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Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver illness with a genetically
heterogeneous background that can be accompanied by considerable morbidity and attendant health care
costs. The pathogenesis and progression of NAFLD is complex with many unanswered questions. We
conducted genome-wide association studies (GWASs) using both adult and pediatric participants from the Electronic
Medical Records and Genomics (eMERGE) Network to identify novel genetic contributors to this condition.

Methods: First, a natural language processing (NLP) algorithm was developed, tested, and deployed at each site to
identify 1106 NAFLD cases and 8571 controls and histological data from liver tissue in 235 available participants. These
include 1242 pediatric participants (396 cases, 846 controls). The algorithm included billing codes, text queries, laboratory
values, and medication records. Next, GWASs were performed on NAFLD cases and controls and case-only analyses using
histologic scores and liver function tests adjusting for age, sex, site, ancestry, PC, and body mass index (BMI).

Results: Consistent with previous results, a robust association was detected for the PNPLA3 gene cluster in participants
with European ancestry. At the PNPLA3-SAMM50 region, three SNPs, rs738409, rs738408, and rs3747207, showed
strongest association (best SNP rs738409 p = 1.70 × 10− 20). This effect was consistent in both pediatric (p = 9.92 × 10− 6)
and adult (p = 9.73 × 10− 15) cohorts. Additionally, this variant was also associated with disease severity and NAFLD Activity
Score (NAS) (p = 3.94 × 10− 8, beta = 0.85). PheWAS analysis link this locus to a spectrum of liver diseases beyond NAFLD
with a novel negative correlation with gout (p = 1.09 × 10− 4). We also identified novel loci for NAFLD disease severity,
including one novel locus for NAS score near IL17RA (rs5748926, p = 3.80 × 10− 8), and another near ZFP90-CDH1 for
fibrosis (rs698718, p = 2.74 × 10− 11). Post-GWAS and gene-based analyses identified more than 300 genes that were used
for functional and pathway enrichment analyses.
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Conclusions: In summary, this study demonstrates clear confirmation of a previously described NAFLD risk locus and
several novel associations. Further collaborative studies including an ethnically diverse population with well-characterized
liver histologic features of NAFLD are needed to further validate the novel findings.
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Background
Nonalcoholic fatty liver disease (NAFLD) is one of the
most common chronic liver diseases, found in 17–30%
of the population in Western countries [1]. NAFLD, de-
fined as greater than 5% fatty acid content of liver by
weight, includes not only simple and benign steatosis
but also the more serious nonalcoholic steatohepatitis
(NASH), which may progress to cirrhosis and liver fail-
ure in 8 to 26% of adults with NASH [2]. NASH is de-
fined histologically by the presence of macrovesicular
steatosis, lobular inflammation, and hepatocellular bal-
looning. The pathology is often indistinguishable from
alcoholic fatty liver disease; therefore, the diagnosis can
only be made in the absence of significant alcohol use
[3]. NAFLD is now recognized as a common metabolic
disorder globally as a result of ongoing obesity pan-
demic. It also increases risk of adverse long-term conse-
quences including death from liver cirrhosis and
cardiovascular disease. In fact, NASH is now the second
most common indication for liver transplantation in the
USA after chronic hepatitis C [4].
Growing evidence has shown that NAFLD can also

occur in 10–20% of non-obese population, most often in
association with central adiposity, recent weight gain,
dietary factors, or genetic risk alleles [5]. In East Asian
countries, for example, the incidence and prevalence of
NAFLD are increasing with time despite lower rates of
obesity compared to Western countries [6]. Hence, it is
important to identify the natural course of NAFLD and
the contributing factors for the development and main-
tenance or regression of this disease. The underlying eti-
ology is believed to be multifactorial with a substantial
genetic component. The heritability estimates of NAFLD
generally range from 20 to 70%, depending on the study
design, ethnicity, and the methodology used [7]. Like-
wise, for indices of disease severity, the heritability esti-
mates in a twin study for hepatic steatosis was 0.52
(based on MRI proton-density fat fraction) and for liver
fibrosis (based on liver stiffness) 0.5 [8]. In addition, her-
itability risk for NAFLD may be independent of body
mass index heritability. For example, family studies show
that while fatty liver can be present in 17% of siblings
and 37% of parents of overweight children without
NAFLD, it was significantly more common in siblings
(59%) and parents (78%) of children with NAFLD [9].

To date, several genome-wide association studies
(GWAS) have been published for this condition mainly
in adult cohorts [10–12]. One of the established effects
is in the PNPLA3 (patatin-like phospholipase domain–
containing 3) gene with consistent results across studies
in which the rs738409 C>G variant (resulting in an
amino acid substitution of methionine for isoleucine at
position 148 (I148M)) is strongly associated with this
trait. The PNPLA3 protein exerts lipase activity and
plays a role in the hydrolysis of glycerolipids, with max-
imum enzymatic activity against triglycerides, diacylglyc-
erol, and monacylglycerol [13]. Structural modeling
suggests that this substitution may occlude access of
substrates to the catalytic dyad [14]. However, the exact
underlying mechanisms remain unclear.
The electronic medical record (EMR) is a rich source

of clinical information. Natural language processing
(NLP) techniques have demonstrated successes within
the clinical domain and have been tested for transferabil-
ity to another institution [15]. The electronic MEdical
Records and GEnomics (eMERGE) Network, founded in
2007, is a consortium of multiple adult and pediatric in-
stitutions developed to explore the utility of DNA biore-
positories linked to EMRs as well as establishing and
validating specific algorithms with and without NLP for
many common phenotypes [16]. In this study, we inves-
tigated the genetic variants associated with NAFLD/
NASH in children and adults using phenotypic measures
extracted from medical records in a collection of already
genotyped samples from more than 80,000 eMERGE
participants to replicate prior studies and identify add-
itional genetic loci.

Methods
Study participants and phenotype
Data for this study were collected from the eMERGE
Network [17]. Protocols for this study were approved by
the Institutional Review Boards (IRBs) at the institutions
where participants were recruited; all included partici-
pants provided written informed consent prior for inclu-
sion in the study. The population comprised 9677
unrelated European ancestry participants (1106 cases
and 8571 controls). A natural language processing (NLP)
algorithm was deployed in each site to identify NAFLD
cases and controls. These include logic concepts using
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billing codes, laboratory values, text queries, and medi-
cation records to identify true cases and controls at each
site. A rules-based NLP algorithm was developed using
structured and unstructured data from Cincinnati Chil-
dren’s Hospital and Medical Center (CCHMC) and sec-
ondarily validated in Children’s Hospital of Philadelphia
(CHOP) with high precision. The eMERGE protocol in-
cludes development of an algorithm at a primary site
and the implementation and validation at a secondary
site. The secondary site serves as a testing ground for
the purposes of mitigating overfitting concerns and en-
suring portability. Expert validation includes manual
chart review at each site by a physician for both cases
and controls. After obtaining a validated positive predict-
ive value of 95% for cases and controls at both the pri-
mary (CCHMC) and secondary sites (CHOP), the
algorithm has been implemented across network. The
exclusion and inclusion criteria for NAFLD were derived
according to recommendation from the American Asso-
ciation for the Study of Liver Diseases (AASLD) practical
guideline for NAFLD [18]. Case inclusion and exclusion
criteria, list of excluded medications, and the number of
participants per eMERGE site can be found in Add-
itional file 1: Table S1. We processed the pathology and
radiology reports from encounters with diagnosis codes
by searching with regular expressions for specific related
terms as shown in Additional file 1: Table S1. The
NegEx multilingual lexicon was used to assess positive
and negative condition for each term [19]. In addition,
NAFLD disease severity was assessed based on available
liver enzyme and histopathologic grade using the
NAFLD Activity Score (NAS). NAS score is a standard
method used to score NAFLD disease activity and ori-
ginally has been developed as a tool to measure disease
prognosis and changes in NAFLD during therapeutic tri-
als [20]. The NAS is derived from an unweighted sum of
scores of liver steatosis (0–3), lobular inflammation (0–
3), and hepatocellular ballooning (0–2), ranging between
0 and 8. Coexistent fibrosis also has a separate scoring
range of 0–4. This consists of no fibrosis (0), perisinusoi-
dal or periportal (1), portal (2), bridging fibrosis (3), and
cirrhosis (4). The NAS classification scoring system is
shown in Additional file 1: Table S1. We obtained these
values from pathology reports using NLP processing
for 235 of our NAFLD case participants. In addition,
for each case, the highest level of liver enzyme values
for aspartate aminotransferase (AST U/L) and alanine
aminotransferase (ALT U/L) was obtained for associ-
ation testing.

Genotyping and imputation
Genetic data for the eMERGE Network is available from
the coordinating center and can be accessed through
dbGAP (phs000888.v1.p1) which is annually updated.

High-throughput SNP genotyping was carried out previ-
ously in each contributing medical center. A series of
standard quality control (QC) measures has been applied
before and after imputation. These measures have been
developed by the eMERGE Genomics Workgroup [21,
22]. The standard QC process included sample call rates,
sample relatedness, and population stratification, sex
inconsistency as well as marker quality (i.e., marker call
rate, minor allele frequency (MAF), and Hardy-
Weinberg equilibrium (HWE). In this study, all analyses
were limited to participants with call rates > 98%, SNPs
with call rates > 99%, and SNPs with MAF > 1% and
HWE p > 0.0001 in controls. The details of imputation
process and principal component (PC) analyses have
been included in Additional file 2 [23–25].

Statistical analyses
Logistic (case-control) and quantitative linear (case-only)
regression analyses were performed using an additive
genetic model adjusting for 10 medical centers; PCs 1, 2,
and 3; sex; and age. In addition, since NAFLD is closely
linked to obesity, we included the most recent BMI for
each subject as another covariate and remove all missing
participants from analyses. Traditionally absolute BMI
(kg/m2) is used for adults, while age- and sex-specific
BMI-z scores and percentiles apply in children and ado-
lescents to account for their continuing growth. In com-
bined analyses, we therefore transformed all BMI into 6
classes: underweight (< 18.5 or < 5th percentile), normal
(18.50–24.99 or 5th to < 85th percentile), overweight
(25.00–29.99 or 85th to < 95th percentile), and obese:
class 1 (30–34.99 or 95th to < 120% of the 95th percent-
ile), class 2 (35–39.99 or 120% to < 140% of the 95th
percentile), and class 3 (≥ 40 or ≥ 140% of the 95th
percentile). The percentage of BMI ≥ 95% in pediatrics
participants was estimated using the CDC-based online
resource [27]. The distribution of participants that we
received from the network also varied per site (see
Additional file 1: Table S1); we therefore adjust for 10
study sites. Adjusting for too many covariates may
sometimes cause the standard logistic regression to fail
to converge especially for less-frequent variants. Firth’s
penalized likelihood approach, available in second gener-
ation of PLINK, is a method of addressing issues of sep-
aration and bias of the parameter estimates in which we
used in regression analyses when necessary [26]. For
liver enzymes (AST, ALT), we used the highest value U/
L per subject. All quantitative phenotypes including liver
enzymes and NAS score were standardized to mean of
zero and variance 1 using PLINK.
Further conditional analyses and pairwise SNP × SNP

interactions were also performed using “epistasis” option
in PLINK. In this study, we only analyzed the pairwise
interaction effect of one known SNP (rs738409) in
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PNPLA3 gene against the genome. The slower “—epista-
sis” command was used to test for epistasis using logistic
regression which is the most accurate test to define SNP ×
SNP interactions [26]. Interactions were excluded if two
SNPs were located within 1Mb of each other to avoid
spurious evidence of interaction due to linkage disequilib-
rium (LD). Narrow-sense heritability was also estimated
using an SNP-based approach available in the GCTA pro-
gram [28] which evaluates the proportion of phenotypic
variance explained by all SNPs. Briefly, the GCTA analysis
consists of two steps. First, all SNPs are used to calculate
the genetic relationship matrix (GRM) among participants
using the observed low-level genetic similarity in SNP data
from individuals who are not directly related. This meas-
ure is then used as a predictor in a mixed linear model
with a trait as the response to estimate h2 [28]. The
weighted genetic risk score (GRS) was also calculated
using PLINK-score function by multiplying each β-coeffi-
cient of highly significant SNPs with the number of corre-
sponding risk alleles (0, 1, or 2) and then summing the
products ( [26]. For known variants, β-coefficients were
obtained from the GWAS catalog [29]. The performance
of the obtained GRS score for disease diagnosis and pre-
diction accuracy were evaluated using receiver operating
characteristic (ROC) curve, using MedCalc software [30].
Finally, to estimate the level of heterogeneity between
pediatrics and adult cohorts, Cochran’s Q test statistics
was applied using PLINK2 [26].

PheWAS analyses
A phenome-wide association study (PheWAS) was also
performed in order to evaluate pleotropic effects of the
known GWAS variant (rs738409) as well as other novel
effects in this study with any other trait in children or
adults. The trait definition in PheWAS approach is
mainly based on billing International Classification of
Diseases (ICD) codes; therefore, it is less conservative.
The detail of this approach has been described previ-
ously [31]. We used the PheWAS package in R version

3.5.1 [32]. Briefly, in the PheWAS process, first the ICD-
9 codes are collapsed into PheWAS codes according to
PheWAS map [32]. Then, cases and controls are deter-
mined according to the code under study. In these ana-
lyses, a case was defined as having at least two
occurrences of the PheWAS code on different days and
the controls with no instances. Additionally, we used a
threshold of at least 20 cases for the code to be used in
the model. Next, for each PheWAS code, a logistic re-
gression model was created and adjusted for age, sex,
BMI, site of genotyping, and PCs similar to GWAS
study. A false discovery rate (FDR) of 0.05 using the
Benjamini–Hochberg procedure implemented in Phe-
WAS was then used to correct the threshold for mul-
tiple hypotheses testing.

Post-GWAS analyses and data visualization
The details of post-GWAS analyses including functional
annotation, prioritization, and interpretation of GWAS
results based on functional mapping are included in
Additional file 2 [33–41].

Power analyses
We used QUANTO for power calculation of case-only
and case-control GWAS analyses [42]. For quantitative
NAS-score analysis with 235 participants, given the
mean and standard deviation of our continuous variable,
i.e., NAS score (mean 3.78, SD 1.76) (see Table 1), we
tested the power assuming an additive genetic model.
For variants with minor allele frequency above 0.2 and
effect size (βG) of at least 0.5, this sample size will have
> 0.80 power to identify the association at an alpha level
of 0.05. Of note, almost all of our top genetic associa-
tions for NAS score or fibrosis had minor allele fre-
quency above 0.2. In case-control GWAS analyses with
1106 cases and 8571 controls, we had more than 90%
power to detect effects for all variants with MAF > 0.01
under an additive model.

Table 1 Laboratory, clinical, and histologic characteristics of NAFLD patients included in the case-only association analyses. All
individuals were of European ancestry

Pediatrics Adult Overall

Histologic characteristic—NAS score (0–8) † 4.01(SD 1.58) 3.45(SD 1.74) 3.78(SD 1.76)

NAS score ≥ 5 43/107 (40%) 36/128 (28%) 79/235 (34%)

Histologic characteristic—fibrosis score (0–4) † 0.71(SD 0.67) 1.01(SD 1.26) 0.88(SD 1.06)

ALT U/L‡ 40 (37–45) 63 (59–67) 53 (49–58)

AST U/L‡ 45 (42–48) 39 (37–41) 41 (39–43)

Presence of cirrhosis N = 0 N = 64 N = 64

Presence of hepatocellular CA N = 0 N = 15 N = 15

†NAS and fibrosis score were available for 235 subjects (107 pediatrics and 128 adult subjects). For histologic score, mean and standard deviation is shown
‡ ALT and AST lab values were available for 1075 of cases. Medians and 95% CI of medians are shown
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Results
The results reported below consist of overall NAFLD
case-control GWAS and four additional case-only GWA
quantitative studies for NAS score, fibrosis, and AST
and ALT liver enzymes.

NAFLD case-control GWAS
Table 2 shows demographic characteristics of patients
and controls included in this study. The mean age was
63.5 (±16.86 SD) for adult participants (N = 8435) and
13.05 (±5.41 SD) for pediatric participants (N = 1242).
The number of participants per site is included in
Additional file 1: Table S1. In this study, 47% of pediatric
participants and 42% of adults were males. A total of
9677 unrelated European ancestry participants (1106
cases and 8571 controls) and 7,263,501 autosomal vari-
ants were evaluated for this GWAS analysis.

Associations of previously reported SNPs
Consistent with previous reports, we identified strong gen-
etic signals at the PNPLA3 locus at 22q13. Figure 1a shows
a Manhattan plot with one main peak located on chromo-
some 22 that was associated with NAFLD. The Q–Q plot
of this GWAS is also shown in Fig. 1b. The overall low in-
flation rate of λ = 1.001 indicated no major population
stratification. At the PNPLA3-SAMM50 region, three proxy
SNPs (r2 > 0.95), rs738409, rs738408, and rs3747207, lo-
cated in the PNPLA3 gene showed the strongest associa-
tions (best SNP rs738409 p = 1.70 × 10− 20, OR = 1.79 (95%
CI = 1.58–2.02)) (Table 3, Fig. 2a). This effect was consist-
ent in both pediatric (p = 9.92 × 10− 6, OR = 1.76 (95% CI =
1.37–2.27)) and adult (9.73 × 10− 15, OR = 1.79 (95%
CI = 1.55–2.08)) cohorts and with no evidence of
heterogeneity (Cochran’s Q = 0.78, I2 = 0). Consistent
with previous results, another coding variant
rs2294918 (E434K) in PNPLA3 gene was associated at
a weaker level (p = 1.90 × 10− 5). The SNPs with the
most significant evidence for association are summa-
rized in Table 3, and all results with p < 10− 5 are in-
cluded in Additional file 1: Table S2.
Apart from the main effect at the PNPLA3 locus, pre-

vious genetic studies identified several minor effects at
other chromosomal loci, including GCKR at 2p23, and
GATAD2A, NCAN, and TM6SF2 at 19p12 [43, 44]. We
examined whether or not the associations were repro-
duced in our cohorts by extracting genotype information

of SNP markers corresponding to these loci. None of
these effects reached genome-wide significance. In our
pediatric cohorts, the association of rs1260326 and
rs780094 in GCKR was borderline significant (p = 0.006,
OR = 1.40, 95% CI 1.1–1.78). However, the association
was lost when examined in the adult cohort (see
Additional file 1: Table S3). At the 19p12 region
(GATAD2A, NCAN,TM6SF2), the association with known
SNP rs4808199 was also detected using all cohorts (p =
0.004, OR = 1.22, 95% CI 1.06–1.40)). Of note, the known
TM6SF2 missense variant rs58542926 (E167K) produced
a p = 0.03 (OR = 1.23, 95% CI 1.01–1.52) in our cohort. In
this region, we also found other unreported downstream
markers with stronger associations (best effect for SNP
rs56408111 p = 5.26 × 10− 6) (see Additional file 1: Table
S2; Fig. 2b). The observed effect for rs4808199 or
rs58542926 disappeared after conditioning on rs56408111
(p = 0.71, p = 0.17 respectively) suggesting that the associ-
ation in this region mostly derives from rs56408111. The
LD between these two known markers (rs4808199,
rs58542926) and the best variant in this study,
rs56408111, was modest (r2 = 0.25, r2 = 0.40 respectively).
We also confirmed an effect at 8q24 near the

TRIB1 gene that previously associated with NAFLD
in the Japanese population [45]. In their population,
rs2954021 produced p = 4.5 × 10− 5. In our European
ancestry population and for the first time, this vari-
ant as well as a cluster of variants nearby was asso-
ciated with NAFLD with the best marker rs2980888
(p = 5.98 × 10− 7, OR = 1.36 95% CI = 1.20–1.53) (see
Table 3, Fig. 2c). Conditional analyses suggest that
rs2980888 is the most informative variant in this re-
gion in European ancestry. These two markers re-
sided in one risk haplotype in European ancestry
with (r2 = 0.45, D’ = 0.97) (Fig. 2c).

Controlling for the main effects at PNPLA3
We used logistic regression models conditioned on the
main effect at PNPLA3 as well as testing for epistatic
interaction between the known SNP at PNPLA3
rs738409 and the rest of genome. For conditional ana-
lysis, the genotype data of rs738409 in dosage format (0,
1, 2) was included as another covariate in addition to
age, sex, PCs, BMI, and sites of genotyping. While this
variant controlled all effects at PNPLA3 indicating no
other independent effects at this locus, no major changes

Table 2 The demographic distribution of EMR-linked eMERGE cohorts

Case_EA Control_EA Mean age ♂/♀ Mean BMI, kg/m2

Pediatrics* 396 846 13.05 (SD 5.41) 693/549 22.70 (SD 7.87) †

Adults 710 7725 63.50 (SD 16.86) 3810/4625 32.64 (SD 8.21)

Total 1106 8571

*Defined as ≤ 21 years old
†The average BMI-for-age z score in pediatric cohorts was 1.16 (95% CI = 1.03–1.20, SD = 1.39)
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have been detected in other loci. Next, in a separate ana-
lysis, the epistatic effect of the known SNP rs738409 with
the rest of the genome was evaluated (see “Methods”).
Several suggestive results were detected across the gen-
ome with only one effect at 16p12 that passed the signifi-
cance threshold of p < 0.0001 (SNP rs2188761, case-only
Pepistasis = 2.47 × 10− 7, case-control Pepistasis = 7.32 × 10− 6,
OR of interaction = 1.50). Several proxy markers in this re-
gion (16p12) such as rs7499477, rs2188760, and
rs6497497 (r2 > 0.95 with rs2188761) also interact with
rs738409 in PNPLA3. In addition, this novel epistatic ef-
fect was consistent in both pediatrics and adult cohorts
(OR of interaction = 1.57 and 1.43 for pediatrics and
adults, respectively). As mentioned above, all these
markers had passed QC and were in HWE. However,
none of these markers at the 16p12 region were genome-
wide significant in GWAS analyses (0.1 > p > 0.02).

Because NAFLD is closely linked to obesity, we also
explored the specific SNP × SNP interaction of the major
obesity locus, FTO (rs1421085) and PNPLA3 (rs738409).
We did not find any significant SNP × SNP interaction
(p = 0.72). Of note, the GWAS effect for FTO
(rs1421085) in this study was p = 0.25 after controlling
for BMI. However, by relaxing the model and removing
the BMI as a covariate, this effect in FTO increased in
significance (p = 9.26 × 10− 6).

Case-only GWA studies
Impact of SNPs on the severity of NAFLD
We next investigated the associations of the SNPs with
NAFLD disease severity based on available histopatho-
logic grade, namely, NAS and liver enzymes (see
“Methods”). Because liver biopsy usually is not indicated
for NAFLD diagnosis, we were able to identify and score

Fig. 1 a, b Manhattan plot (a) and Q–Q plot (b) of genome-wide markers for NAFLD in European ancestry (1106 cases and 8571 controls). A total
of 1106 cases of NAFLD and 8571 controls were analyzed after quality control. Logistic regression analysis was performed for 7,261,527 variants
with MAF > 1% assuming an additive genetic model, adjusted for age, sex, BMI, genotyping site, and genetic ancestry (principal components 1
through 3). Results are plotted as –log10 p values on the y-axis by position in chromosome (x-axis) (NCBI build 37)
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only 235 participants using EMR data from the total of
1106 NAFLD cases that includes 107 pediatric and 128
adult cases (Table 1). Liver function tests (AST U/L,
ALT U/L) were available for 1075 of case participants. In
addition to the main case-control study, for disease se-
verity index, we performed GWAS for each quantitative

trait (NAS score, fibrosis, ALT, AST) using linear regres-
sion method adjusting for age, sex, BMI, PCs, and site of
genotyping. These case-only analyses showed several loci
with significant associations. The SNPs with the most
significant evidence are summarized in Table 3 and all
results with p < 10− 5 are provided in Additional file 1:

Fig. 2 a–c LocusZoom plot of the associations signals in three previously known regions for NAFLD. a Confirmation at 22q13 for PNPLA3. SNP
rs738409 is a missense variation (I148M) in PNPLA3 produced the best effect (p = 1.70 × 10− 20). b Detected signal at 19p12 (GATAD2A, NCAN, TM6SF2)
region. The best marker in this study was rs56408111 (p = 5.26 × 10− 6). The linkage disequilibrium (LD) between rs56408111 and previously known
SNP rs4808199 was r2 = 0.24, D’ = 0.74. c Detected signal at 8q24 (TRIB1) genetic region. The best marker in this study (rs2980888) is shown (see also
Additional file 1: Table S2). Estimated recombination rates (from HapMap) are plotted in cyan to reflect the local LD structure. The SNPs surrounding
the most significant variant are color-coded to reflect their LD with the index SNP (taken from pairwise r2 values from the HapMap CEU database,
www.hapmap.org). Regional plots were generated using LocusZoom (http://csg.sph.umich.edu/locuszoom)
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Table S2. Consistent with previous reports, index SNP
rs738409 at PNPLA3 showed a significant association
with disease severity NAS score (p = 3.94 × 10− 8, beta =
0.85) (Table 3). Indeed, if we consider a binary outcome
in which NAS score ≥ 5 as case versus the remaining
cases as control (79 cases versus 156 controls), an OR =
2.72, 95% OR (1.83–4.04), and p = 4.27 × 10− 7 can be ob-
tained for this marker. As shown in Table 1, 34% of our
participants had a NAS score ≥ 5. Figure 3 also shows
the mean of NAS score and fibrosis together (0–12)
stratified by PNPLA3 index SNP rs738409-genotype
(GG/GC/CC) in which a beta of 1.07 (SE = 0.20) can be
obtained. This is almost equal to one unit increase in
NAS scores per risk allele.
Apart from the main effect at the PNPLA3 locus that

also was associated with disease activity, previous genetic

studies also identified several effects for histologic NAS
score, fibrosis, and liver enzyme in NAFLD cases [10,
46]. In particular, Chalasani et al. evaluated 236 well-
characterized NAFLD European ancestry female cases
using 324,623 SNP markers for the histologic traits.
After extracting genotype information of SNP markers
corresponding to these loci, none of these effects
reached genome-wide significance in our cohort. How-
ever, an effect for SNP rs1227756 at COL13A1 was asso-
ciated (p = 0.008) with the NAS score (Additional file 1:
Table S3). Another published effect was at chromosome
8 for SNP rs2645424 near FDFT1 for NAS score; how-
ever, a subsequent study failed to confirm it [47]. While
association with this marker was weak in our cohort
(best p = 0.15 for fibrosis), several nearby markers in this
region were suggestively associated including eQTL

Table 3 Major SNP association results with NAFLD (case-control), and 4 quantitative case-only GWA studies (NAS score, fibrosis, liver
enzymes ALT and AST) in the eMERGE Network. All results adjusted for age, gender, site of genotyping, 3 first principal components,
and BMI. For more details and results with p < 10− 5, see Additional file 1: Table S2

NAFLD-GWAS

SNP CHR Positiona Gene Minor allele MAFb OR L95 U95 p

rs738409 22 44,324,727 PNPLA3 G 0.23 1.79 1.58 2.02 1.70 × 10−20

rs738408 22 44,324,730 PNPLA3 T 0.23 1.79 1.58 2.02 1.93 × 10−20

rs3747207 22 44,324,855 PNPLA3 A 0.23 1.78 1.58 2.02 2.63 × 10−20

rs2294915 22 44,340,904 PNPLA3 T 0.25 1.75 1.55 1.97 1.40 × 10−19

rs2980888 8 126,507,308 TRIB1 T 0.31 1.36 1.20 1.53 5.98 × 10−07

rs2954038 8 126,507,389 TRIB1 C 0.31 1.35 1.20 1.52 8.30 × 10−07

NAS score

SNP CHR Position Gene Minor allele MAF Beta SE p

rs5748926 22 17,649,774 IL17RA T 0.34 0.91 0.16 3.81 × 10−08

rs738409 22 44,324,727 PNPLA3 G 0.41 0.85 0.15 3.94 × 10−08

Fibrosis

SNP CHR Position Gene Minor allele MAF Beta SE p

rs698718 16 68,560,185 ZFP90-CDH1 A 0.23 0.83 0.12 2.74 × 10−11

rs1645976 16 68,563,509 ZFP90-CDH1 T 0.23 0.83 0.12 2.79 × 10−11

rs72943235 2 88,500,646 FABP1 A 0.01 2.38 0.43 8.18 × 10−08

ALT liver enzyme

SNP CHR Position Gene Minor allele MAF Beta SE p

rs206833 2 31,708,616 XDH A 0.17 0.26 0.05 3.41 × 10−07

rs2294915 22 44,340,904 PNPLA3 T 0.34 0.20 0.04 4.04 × 10−07

rs738409 22 44,324,727 PNPLA3 G 0.33 0.20 0.04 4.68 × 10−07

AST liver enzyme

SNP CHR Position Gene Minor allele MAF Beta SE p

rs10272006 7 21,520,132 SP4 G 0.33 0.25 0.04 5.83 × 10−09

rs7796796 7 21,499,857 SP4 A 0.32 0.25 0.04 6.29 × 10− 09

rs62141163 2 31,663,114 XDH A 0.11 0.34 0.07 2.30 × 10−07

Abbreviations: MAF minor allele frequency, OR odds ratio, and 95% confidence interval (CI), Beta change in quantitative case-only phenotypes (NAS score, fibrosis
(235 cases), ALT and AST liver enzymes (1075 cases)) per copy of minor allele (direction of beta is for minor alleles, SE standard error of beta; aPosition = GRch37/
hg19; bThe direction of all effects is for the minor allele. The minor allele frequency for case-only GWA results is for cases
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variant rs1908814 (best p = 1.49 × 10− 4) for the same
trait but with low LD with the previously published
marker (r2 = 0.01) (see Additional file 1: Table S3). A re-
cent study also identified an association of a splice vari-
ant in HSD17B13 (rs72613567:TA insertion) with
reduced risk of NAFLD (p = 1.3 × 10− 5) [48]. In our
main case-control GWAS analysis, while we detected a
trend of association with this indel in the same direction,
it was not significant after adjusting for covariates
(Additional file 1: Table S3). Of note, another reported
missense variant in this gene (rs62305723) which en-
codes a P260S substitution, was weakly associated in the
pediatric only cohort (p = 0.05) (Additional file 1: Table
S3) [49]. Additionally, in NAS score analysis in this re-
gion, we detected a novel eQTL marker for HSD17B13
(rs3923441) that was nominally significant with NAS
score (p = 0.008, beta = 0.55) (Additional file 1: Table S3)
and produced a PheWAS effect for abnormal liver en-
zyme levels (see the “PheWAS approach” section). Of
note, the LD between these markers was weak (r2 < 0.1).
We also evaluate whether any of the implicated
HSD17B13 allele modifies the risk of liver injury associ-
ated with PNPLA3 rs738409 by SNP × SNP interaction
analyses. While all results were suggestive, we observed
a nominally significant interaction effects between
rs3923441 and rs738409 with AST level (p = 0.01, beta
interaction = 0.19) as well as ALT level (p = 0.03, beta
interaction = 0.16). Of note, these two effects were
improved if we included only obese persons (for AST
p = 0.002, beta interaction = 0.24, and for ALT p = 0.02,
beta interaction = 0.18 respectively).

Novel effects
Across the genome, we identified several new effects that
have not been reported previously and evaluated the
nearby functional markers at r2 > 0.6 (Fig. 4a–c). Indeed,
a few of them reached genome-wide significance levels
(p < 5.0 × 10− 8), including a novel effect for NAS score
at 22p13 in which a cluster of SNPs near IL17RA were
associated; best SNP = rs5748926, p = 3.81 × 10− 8, beta =
0.91 (Fig. 4a, Table 3). For fibrosis, a novel effect was de-
tected at 16q22 near the ZFP90 locus (best SNP
rs698718, p = 2.74 × 10− 11, beta = 0.83) (Fig. 4b, Table 3).
There was no evidence of heterogeneity between
pediatrics and adult for these two new effects (Cochran’s
Q = 0.24 and 0.37) respectively. Of note, the SNP × SNP
interaction effects between rs738409 (PNPLA3) and ei-
ther rs5748926 (IL17RA region) or rs698718, (ZFP90 re-
gion) were suggestive or not significant (p = 0.02 and

p = 0.61 respectively). Another significant effect was de-
tected on the short arm of chromosome 2 near the
FABP1 gene. The best marker, rs72943235, produced a
p = 8.18 × 10− 8 for fibrosis and p = 3.17 × 10− 8 for NAS
score plus fibrosis (Fig. 4c, Table 3); however, most of
the variants in this cluster were rare in the European an-
cestry participants (1% <MAF < 5%, see Additional file 1:
Table S2). More common markers in this region such as
rs4618056 had a weaker GWAS effect (p = 0.0004) and
did not show significant LD with rs72943235 (r2 = 0.05).
We also evaluated transaminase test (AST and ALT)

levels as a surrogate quantitative biomarker for NAFLD
disease activity. The median values of AST and ALT
were 41 and 53 respectively among NAFLD cases (see
Table 1). As expected, higher values of the NAS score
were associated with higher levels of ALT and AST in
216 overlap participants (p = 0.001, correlation coeffi-
cient r = 0.23). Analyses of AST or ALT levels in 1075
cases showed a robust association at PNPLA3 (best ef-
fect was for ALT rs738409 p = 4.68 × 10− 7, beta = 0.20,
Table 3) again indicating the importance of PNPLA3 for
disease severity and higher liver enzyme levels. In
addition, a common novel effect at 2p22 near the XDH
gene can be detected for both AST and ALT. The best
variant rs62141163 produced a p = 2.30 × 10− 7, beta =
0.34 for AST (Fig. 4d, Table 3). Some of the effects were
more specific to individual liver enzyme (AST or ALT).
An effect at 7p15 in the SP4 transcription factor (best
marker rs10272006 p = 5.83 × 10− 9, beta = 0.25, Table 3)
was observed for the AST enzyme level, and an effect
near SDC1 (rs6531222, p = 5.16 × 10− 6, beta = 0.18,
Additional file 1: Table S2) was identified for the ALT
liver enzyme. We summarized all suggestive genetic ef-
fects regarding disease severity, i.e., NAS score, fibrosis,
and liver enzymes (p < 10− 5) in Additional file 1: Table S2.
End-stage liver disease is another measure of disease se-

verity and outcome. In this cohort, there were 64 adult
participants with liver cirrhosis (15 of them with hepato-
cellular cancer, see Table 1). As expected, a higher effect
size for rs738409 at PNPLA3 was obtained when only
NAFLD plus presence of cirrhosis were compared with
healthy controls (OR = 2.0, 95% CI 1.38–2.86, p = 0.0001).

Gene-based and pathway analyses
We annotated the most significant variants in this study
(including SNPs in LD), for cis-eQTL effect and other
regulatory functions and report in brief in Additional file 1:
Table S4. We also provide the average direction of gene
expression based on the risk alleles in several related

(See figure on previous page.)
Fig. 3 a Means and standard deviations of NAS and fibrosis score (0–12) stratified by genotype of rs738409 at PNPLA3 in 235 NAFLD cases. The
results are plotted as the sum of NAS and fibrosis score (0–12) (y-axis) against the three genotypes of rs738409 C>G polymorphism (x-axis). The
results are further sub-divided by age groups (pediatrics, adult, and all). Results for IL17RA (b) and ZFP90 (c) also are shown
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tissues including blood, skin fibroblast, adipocytes, liver,
and gastrointestinal tissues according to GTEx (v7). In
Additional file 1: Table S4, other regulatory functions from
Roadmap Epigenomics including enhancer, motif change,
DNAse hypersensitivity, protein bounding effects, and
chromatin marks specific for the liver have been shown.
For pathway enrichment analyses, first, we performed
gene-based analyses using MAGMA that results in 4
genes with significant (gene-based threshold of 2.72 × 10−
6) and 39 genes with suggestive results (p ≤ 10− 3). Add-
itional file 1: Table S5 shows all MAGMA gene-based

result for NAFLD case-control GWAS at p < 0.05. Since
some lead SNPs are quite remote from the associated gene
transcripts, we also separately annotated and identified all
functional SNPs with GWAS p ≤ 10− 5 and assigned a gene
to a locus if the index SNP or linked variants (r2 > 0.6)
have any functional effect on that gene (see “Methods”).
We combined this gene list with MAGMA gene-based re-
sults mentioned above for a total of 79 genes to be evalu-
ated for pathway enrichment. Gene sets available in the
Molecular Signatures Database (MSigDB) that are divided
into 8 major collections (C1-C8) were primarily used for

Fig. 4 a–d Regional association plots of best effects in case-only linear regression analyses for continuous traits of NAS score, fibrosis, and ALT
liver enzyme, respectively. a The best observed effect near the IL17RA region for NAS score. b The most significant effects at 16q22 near ZFP90
gene for fibrosis. c The effect near FABP1 locus for fibrosis. d An effect at 2p22 near XDH for AST liver enzyme
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pathway-based analyses. After Bonferroni correction, sev-
eral pathways were enriched including Intrleukin-1 recep-
tor binding genes (p = 8.05 × 10− 17) in GO molecular
functions C5 (MsigDB c5) and genes in mitochondrial as-
sembly (GO cellular components) (p = 4.51 × 10− 5). Since
several genes in the IL-1 receptor pathway were co-
located at the same genomic region in chromosome 2,
more restricted LD pruning (r2 > 0.2) was also applied to
avoid potential inflation in enrichment analyses and re-
sults for this pathway still remained significant (p = 7.76 ×
10− 15). At the 22q region, PNPLA3 incorporate mostly in
the phospholipid metabolism and lipase activity pathways,
SAMM50 enriched in the mitochondrial assembly path-
way (GO cellular components), and PARVB enriched in
the liver cancer pathway (see Additional file 1: Table S6).
We followed the above approach for GWAS of NAS

score, fibrosis, and liver enzymes, identified nominated
genes for each group, and provide significant pathway en-
richment results in each group and all combined for a total
of 349 genes. All nominated genes by GWAS are listed in
Additional file 1: Table S6. Of note, gene sets for the TGFB
signaling pathway particularly showed enrichment for fibro-
sis and NAS score (p = 1.62 × 10− 4) and IL17RA was
enriched in GO_receptor binding (MsigDB c5) (p = 1.49 ×
10− 4) and immunologic signature (MsigDB c7) (p = 1.71 ×
10− 3) (Additional file 1: Table S6). Furthermore, in order to
test the relationships between tissue-specific gene expres-
sion profiles and NAFLD-gene association results,
MAGMA gene-property analysis was performed using
GTEx (v7) as a reference. As shown in Fig. 5, this approach
particularly revealed a specific gene expression enrich-
ment of liver tissue when applying NAFLD case-con-
trol GWAS. Similarly, according to HaploReg (V4.1),

GWAS loci at p < 10− 5 as reported in Additional file 1:
Table S2 were enriched with enhancer regulatory elements
in liver and adipose tissue (p = 1.30 × 10− 5 for liver and
p = 1.50 × 10− 5 in adipocyte). For other GWAS related to
sub-phenotypes, this liver enrichment was not detected.
Next, TF-enrichment analysis was applied using Regula-

tory Element Locus Intersection (RELI) (see “Methods”), a
novel algorithmic approach to nominating candidate regu-
latory variants based on LD pattern and CHIP-Seq data.
In contrast to other enrichment analyses that start with a
list of nominated genes, this algorithm takes a list of asso-
ciated risk SNPs as an input. We applied this method for
all SNPs with p < 10− 5. The list of TF for NAFLD case-
control GWAS that survived the multiple test corrections
is included in Additional file 1: Table S6. The top-ranked
TFs include NFIL3 (p = 2.95 × 10− 16), PPARG (p = 3.36 ×
10− 11), SPI1 (p = 1.30 × 10− 07), and FLI1 (p = 6.52 × 10− 04)
. Moreover, in these analyses, when we limit the ChIP-seq
datasets to only liver cells, a liver specific TF, CEPBA, was
at the border of significance (see Additional file 1: Table
S6). PPARG TF enrichment can also be detected for sub-
phenotypes including NAS score with less magnitude
(data not shown).
As part of FUMA module, GWAS catalog (release

e89) was also used as a source to determine the genetic
sharing and enrichment of all nominated genes in this
study with other traits. As expected, metabolic traits,
NAFLD, liver enzyme, and obesity-related traits were in
the top list and provided in Additional file 1: Table S6.

Heritability estimate
As mentioned above, heritability estimates of NAFLD
range from 20 to 70% in different family studies [7, 8].

Fig. 5 NAFLD case-control gene-based results using MAGMA as a base and tissue-specific gene expression (GTEx v7 with 30 general tissue types)
as a source produced specific enrichment in liver (see “Methods”). List of all MAGMA gene-based results (P < 0.05) is shown in Additional file 1:
Table S5
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Using SNP-based approach, and with the estimated
prevalence of 0.3 of this trait in the general popula-
tion, we obtained a narrow-sense heritability of h2 =
0.24, (SE = 0.03) in our cohort adjusting for all
covariates including BMI. This approach, however,
needs a large number of participants for accurate esti-
mation, and therefore, standard errors were higher for
smaller group-studies such as pediatrics-only partici-
pants, though with higher heritability estimate in our
cohort (h2 = 0.53 (SE = 0.27)).

PheWAS approach
We also applied PheWAS to evaluate the pleotropic ef-
fect of the known PNPLA3 variant rs738409 as well as
novel variants in this study against available traits in all
eMERGE Network participants. PheWAS is a less con-
servative approach in terms of phenotype definition and
mainly based on ICD-9 and ICD-10 disease classification
codes but provides more statistical power. The detail of
methodology described in “Methods” and previous pub-
lications. All results were adjusted for the abovemen-
tioned covariates, and multiple hypotheses testing using
a false discovery rate (FDR < 0.05) was implemented. In
this approach, 17 traits satisfied the FDR criteria
(Additional file 1: Table S6). Almost all of the significant
traits were related to the spectrum of liver diseases in-
cluding NAFLD, liver cirrhosis, alcoholic fatty liver con-
dition, esophageal bleeding, and hepatocellular liver
cancer. Unexpectedly, we found a negative correlation
between PNPLA3 variant rs738409 with gout or gouty
arthropathy (p = 1.09 × 10− 4, beta = − 0.12, SE = 0.03)
(Additional file 1: Table S6). Interestingly, this inverse
association with gout remained significant after condi-
tioning for NAFLD disease status as another covariate
indicating an independent effect (p = 4.67 × 10− 5, beta =
− 0.14, SE = 0.03). Of note, ICD9 codes related to viral or
chronic hepatitis or psychological alcohol dependence
did not show association with PNPLA3 (hepatitis C p =
0.07, alcohol dependence p = 0.39).
In addition, PheWAS evaluation of novel variants in

this study results in two significant findings: one for
marker rs2980888 at TRIB1 gene that was associated
with disorders of lipoid metabolism (p = 8.63 × 10− 7) and
another for novel eQTL variant rs3923441 near
HSD17B13 that was associated with an abnormal liver
function test (p = 3.74 × 10− 6, see Additional file 1: Table
S6). Moreover, these two effects remain significant after
conditioning on NAFLD status with p = 2.60 × 10− 6 and
p = 3.19 × 10− 6 respectively.

Genetic risk score (GRS) for disease prediction
We also calculated weighted GRS based on the known risk
SNPs for NAFLD to evaluate the efficiency of this ap-
proach in eMERGE cohorts. For this purpose, we selected

SNPs from previous publication in which we could also
confirm at the level of p < 0.05 in this study and that were
not in complete proxy with each other (r2 < 0.99). As a re-
sult of this criteria, ten variants (GRS-10) from genes
PNPLA3 (rs738409, rs3747207, rs2294915, rs2294918),
GCKR (rs1260326, rs780094), TM6SF2 (rs4808199,
rs58542926), COL13A1 (rs1227756), and TRIB1
(rs2954021) were used to profile our case and control par-
ticipants. Using this initial information, we generated
ROC curves which provide a measure for the diagnostic
power for both disease and disease severity. Figure 6a
shows the ROC plot for prediction of overall NAFLD
diagnosis (1106 cases and 8571 controls) using 10-SNPs
(GRS-10) in which the area under the ROC curve (AUC)
of 60% was obtained. In addition, when weighted 10-SNP
GRS values were distributed according to quantiles
(Fig. 6d), the prevalence of NAFLD significantly increased
by increasing quantiles with a 2.2-fold increase in NAFLD
risk when the highest to the lowest GRS quantiles were
compared (OR = 2.16, 95% CI = 1.81–2.58, p < 0.0001)
(Fig. 6d).
The same set of SNPs however had better performance

for predicting disease severity, defined here as NAS
score above and below 5 (79 cases above NAS score ≥ 5
versus 156 controls with score < 5) (AUC = 72%)
(Fig. 6b). This was equal to > 8-fold increase in disease
severity when the highest to the lowest GRS quantiles
were compared (OR = 8.50, 95% CI 3.45–20.96) (Fig. 6d).
As expected, adding novel findings from this study can
improve the area under the curve respectively, and
therefore, this needs to be verified in an independent
population; in particular, adding only one SNP
rs5748926 near IL17RA for NAS score (GRS-11) im-
proved the AUC to 76% and the difference was statisti-
cally significant (difference between areas = 0.035 (SE
0.012), p = 0.004)) (Fig. 6c).

Discussion
NAFLD has become the most common chronic liver dis-
ease worldwide, but currently, only limited therapies
exist. A better understanding of the genetic biomarkers
for this epidemic may help inform the development of
novel therapeutics. The objective of this project was to
develop an NLP algorithm for the NAFLD/NASH
phenotype, identify cases and controls with high predict-
ive values, and perform GWAS using data from the
eMERGE Network. We demonstrate that DNA biobanks
linked to EMRs can be used to identify true cases and
controls for NAFLD as well as disease severity index. By
using this approach, we confirmed the association of
PNPLA3 and two nearby genes (SAMM50 and PARVB)
for NAFLD. We also detected an additive relationship
between index SNP rs738409 and disease severity in
which presence of the risk allele can increase the NAS
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Fig. 6 a–d ROC graphical plot that illustrates the diagnostic ability of the binary classifier NAFLD (cases and controls) and NAS score (above and
below 5) using weighted GRS score of ten previously published SNPs (GRS-10, see “Results”). The sensitivity and specificity and AUC measures for
each plot are also shown. a ROC curve for NAFLD-1106 cases and 8571 controls. b ROC curve for NAS score (79 cases above NAS score ≥ 5 versus 156
controls with score < 5). c Adding SNP rs5748926 near IL17RA improved the ROC curves for NAS score (GRS_11); difference between areas 0.035 (SE =
0.012, p = 0.004). d Distribution of quantiles of weighted 10-SNP GRS in NAFLD (cases and controls) and NAS score (above and below 5); percentage of
NAFLD risk increases by increasing GRS quantiles; for NAFLD (cases and controls) from 17% in Q1 to 36% in Q4 (OR = 2.16, 95% CI = 1.81–
2.58, p < 0.0001); for NAS score above 5 (defined as case) from 10% in Q1 to 43% in Q4 (OR = 8.50, 95% CI 3.45–20.96). The weighted 10-
SNP GRS was calculated by multiplying the sum of the number of risk alleles (0, 1, 2) with the allele-specific effect sizes (beta coefficients) obtained
from previous publications (see “Methods”)
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severity score approximately one unit per risk allele.
This result was noted in both adult and pediatric partici-
pants and with no heterogeneity (Fig. 3). Furthermore,
the epistatic effect of the known SNP rs738409 with the
rest of the genome produced at least one suggestive ef-
fect near the ACSM5 at chromosome 16p12. Acyl-CoA
synthetase medium chain family member 5 (ACSM5) is
a mitochondrial gene belonging to a family of medium
chain acyl-CoA synthetases, mostly expressed in liver
and fat tissues with key roles in energy storage and me-
tabolism. Further studies are needed to validate or refute
this suggestive novel epistatic effect. In this study, we
did not find any significant interaction between the FTO
alpha-ketoglutarate-dependent dioxygenase (FTO) vari-
ants (rs1421085) and PNPLA3 (rs738409) indicating that
the effect of FTO on pathogenesis of NAFLD is not dir-
ectly dependent on PNPLA3 genotypes but more likely
by means of increasing BMI-set point.
In PheWAS analyses, we found that the SNP rs738409

is associated with a wide spectrum of liver pathologies
including not only NAFLD, but also alcoholic fatty liver
condition, hepatocellular liver cancer, and liver cirrhosis.
In addition, this effect tends to be independent of viral
hepatitis or psychological alcohol dependence. This Phe-
WAS also indicates an inverse association between the
PNPLA3 risk allele and presence of gout. The relation-
ship between uric acid and PNPLA3 either in disease
state or normal population has not been described previ-
ously. There has been a clear correlation between higher
serum uric acid and NAFLD disease severity [50]. Al-
though this relationship seems to be contradictory, how-
ever, uric acid is also a powerful anti-oxidant [51] and
lower serum uric acid might reinforce the oxidative
stress especially on early disease stages.
This study, for the first time in European ancestry

participants identified an effect at 8q24 near TRIB1
gene for NAFLD that was previously reported in the
Japanese population [45]. TRIB1 (tribbles pseudoki-
nase 1) is highly expressed in bone marrow and liver
and regulates activation of MAPK kinases and in-
volves in regulating proliferation, apoptosis, and
cytokine production. Indeed, modulation of TRIB1
expression affects hepatic lipogenesis and glycogen-
esis through multiple molecular interactions [52].
Several GWAS effects have been attributed to this
gene for other metabolic traits including serum adi-
ponectin level, liver enzyme, lipid traits, and re-
sponse to statin therapy [53–55]. Of note, the best
marker in our European ancestry study, rs2980888,
has enhancer histone mark properties in liver and
several tissues (Additional file 1: Table S4). Indeed,
in PheWAS analysis, we also detected an independ-
ent effect of rs2980888 for disorder of lipoid metab-
olism (p = 8.63 × 10− 7, Additional file 1: Table S6).

Gene-based and enrichment pathway analyses for the
main NAFLD GWAS indicate an IL1 pathway as a po-
tentially important pathway (see “Results”; adjusted p =
7.76 × 10− 15, Additional file 1: Table S6). The IL-1 family
members are released upon cell death by necrosis and
induce a cascade of proinflammatory cytokines resulting
in sterile inflammation, a feature of NAFLD. These cyto-
kines are also critically involved in liver inflammation,
steatosis, fibrosis, and cancer development [56]. In fact,
concentrations of proinflammatory IL-1 members are in-
creased in patients with severe obesity [57].
In this study, we also identified novel variants associ-

ated with NAFLD disease severity, in particular an effect
near the IL17RA locus for NAS score and another effect
at the ZPF90-CDH1 locus for fibrosis. IL-17RA is ubiqui-
tously expressed on a wide range of tissues (liver, intes-
tine, lung, adipose tissue) and cell types (endothelial and
immune cells). Indeed, previous published findings
clearly established that the IL-17 axis plays an important
role in NAFLD pathogenesis in multiple NAFLD murine
models [58–60] including a role in a recently described,
more human-like experimental model of NAFLD [61].
Notably, our novel data reinforce these findings in
humans with a promising novel genetic biomarker
(rs5748926, see Additional file 1: Table S4). As shown in
Additional file 1: Table S4, a decreased expression of this
gene is predicted given the haplotype risk allele in our
cohort. Similarly, il-17ra−/− mice exhibit increased
obesity and hepatic steatosis when fed an obesogenic
diet although they are protected from downstream in-
flammatory damage [59]. Because of the high correlation
of the NAS score sub-components in human liver hist-
ology, additional samples are necessary to fully elucidate
deeper relationships between each component of NAS
histologic criteria and this variant, such as the presence
of only steatosis without lobular inflammation or pres-
ence of inflammation without significant steatosis. Con-
sistent with the murine findings, our data indicate that
this effect is mainly related to steatosis-driven NAS
score rather than fibrosis, and the result remained sig-
nificant after conditioning on fibrosis state as additional
covariate (p = 9.38 × 10− 7). The functional consequence
of ZFP90 in the context of NAFLD fibrosis however is
less clear. It has been previously shown that the zinc fin-
ger protein 90 (zfp90) transgenic mice had significantly
increased body weight, and retroperitoneal, mesenteric,
and subcutaneous fat mass [62]. In addition, genome-
wide association studies have identified this region
ZFP90-CDH1 among ulcerative colitis risk loci [63].
Cadherin 1 (CDH1) encodes E cadherin, a transmem-
brane glycoprotein with a key function in intercellular
adhesion in the intestinal epithelium; it also acts as a
tumor suppressor protein and involved in the TGF-beta
signaling pathway in which we found the nominally
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significant enrichment result in our fibrosis GWA study
(see Additional file 1: Table S6). Another effect for fibro-
sis was near FABP1 (see Fig. 4c). Most of the associated
variants in this cluster however were rare in European
ancestry participants (1% <MAF < 5%, see Additional
file 1: Table S2 and 4). Fatty acid-binding protein (FABP)
family members are involved in intracellular lipid metab-
olism and play roles in nuclear receptor regulation.
FABP1 is mainly expressed in the liver and at very high
levels found in the cytoplasm of hepatocytes. In murine
studies, fabp deletion attenuates both diet-induced hep-
atic steatosis and fibrogenesis [64]. Indeed, in human
studies, serum liver fatty acid-binding protein has shown
a positive correlation with NAS score (p = 0.03, r =
0.312) and fibrosis (p = 0.02, r = 0.324) [65]. A recent
study also identified an association of a splice variant in
one of the 17β-HSD family members, HSD17B13
(rs72613567:TA insertion) with reduced risk of NAFLD
[48]. This family of proteins plays an important role in
lipid metabolism [48]. While this effect was weak in our
cohort, we detected another eQTL marker for
HSD17B13 (rs3923441) that was nominally significant
with NAS score (p = 0.008, beta = 0.55), and it also
showed a PheWAS effect for abnormal liver enzyme
levels (p = 3.74 × 10− 6, see Additional file 1: Table S6).
We also observed a nominally significant interaction ef-
fect between rs3923441 and rs738409 in PNPLA3 with
AST and ALT levels especially if we included only obese
persons (for AST p = 0.002, beta interaction = 0.24, and
for ALT p = 0.02, beta interaction = 0.18 respectively).
Interestingly, the similar findings has been reported be-
tween rs72613567:TA insertion and PNPLA3 (rs738409)
for liver transaminases [48].
In case-only GWAS analyses using standardized liver

enzyme as a quantitative phenotype, a robust effect at
PNPLA3 (best effect for ALT rs738409 p = 4.68 × 10− 7)
was noted indicating the association of the PNPLA3 risk
allele with higher ALT levels, a biomarker for disease se-
verity. This is also consistent with a previous publication
[66]. Another common novel effect at 2p22 near the
XDH (xanthine dehydrogenase) gene was detected for
both AST and ALT. Xanthine dehydrogenase is involved
in the oxidative metabolism of purines and is highly
expressed in the liver. This enzyme catalyzes the oxida-
tion of hypoxanthine to xanthine and xanthine to uric
acid. Uric acid and reactive oxygen species (ROS), pro-
duced by XDH, therefore, could cause inflammation and
oxidative stress. Indeed, it is recently been shown that
the serum level of xanthine dehydrogenase is correlated
with obesity-related metabolic indexes in blood such as
triglycerides, cholesterol, and glucose [67]. An effect at
7p15 in the SP4 transcription factor gene was also ob-
served for AST enzyme level. SP transcription factors
are overexpressed in many different cancer cell lines

including hepatocellular carcinoma [68]. Among sug-
gestive effects for liver enzyme levels, an effect near
Syndecan-1 (CD138, SDC1) is noteworthy as it is a
transmembrane heparan sulfate proteoglycan expressed
highly in the liver and exert metabolic effects. Indeed,
the serum syndecan-1 level has been shown to be
increased among NAFLD patients [69]. Furthermore,
transcription factor enrichment analyses using RELI
nominate TF such as PPARG (peroxisome proliferator-
activated receptor gamma) which is a master regulator
of adipocyte differentiation that trans-activates multiple
target genes involved in lipid metabolic pathways and
inflammation. These targets include PNPLA3 and
SAMM50 two nearby genes that we found the most sig-
nificant results [70]. When we limit CHIP_seq experi-
ments only to liver cells, another liver-specific TF
(CEPBA) was enriched. Likewise, CEPBA (CCAAT/en-
hancer binding protein alpha (C/EBP)) is essential for
the regulation of hepatogenesis, adipogenesis, and
hematopoiesis. Overall, our post-GWAS association
strategy combined with enrichment analyses invokes
several novel associations that require further studies to
elucidate the biological basis for these initial findings.

Strengths and limitations
The major strengths of our study include stringent qual-
ity control in both genotypic and phenotypic data and
minimal population stratification. In genomic analyses,
we explored both case-control and case-only GWA stud-
ies for NAFLD and nominate more than 300 genes. We
attempted to increase emphasis toward functional anno-
tation and downstream genomic dissection using add-
itional bioinformatics tools available in public resources.
Another strength of our study is that the eMERGE co-
horts represent many geographic areas in USA and in-
clude both adolescents and adults. Indeed, all of the
main results in this study consisted in both adolescent
and adult cohorts. However, other ancestry groups are
under-represented in the eMERGE Network, especially
after NLP processing and sub-phenotyping. Electronic
medical records have a potential for unintended health
errors in billing codes, lab measures, and clinical diagno-
ses. We have controlled and removed outliers and exclude
confounding medical diagnoses using NLP processing
such as alcoholic liver condition, viral hepatitis, and others
to avoid potential biases. Nonetheless, the quantitative
traits such as circulating levels of liver enzymes that are
widely used as indicators of liver disease are not specific,
and the results we provide here need to be replicated in
larger cohorts in the context of NAFLD. The associations
with PNPLA3 for both NAFLD and disease severity were
highly consistent with previous publications that have re-
cruited well-characterized participants, thus serving as
validation of our overall approach.

Namjou et al. BMC Medicine          (2019) 17:135 Page 16 of 19



Conclusion
In summary, we report genome-wide significant loci as-
sociated with NAFLD and disease severity index in a
GWAS analysis of 9677 European ancestry individuals
from 10 eMERGE study cohorts. Apart from the
PNPLA3 effect, the GWAS implicates IL17RA and other
biologically informative genes as important contributors
to disease severity of NAFLD. The results also highlight
strong overlap of PNPLA3 in the genetics of NAFLD
and other liver pathologies and metabolic traits in the
population, indicating a spectrum of conditions.
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Additional file 1: One excel file with 6 master tables divided into 18
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