

here the model learns features specific to the training data that are not

enerally applicable. Primarily, when available data is limited, employ-

ng models with lower complexity can be advantageous. For example,

avoring logistic or linear regression over deep neural networks, or opt-

ng for shallow neural architectures, can help learn latent data patterns

hile mitigating the risk of overfitting. Additionally, incorporating reg-

larization terms like the sum of model weights into the cost function

an help in simplifying the model. This process forces unimportant fea-

ure weights to be zero or close to zero during training, which helps
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n preventing overfitting. Combining multiple simple models through

nsemble techniques ( Table 1 ) can also be an alternative way to effec-

ively solve complex problems while keeping individual model complex-

ty low. Each model in the ensemble focuses on capturing different as-

ects of the data, collectively capturing a more comprehensive view of

he problem space. When labeled data is scarce but related databases

r unlabeled data are abundant, transfer learning and self-supervised

earning can be used as alternative approaches to tackle the data scarcity

roblem. Transfer learning involves applying knowledge from a model

rained on one task to a related task. For example, TCMBERT 

41 is a

wo-stage model that generates TCM prescriptions by pre-training on

CM books and fine-tuning on a limited number of medical records.

reasyCoatNet 42 is a model for recognizing greasy coating of the tongue,

uilt by fine-tuning the ResNet pre-trained on ImageNet dataset. Self-

upervised learning is a ML paradigm that learns representations from

nlabeled data by training models to solve pretext tasks. Pretext tasks

re designed to capture meaningful patterns and structures in the data,

uch as predicting missing parts of an input or distinguishing similar

amples from dissimilar ones. In the medical domain, self-supervised

earning is particularly promising because it can leverage the abundance

f unlabeled medical data to learn robust and generalizable representa-

ions, overcoming the challenge of limited labeled data due to the high

ost and expertise required for manual annotation. 43 For example, train-

ng the model to learn to identify similar chest X-ray views of the same

atient while distinguishing different patients leads to improved perfor-

ance for chest X-ray interpretation task. 44 

Another common challenge encountered when training models in the

edical field is the presence of significant label imbalance in datasets.

or example, certain classes such as rare Sasang constitution (e.g., Tae-

ang constitution) or infrequently prescribed herbal formula 8 may be

ignificantly outnumbered, leading to an imbalanced dataset. This can

ead to models that perform well on frequent classes but poorly on rare

nes. To address this imbalance problem, ensemble methods are com-

only recommended due to their built-in handling for imbalance using

eighted loss function, which impose greater penalties for misclassi-

ying infrequent classes during training. Advanced techniques to mit-

gate data imbalance include oversampling the minority class, which

nvolves creating synthetic examples of underrepresented classes (e.g.,

MOTE, 45 ) and under-sampling the majority class by randomly remov-

ng samples from the majority class. These techniques help the model to

earn a more balanced representation of classes. 

In addition to addressing data-related challenges, interpretability is

nother crucial consideration in model selection, where understanding

he decision-making process of models can be as important as their pre-

ictive accuracy. When the problem at hand is not overly complex and

nterpretability is paramount, traditional models such as logistic regres-

ion and decision trees can be considered. These models offer insights

nto how predictors influence the outcome, although they usually do

ot guarantee the highest performance compared to more advanced ML

odels. Logistic regression quantifies the impact of each predictor with

oefficients, and decision trees provide interpretability through a hierar-

hical structure, visually mapping the paths from features to outcomes,

lthough their clarity may diminish as complexity increases due to ex-

ensive branching. 

Furthermore, medical data often comprises diverse data types such

s patient demographics (categorical) and clinical measurements (nu-

erical). Such mixed data types typically require preprocessing steps

ncluding normalization of numerical values and encoding of categori-

al variables. Tree-based models can naturally handle numeric and cat-

gorical data without complex preprocessing, since they segment data

y choosing splits based on thresholds for numerical data and grouping

or categories in categorical data. 

In addition to the supervised learning ( Table 1 ) considerations dis-

ussed above, there are scenarios where the goal is to discover novel

atterns within the data, such as identifying previously unknown pa-

ient subtypes. In these cases, unsupervised learning methods, includ-
5

ng dimensionality reduction ( Table 1 ) and clustering, become relevant.

dditionally, topological data analysis techniques like the Mapper algo-

ithm 

46 offer a means to visualize high-dimensional data in a graphical

ormat, revealing inherent data structures. 

Lastly, it is worth addressing a common misconception among begin-

ers when choosing between ML and DL models. It is often mistakenly

ssumed that DL is always the superior or more advanced approach,

verlooking the potential of traditional ML algorithms. DL models ex-

el at handling large datasets, especially image or sequential data, due

o their ability to capture complex spatial or temporal dependencies.

or example, DL models such as convolutional neural networks and vi-

ion transformers have been successfully employed for image recogni-

ion involving tongue 47–49 or herb images, 50 , 51 as well as for feature

xtraction from unstructured pulse data. 52 , 53 However, when working

ith smaller tabular datasets that have high-dimensional features, stan-

ard neural networks may not always be the optimal choice. In such

ases, support vector machines or tree-based ensemble models can pro-

ide more robust results. 

. Model evaluation 

Rigorous model evaluation is a critical step in the AI workflow, en-

uring the developed models are reliable, generalize well to unseen data,

nd align with the intended objectives before deployment in real-world

pplications. However, evaluating models rigorously without data leak-

ge and selecting appropriate metrics can be formidable for beginners

n AI research. 

Data splitting involves dividing a dataset into subsets for training,

alidating, and testing a model (e.g., 60 %, 20 %, and 20 %, respec-

ively). The validation set is used for hyperparameter tuning and in-

ermediate evaluation, while the test set assesses the final performance.

ince the validation set is used to adjust the model’s hyperparameters

uring the training process, the model may overfit to the validation set.

herefore, by using a completely separate test set to evaluate the final

erformance of the model, it is possible to more accurately measure how

ell the model generalizes to unseen data. 

In ML, data splitting is often performed using randomization to en-

ure unbiased distribution of samples across training, validation, and

est sets. The randomness in this process is typically controlled by a ran-

om seed or random state parameter, which determines the sequence of

andom numbers generated by the algorithm. By default, this parameter

s set to None, resulting in different data splits each time the code is ex-

cuted. However, when sharing code on platforms like GitHub for other

esearchers to reproduce results or in tutorials, it may be necessary to set

 specific value for the random state to ensure consistent data splitting

cross multiple runs. Moreover, during the model development process,

xing the random state along with all other hyperparameters, except

he one being tuned, can help isolate the effect of the manipulation be-

ng performed. Nonetheless, when evaluating the final performance of

 model, it is crucial to verify that the results are not significantly influ-

nced by the specific data split used. This can be achieved by iterating

ver multiple random states or employing techniques such as CV. These

ethods assess the robustness and generalizability of the model’s per-

ormance across different data splits, providing a more reliable estimate

f its true performance on unseen data. 

In an optimal scenario with sufficient data, a validation set would be

eserved to evaluate the performance of each hypothesis model. How-

ver, when data are scarce, the conventional approach of partitioning

he available data into three distinct sets significantly reduces the num-

er of samples available for model training. Moreover, since test set size

s also small, test performance can vary significantly depending on the

ata split. In such scenarios, CV is a viable solution. First, the dataset

s partitioned into training and test sets. In k-fold CV, the training set

s further divided into k smaller subsets, known as folds ( Fig. 2 ), with a

ypical choice of k between 5 and 10. For each hyperparameter configu-

ation, the model is then trained on k-1 folds while using the remaining
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Fig. 2. K-fold cross-validation procedure for model training and hyperparameter tuning. 

The dataset is split into training and test sets. The training set undergoes a 5-fold cross-validation for hyperparameter optimization, where each fold serves as the 

validation set once while the other folds are used for training. This process yields five performance estimates (P1 to P5 ), and their average (P) is used to select the 

best hyperparameter configuration. The model is then retrained on the entire training set using the optimal hyperparameters and evaluated on the held-out test set 

to assess its generalization performance. 
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old for validation. This process is repeated k times, ensuring that each

old is used exactly once for validation. The optimal hyperparameter set

s determined by the best average performance across the k folds. Fi-

ally, the model is trained on the entire training set using the optimal

yperparameters and evaluated on the held-out test set to report its fi-

al performance. In extremely data-scarce situations, such as when the

ataset contains fewer than 100 samples, leave-one-out CV can be em-

loyed, wherein each single data point is used as a separate validation

et while the model is trained on all remaining data points. Lastly, it

s of great importance to note that, during model development, it is es-

ential to inspect the performance of each fold individually, rather than

elying solely on summarized metrics. This practice provides valuable

nsights into the model’s behavior and can help identify potential issues

r inconsistencies, thus enabling researchers to make informed decisions

egarding model development and evaluation. 

The process we’ve discussed thus far pertains to internal validation,

hich is sufficient when the dataset is large enough and representa-

ive of the target population. However, in many cases, these conditions

re not met, necessitating external validation, which utilizes a com-

letely independent dataset often sourced from different institutions or

he same population but at a different time period. 54 This is especially

ritical in healthcare, where external validation ensures that predictive

odels reliably support clinical decisions across diverse patient popula-

ions. When conducting external validation or preparing for real-world

pplication, researchers should identify potential sources of data mis-

atch between development and target populations. Strategies to mit-

gate the data mismatch include applying importance weighting tech-

iques to adjust for demographic or prevalence differences, and imple-

enting domain adaptation methods if test images are available to align

eature distributions across domains. 33 Beyond addressing distribution

hifts, AI system evaluation on real-world deployment data often lacks

round-truth labels in clinical settings. This common scenario signifi-

antly complicates the assessment of AI model performance in practical

pplications. To tackle this issue, frameworks like SUDO 

55 have been

roposed, utilizing pseudo-labels to estimate AI prediction reliability

ithout requiring ground-truth labels. SUDO works by discretizing AI-

enerated probability scores, assigning temporary labels, and training
6

lassifiers to measure discrepancies between pseudo-labeled data and

nown outcomes, thus identifying unreliable predictions and potential

iases. Robustness validation evaluates a model’s capability to maintain

ts performance in the presence of data irregularities such as noise 56 ,

utliers, or missing values. 57 This type of validation is also crucial, en-

uring that predictive models can effectively handle the imperfect data

ncountered in clinical environments. 

Selecting an appropriate evaluation metric is a critical step that di-

ectly impacts the interpretation and reliability of the model’s perfor-

ance. For classification tasks, accuracy is used when dealing with uni-

orm class distribution. However, accuracy can be misleading when han-

ling imbalanced data. For instance, in the case of rare diseases where

ositive samples are scarce, a model that predicts all samples as nega-

ive can still yield considerably high accuracy. In such scenarios, preci-

ion, recall, or F1 score are preferred ( Fig. 3 a). Precision is used when

inimizing false positives is important, while recall is used when min-

mizing false negatives is crucial. The F1-score is the harmonic mean

f precision and recall and is useful when considering the balance be-

ween the two metrics. Macro F1 averages the F1-scores of each class,

reating all classes equally, while micro F1 calculates metrics globally,

iving more weight to larger classes. It is strongly advised to visualize

nd examine the confusion matrix in addition to calculating the afore-

entioned metrics, as it offers valuable insights into the models’ class-

ise performances and error types, enabling targeted improvements. In

 binary classification, area under the receiver operating characteristic

urve (AUROC) and area under the precision-recall curve (AUPR) can

e used to comprehensively evaluate the model’s performance at vari-

us thresholds ( Fig. 3 b). The optimal threshold can be selected based

n the domain requirements (e.g., whether minimizing false positives

r false negatives is more important). AUROC, plotted based on the true

ositive rate and false positive rate, represents how well the model dis-

inguishes between positive and negative classes. However, it may not

dequately reflect the decrease in recall for the minority class, which is

 common concern in highly imbalanced scenarios. In such cases, AUPR,

hich considers both precision and recall, is preferred. For regression

asks, metrics such as mean squared error (MSE), mean absolute error

MAE), and R-squared (coefficient of determination) are suitable. MSE
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Fig. 3. Evaluation of classifier performance using confusion matrix and ROC/PR curves. 

(A) Confusion matrix with key performance metrics: precision, recall, and F1-score. This confusion matrix visualizes the classifier’s predictions against the actual 

classes, highlighting true positives, true negatives, false positives, and false negatives. (B) Receiver operating characteristic (ROC) curve (left) and precision-recall 

(PR) curve (right) for assessing the classifier’s discriminative power. The ROC curve shows the trade-off between the true positive rate (TPR) and false positive rate 

(FPR), while the PR curve illustrates the trade-off between precision and recall. The area under the ROC curve (AUROC) and area under the PR curve (AUPR) 

quantify the overall effectiveness of the classifier, used to evaluate either different models or variations in threshold settings with the same model. 
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nd MAE measure the error between the predicted and actual values,

hile R-squared indicates how well the model explains the variability

n the data. Specifically, R-squared is defined as 1 minus the ratio of

he residual sum of squares to the total sum of squares, representing the

nexplained variance. In linear regression, the total variance equals the
7

um of the explained and unexplained variances, allowing R-squared to

e interpreted as the proportion of the total variance explained by the

odel. However, this equality does not hold for nonlinear regression,

aking R-squared less interpretable and less suitable for evaluating non-

inear models. 58 
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Evaluating unsupervised learning models requires a different ap-

roach. For clustering, internal evaluation metrics like silhouette score

r Davies-Bouldin index can be used to assess the quality of clustering

ased on the cohesion and separation. Additionally, performing clus-

ering multiple times using a subset of the data (e.g., 80 %) and check-

ng the stability and reproducibility of the results is also a good prac-

ice to ensure the robustness of the clustering result. There are vari-

us approaches to evaluate the quality of dimensionality reduction re-

ults. A common approach is to assess the preservation of local struc-

ure (e.g., cluster label) or global structure (e.g., overall cluster arrange-

ent and relative ordering of pairwise sample distances) in the reduced-

imensional space compared to the original high-dimensional space. 59 

nother approach to evaluate dimensionality reduction results involves

ssessing their sensitivity to various choices made during the process,

uch as parameter settings and preprocessing steps. Additionally, the

reservation of information can be measured using techniques like ex-

lained variance in principal component analysis or reconstruction error

n autoencoders. 60 

. Model interpretation 

While reporting performance metrics is important, interpreting the

esults is equally crucial. In the medical field, clearly explaining the

actors that drive AI model predictions is particularly critical, as it allows

linicians to assess the model’s reasoning and ensures transparency and

rust in the system’s outputs. 

Generalized linear models are widely utilized in medical research

ue to their interpretability. These models provide regression coeffi-

ients, which indicate the direction and magnitude of the effect of each

redictor variable on the outcome variable. Logistic regression partic-

larly uses odds ratios, obtained by exponentiating the coefficients, to

ssess the relative influence of predictor variables. An odds ratio repre-

ents the change in the odds of the outcome variable being 1 (e.g., the

resence of a disease) for a one-unit increase in the predictor variable,

hile controlling for other variables in the model. While coefficients

rovide information about the effect size, p-values and confidence in-

ervals are used to assess the statistical significance and precision of

hese estimates. A p-value indicates the probability of observing an ef-

ect as extreme as the one found, assuming the null hypothesis is true,

hile a confidence interval provides a range of plausible values for the

rue effect size. Both statistical significance and effect size are crucial

or making informed clinical decisions, as they offer complementary in-

ights into the reliability and practical relevance of research findings.

olcano plots are instrumental in visualizing these two essential aspects

imultaneously, displaying the magnitude of coefficient values alongside

heir corresponding p-values. This allows researchers to quickly identify

ey biological or medical insights that are both statistically significant

nd have a substantial effect size. 

While these interpretation methods are well-established for tradi-

ional statistical models, ensemble models provide another valuable ap-

roach for model interpretation. These models inherently provide fea-

ure importance scores, which assess the impact of each feature on the

odel’s predictions. For instance, in random forest, permutation impor-

ance measures the decrease in model performance when a feature is

andomly shuffled, while MDI (mean decrease in impurity) quantifies

he reduction in impurity (e.g., Gini impurity or entropy) achieved by

plitting on a feature, averaged across all decision trees. Features that

ignificantly affect model performance or consistently reduce impurity

re considered important. For instance, one study 6 employed extremely

andomized trees classifiers to predict Sasang constitution types using

 comprehensive clinical dataset. The feature importance scores from

he trained model identified the most informative features for classify-

ng Sasang types, revealing that body measurement features were the

ost crucial, followed by personality, general information, and cold-

eat characteristics, with costal angle being the single most important

eature. 
8

While these interpretation methods are well-established for tradi-

ional statistical models, recent advancements in explainable AI (XAI)

ave provided techniques to interpret DL models, which are often con-

idered "black boxes" due to their complex architectures. One prominent

AI method is SHapley Additive exPlanations (SHAP, 39 ) which assigns

mportance values to each input feature based on its contribution to

he model’s output. SHAP values are calculated by considering all pos-

ible combinations of features and comparing the model’s predictions

ith and without each feature, providing a robust and individualized

easure of feature importance. Another popular XAI technique is Lo-

al Interpretable Model-agnostic Explanations (LIME, 61 ) which focuses

n explaining individual predictions. LIME generates local interpretable

odels by slightly perturbing the input data around a specific instance

nd learning a simpler, interpretable model (e.g., linear regression) that

imics the DL model’s behavior in the vicinity of that instance. The

earned local model’s coefficients provide insights into the most impor-

ant features for that particular prediction. These XAI methods enable

esearchers to interpret DL models, providing transparency and under-

tanding of their inner workings. For instance, in a study focused on

istinguishing between morphologically similar medicinal herbs, a con-

olutional neural network was employed for classification, and LIME

as subsequently applied to identify the crucial morphological features

hat differentiate between species. 62 Another study utilized ML models

o predict quality of life in middle-aged adults. The application of SHAP

evealed that stress and sleep quality were the most significant predic-

ors of quality of life in this demographic. 63 

While these interpretation methods provide valuable insights, cau-

ion must be exercised to avoid confusing correlation with causation.

o address this issue, practitioners can utilize causal inference methods

uch as causal diagrams to map out assumed relationships and poten-

ial confounders. 64 Additionally, implementing randomized controlled

rials where feasible and applying sensitivity analyses to observational

ata can enhance the robustness of causal claims, ensuring more reliable

nd actionable insights in medical research and practice. 

When evaluating model performance, it’s essential to go beyond just

eporting metrics and provide a qualitative assessment as well. It’s im-

ortant to consider what level of performance improvement is consid-

red meaningful and significant in the specific clinical context. This in-

olves comparing the model’s performance to a relevant baseline, such

s the performance of a simpler model or the current standard of care.

he required performance threshold for a model to be deemed use-

ul may vary depending on the severity of the condition, the conse-

uences of false positives or false negatives, and the available alternative

ethods. 

In cases where unsupervised learning is used for subtype identifica-

ion, it’s crucial to further investigate the clinical relevance and implica-

ions of the discovered subtypes. Expert interpretation and assessment of

hether the identified subtypes align with known disease categories or

epresent novel, biologically meaningful distinctions are essential. For

nstance, one study 65 employed a deep autoencoder-powered pattern

dentification model using multi-site cross-sectional survey data from

atients with sleep disturbances. The unsupervised learning model de-

ived three distinct patient clusters differentiated by changes in sleep

uality, dietary habits, and concomitant gastrointestinal symptoms,

hich were interpreted as corresponding to specific pattern identifica-

ion types recognized in TEAM. Another study 9 integrated biopsychoso-

ial information from conventional and traditional medicine, as well

s quality of life questionnaires. By applying nonlinear dimensionality

eduction followed by clustering, four novel functional gastrointesti-

al disorder subtypes were identified and interpreted as mild, severe,

ind-symptom predominance, and body-symptom predominance based

n the normalized average scores of the top 50 body and mind-related

ariables. Furthermore, analyzing the clinical characteristics, outcomes,

iomarker profiles, and treatment responses associated with each sub-

ype can help validate their utility and guide further research into tai-

ored interventions. 
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. Large language models 

LLMs are a revolutionary subset of DL algorithms that leverage neu-

al networks with billions of parameters to process and understand

uman language with remarkable proficiency. These models are pre-

rained on a vast corpus of diverse text, enabling them to capture com-

lex linguistic structures and semantics. Conversational language mod-

ls, such as ChatGPT, have further propelled their capabilities by en-

bling interactive, context-aware conversations. 

Developing LLMs from scratch by individual researchers or smaller

nstitutions is practically infeasible due to significant resource and time

equirements. Instead, leveraging existing models, particularly through

ne-tuning smaller open-source models, presents a more viable ap-

roach. 66 , 67 For instance, models like TCM-GPT 

68 can be effectively

ne-tuned on a large TCM-specific corpus, demonstrating outperform-

ng results on TCM examination and TCM diagnosis. Additionally, re-

rieval augmented generation provides an alternative method of lever-

ging LLMs without training. 69 Unlike fine-tuning, which involves mod-

fying the internal parameters of a pre-trained model to adapt it to spe-

ific tasks, retrieval augmented generation retrieves relevant informa-

ion from external sources to enhance the model’s responses without

ltering its foundational structure. These methods bridge the gap be-

ween general-purpose models and domain-specific needs, offering a

calable solution for enhancing model accuracy and relevancy in special-

zed fields like TEAM. (For a comprehensive review of research trends

pplying LLMs in the medical field, refer to. 70 , 71 ) 

For users without deep technical expertise, there are more accessi-

le methods for utilizing generative LLMs. Web-based usage is a conve-

ient way to engage with LLMs, allowing users to interact with these

odels through simple web interfaces without complex setup. In the

ealm of language models, prompting refers to the process of provid-

ng input to steer or influence the model’s generated output. By fo-

using on prompt engineering, users can harness LLMs’ capabilities

o extract high-quality responses. 72 An example of this is the Med-

rompt 73 technique, which combines dynamic few-shot selection, self-

enerated chain-of-thought reasoning, and choice-shuffling ensemble

trategies to improve the accuracy and robustness of GPT-4 ′ s responses

n medical application. API-based usage offers more flexibility, allow-

ng users to integrate LLMs into custom applications. This option is

deal for those who need to incorporate LLM functionalities into spe-

ific software or platforms. With the help of user-friendly libraries and

ools, users can create chatbots with minimal coding knowledge, mak-

ng the development process more accessible. These chatbots can serve

arious purposes, including providing simulated clinical scenarios for

tudents to practice diagnosing and treating virtual patients 74 , facili-

ating communication between healthcare providers and patients, and

ffering clinicians relevant information to support clinical decision-

aking. 75 

Remarkably, the advent of LLMs with advanced coding capabili-

ies has significantly lowered the barrier for researchers seeking to

ntegrate AI into their work. Tools like AI-assisted code generation

nd automated data preprocessing have made AI more accessible to a

roader range of researchers, even those without extensive coding ex-

ertise. However, it is crucial to recognize that this increased accessi-

ility does not diminish the importance of understanding the key con-

epts and potential challenges throughout the entire research process.

rom data selection and preprocessing to model development, evalua-

ion, and interpretation, researchers must be aware of intricate issues

uch as data leakage, overfitting, and ethical considerations. As LLMs

ontinue to evolve and shape the landscape of TEAM research, it is es-

ential for researchers to not only leverage these powerful tools but also

pproach them with a critical understanding of their limitations and

mplications. By doing so, we can harness the potential of LLMs to ad-

ance TEAM research while ensuring the integrity and reliability of our

ndings. 
9

. Challenges to overcome and future directions 

To effectively utilize AI techniques in TEAM research, several chal-

enges need to be addressed. The most pressing issue is the scale and

uality of the collected data. Currently, there is a severe lack of quanti-

ative data in the field of TEAM, which acts as a significant obstacle to

he development and validation of AI models. This scarcity of data can

e attributed, at least in part, to certain inherent characteristics of TEAM

ractice. These characteristics, such as the emphasis on individualized

reatment, the holistic diagnosis based on patients’ self-reported symp-

oms and observations (inspection, listening, inquiry, and palpation),

nd the use of complex herbal formulas, pose unique challenges in col-

ecting and standardizing data for computational analysis. As a result,

t is challenging to systematically collect high-quality quantitative data

n clinical settings. Recognizing this problem, the TEAM community is

aking multifaceted efforts to collect data. For example, a project aims

o establish an infrastructure for collecting, processing, and utilizing var-

ous forms of data generated in TEAM clinical practice and to develop

I-based diagnostic and treatment support systems using this infrastruc-

ure. 76 , 77 It is hoped that such initiatives will expand and evolve in the

uture, leading to the construction of large-scale datasets in the field of

EAM. Instead of relying solely on the collection of real-world data, vir-

ual patient generation offers an alternative approach to address the data

carcity issue in TEAM. This technique involves using generative mod-

ls, such as generative adversarial networks 78 , 79 or GPT, 80 , 81 to create

ynthetic patient profiles. These models learn the underlying distribu-

ion of real patient data and generate virtual samples that capture the

ssential characteristics and variability of the original data. This aug-

ents the existing dataset with a wide range of symptoms, diagnoses,

nd treatment responses. However, it is crucial to validate the gener-

ted virtual patient data to ensure its quality and representativeness of

eal-world scenarios. 

Complementing the quantitative expansion of data acquisition, the

ecent integration of advanced diagnostic devices into TEAM practice

as facilitated the collection of more objective and quantifiable data.

or instance, the utilization of diagnostic devices such as ultrasound

maging devices, digital stethoscopes, and electroencephalography de-

ices enable the object collection of biosignals and imaging data. By

ntegrating this information with laboratory results from blood tests, a

ore comprehensive and multimodal TEAM dataset can be constructed.

To fully harness the potential of the collected TEAM data, it is cru-

ial to establish a robust platform that facilitates the accumulation, in-

egration, and sharing of data from various clinical settings. This sys-

em should prioritize data privacy and security, employing stringent

nonymization techniques to safeguard patient confidentiality. Simul-

aneously, the system should promote open access to the anonymized

ata, allowing researchers to freely explore, collaborate, and generate

ew hypotheses. This open-source approach will foster innovation, ex-

and the scope of TEAM research, and accelerate the field’s progress. 

Effective utilization of clinical data hinges on the integration of in-

ormation from various sources into a consistent format. Common Data

odels 82 have long been the go-to strategy for this purpose, but the

dvent of LLMs is now offering innovative approaches to data stan-

ardization. First, as demonstrated by the TEMED-LLM methodology, 83 

LMs can effectively extract structured tabular data from unstructured

extual medical reports, enabling the transformation of heterogeneous

ata sources into a consistent format and facilitating interoperability.

econd, LLMs’ ability to learn from and process unstructured data di-

ectly, such as clinical text summarization 84 and learning from elec-

ronic health records, 85 allows for the utilization of clinical data without

he need for extensive data preprocessing. 

The application of AI technologies in TEAM research offers a promis-

ng approach to address long-standing challenges while preserving its

nique strengths. TEAM’s highly abstract theoretical concepts, while

acilitating intuitive reasoning and systemic pattern recognition, have
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2  
ed to significant inter-practitioner variability and difficulties in scien-

ific validation. AI can bridge this gap by translating abstract concepts

low-dimensional, high-level features) into combinations of clinical phe-

otypes or molecular characteristics (high-dimensional, low-level fea-

ures). 86 For instance, pattern identification, a unique diagnostic sys-

em of TEAM, can be modeled as a dimensionality reduction algorithm

n ML. 26 , 65 This approach allows us to quantify how TEAM doctors com-

ine various clinical symptoms to identify core patterns, similar to how

imensionality reduction algorithms extract key features from complex

atasets. By analyzing this process, we can not only objectify theoret-

cal concepts but also identify potentially valuable features that might

e overlooked in traditional diagnostics. Moreover, as mentioned ear-

ier, advanced medical technology now allows us to observe symptoms

hat were previously undetectable by naked sense and collect diverse

iological data. By applying AI techniques to these rich, multidimen-

ional datasets, researchers can uncover new subtypes within diseases

nd identify patterns that were not discernible through traditional meth-

ds alone. 87 , 88 These AI-derived clusters can then be compared with tra-

itional TEAM classifications, potentially validating some aspects of tra-

itional knowledge while also refining and expanding our understand-

ng of disease mechanisms. This integration of AI with TEAM thus offers

 pathway to enhance the precision, reliability, and scientific validity of

raditional practices, contributing to theoretical advancement and po-

entially more effective, personalized treatment strategies. 
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