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1 | INTRODUCTION

One of the main goals of an individual participant data
meta-analysis (IPD-MA) of intervention studies is to
investigate whether treatment effect differences are pre-
sent, and how they are associated with patient character-
istics.1 Examining treatment heterogeneity due to a
continuous covariable (e.g., BMI or age) may be challeng-
ing, since there is often no prior knowledge on functional
form of the conditional association between the outcome
and the continuous variable.

Naïve but often-used approaches are to ignore the
possibly complex nature of the functional form and
assume a linear effect, or to provide a step-wise approxi-
mation based on categorisation of the continuous vari-
able. Categorisation leads to loss of information, reduced
power, inflation of the type I error rates, and biased
results.2–5 Linear modelling may also lead to biased
results since the model may be too simplistic for the data.
Therefore, there is a clear need for methods that can cap-
ture non-linear relations in IPD-MA context.

Modelling treatment effect differences whilst account-
ing for non-linear functional shapes may provide the
opportunity to accurately make inferences whether a
patient should be treated or not. To account for non-line-
arities we may estimate the functional shape of the

associations and investigate potential treatment effect dif-
ferences.6 So far, a variety of methods that account for
non-linear functional shapes has been proposed.7–16 In
this manuscript, we focus on the use of splines since they
can capture both non-linear main effects and non-linear
treatment-covariable interaction effects without the need
to pre-specify their functional form. The class of spline
methods is still broad and includes fully parametric,
semi-parametric and even non-parametric approaches,
and allows for penalisation and clustering. Thus, splines
are very flexible and can address a great variety of fitting
problems. We focus on four widely used types of splines;
restricted cubic splines as described by Harrell,17 natural
B-splines,18,19 smoothing splines20 and P-splines.21

Splines are being used in single studies, both in inter-
vention and prediction studies, and are also available in
IPD-MA context. In IPD-MA, models can be estimated in
either one or two stages. A generalised additive mixed
effects model (GAMM)22 provides a one-stage IPD-MA
method that incorporates the flexibility provided by
splines. GAMMs fit a generalised additive model using
covariables with or without spline transformation, while
adjusting for within-study clustering of the participants
based on random effects. In two-stage IPD-MA, appropri-
ate spline-based models are fitted per study in the first
stage. Subsequently, study specific estimates are extracted
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and pooled in the second stage. Pooling study specific
predictions and their standard errors is referred to as
pointwise meta-analysis.14 Pooling of study-specific
model coefficients and their variance–covariance matrix
is referred to as multivariate meta-analysis.23

While the methodology has progressed, the use of splines
in IPD-MA is relatively uncommon. A possible explanation
is that the available guidance is limited. Perperoglou et al.
provided a review of splines approaches, but limited to single
studies.24 White et al.25 compared pointwise meta-analysis
and multivariate meta-analysis techniques in presence of
non-linear associations, but used fractional polynomials
instead of splines. Gasparrini et al.23 described the use of B-
splines in combination with multivariate meta-analysis. They
mentioned that multivariate meta-analysis may be combined
with other approaches to account for non-linearities but do
not provide details. Riley et al.26 described both multivariate
meta-analysis and one-stage mixed effects modelling. How-
ever, most of the examples were limited to either linear asso-
ciations or a combination of restricted cubic splines based on
truncated power series and multivariate meta-analysis.

Our goal is to explain and illustrate how to predict a
conditional absolute treatment effect, as this measure is
most relevant for clinical decision-making.27 We use the
four spline approaches in scenarios with multiple studies,
using artificial datasets for illustration. We generated the
data such that no confounder adjustment was necessary,
but if needed the methods can also be implemented after
individual-level confounder adjustment. We describe the
various spline approaches and their application in IPD-
MA using pointwise meta-analysis,14 multivariate meta-
analysis,23 and GAMMs,22 and we provide the
corresponding R-code. We also describe the results of the
aforementioned spline and pooling methods using an
empirical individual participant data-set, investigating
the effect of antibiotics in children with acute otitis media
(AOM).28

2 | ILLUSTRATIVE EXAMPLES

In order to illustrate the aforementioned spline approaches
in IPD-MA we generated artificial data to mimic a previ-
ously reported non-linear association between BMI and
mortality.29,30 We consider the case where the outcome is
binary, but note that splines may be used to other types of
outcomes such as continuous and time-to-event outcomes.
For the control group we generated a (quadratic) J-shaped
association showing increased mortality for underweight
and overweight participants. For the experimental group
we assume a (quartic) levelled J-shaped association, where
the association between BMI and mortality is much weaker,
especially for those with a < 30 BMI (Figure 1).

To illustrate the performance of splines in IPD-MA
we generated three distinct IPD-MA scenarios, each con-
sisting of five RCTs comparing two interventions (1:1
randomisation) with 500 participants per study. In the
first scenario, which we refer to as the heterogeneous
IPD-set with equal BMI ranges, the association between
BMI and mortality is different across studies, see Figure 2,
but the distribution and ranges of BMI are the same. In
the second scenario, which we refer to as the non-hetero-
geneous IPD-set with different BMI ranges, the parame-
ter values of the association for both the treated and
control group are identical across all studies, but the
ranges of available BMIs vary across studies (see Fig-
ure 3). In the third scenario, to which we refer as the
combined IPD-set with different BMI ranges and between
study differences in mortality risks, both the ranges of
BMI and the association of BMI with the mortality risk
vary across studies, see Figure 4. Exact equations are
given in the online Appendix sections 3 and 4.

3 | TREATMENT EFFECT
(MEASURE) MODIFICATION

“Treatment effect modification”, also called “treatment
effect measure modification”31,32 is the phenomenon
where the effect of a treatment varies across the levels or

FIGURE 1 Simulated association between mortality risk and

BMI in a single study [Colour figure can be viewed at

wileyonlinelibrary.com]
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strata of a certain variable. We prefer the term “treatment
effect measure modification” since effect modification
may be present for one measure (e.g., risk difference) but
not for another (e.g. odds ratio, risk ratio).31–35 The scale
in which the results are presented is therefore a vital first
decision.

A commonly applied approach to investigate treat-
ment effect measure modification is to model the interac-
tion of a potential effect modifier with the treatment. In
case of non-linear associations, a spline-transformed ver-
sion of the continuous modifier can be used. Therefore,
we model the association between the modifier and
the outcome by including a spline-transformed version of
the modifier, both as main effect and in interaction with
the treatment. In case of a binary outcome like mortality,

a logit link function can be used in the model. In order to
calculate the absolute risk difference between the treat-
ment arms, we back-transform the predicted outcome per
treatment arm with the inverse logit function. To calcu-
late the confidence interval of the difference in absolute
risk, we use the approach proposed by Newcombe.36

4 | SPLINE APPROACHES IN A
SINGLE STUDY

In a setting where the association between an outcome
and a continuous variable X is non-linear, one of the
options is to use splines. Splines represent a continuous
variable as a linear additive combination of (often)-local

FIGURE 2 Association between

mortality risk and BMI per study in the

heterogeneous dataset with equal BMI

ranges [Colour figure can be viewed at

wileyonlinelibrary.com]
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parts, which each have a simple mathematical form and
are known as basis functions. Numerous basis functions
have been developed involving various mathematical
forms, such as polynomials, radials and Fourier series. In
this paper, we focus on basis functions based on piece-
wise polynomials. As the term piecewise implies, the
range of X is divided into intervals, using cut-offs called
knots. Within each interval, a d-degree polynomial of X
is used to model the association between the outcome Y
and X. These polynomials are connected across adjacent
intervals. This way, instead of estimating a global non-
linear association over the full range of data, we estimate
within intervals the linear association between the out-
come and transformations of X.

Two important choices have to be made, in addition
to the degree of the basis functions: (1) the number and
the position of the knots, and (2) whether a penalty
should be applied. Splines calculated with the use of pre-
specified knots and without penalties are often called
regression splines. The most commonly used regression
splines are restricted or natural splines17 and B-splines.18,37,38

Splines where a penalty is applied are called penalised
splines. The most commonly used penalised splines are
P-splines21 and smoothing splines.20 A short summary
of these four types of splines is presented below. Details
are presented in the online Appendix, sections 1
(Regression splines) and 2 (Penalised splines). Figure 5
shows how the aforementioned spline methods are

FIGURE 3 Association between

mortality risk and BMI per study in the

non-heterogeneous dataset with

different BMI ranges [Colour figure can

be viewed at wileyonlinelibrary.com]
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associated with each other. Perperoglou et al. provide
more details on the pros and cons of the different spline
approaches.24

4.1 | Regression splines

In order to understand the rationale for the use of splines
based on piecewise polynomials such as the ones of inter-
est here, we first shortly introduce global and piecewise
polynomials. Global transformations of X (i.e., a function
on the full range of X) include classical methods such as
regular polynomials of X. Polynomials with successively
higher degrees are able to capture successively more non-
linearity, but at the cost of instability, especially near the

boundaries of X. The reason is twofold. First, each non-
linear part of a polynomial is more variable near the
boundaries (e.g., think of a cubic function), such that
small errors in the estimated coefficients have large
impact. Second, each coefficient has an effect along the
entire range of X, so the errors accumulate. To avoid this,
polynomials fitted on different intervals of X, also called
piecewise polynomials, may be preferred to global func-
tions. Forcing the piecewise polynomials to be continu-
ous over the knots leads to “piecewise polynomial”
splines, in short “splines” (from a craftsman's tool). To
accomplish continuity, several approaches have been pro-
posed. One approach is to fit a global polynomial, whilst
including terms that model the deviance from this glob-
ally defined shape within truncated parts of X, for

FIGURE 4 Association between

mortality risk and BMI per study in the

combined dataset with different BMI

ranges and between study differences in

the mortality risks [Colour figure can

be viewed at wileyonlinelibrary.com]
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example a truncated power series.17 Another approach is
to locally generate transformations of X, for example B-

splines.39 The number and location of the knots may be
based on clinical knowledge or on descriptive statistics.

FIGURE 5 Flowchart of four types of splines [Colour figure can be viewed at wileyonlinelibrary.com]
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For instance, Harrell suggests the use of quantiles.17

Depending on the available sample size and required
complexity of the functional shape, we may use a differ-
ent number of knots.

Smoothing is improved when also the derivatives of
the spline function are continuous. Typically continuity
up to the second derivative offers sufficient smoothness.24

Since splines borrow information from adjacent intervals
there still can be erratic behaviour near the (global)
boundaries. To avoid this one may restrict the second
derivative of the spline function to be zero at the bound-
aries. These splines are often called natural or restricted.
Note that several types of regression splines may be com-
bined with the “natural” property. For instance, Harrell
describes a restricted truncated power series spline of
third degree,17 Wood describes a restricted cubic spline

based on cardinal basis functions,39 while Chambers
and Hastie describe a natural B-spline.38 In our manu-
script, we discuss restricted splines as described by
Harrell and natural B-splines as described by Cham-
bers and Hastie.

4.1.1 | Restricted splines based on truncated
power series

A restricted spline based on truncated power series is
constructed from a linear (first-degree) global polynomial
over the full range of X, where the deviations from this
global polynomial are modelled with truncated transfor-
mations of X. We refer to truncated power series that are
constrained with the “natural” or “restricted” property,

FIGURE 6 Mortality risk per

treatment arm in the illustrative single

study example, using (a) restricted

cubic splines, (b) natural B-splines, (c)

P-splines and d) Smoothing splines.

Dashed vertical lines indicate the

position of the knots. For restricted

cubic splines we used five knots placed

at the 5%, 27.5%, 50%, 72.5% and 95%

quantiles of BMI, for the natural B-

splines we used five equidistant knots;

three inner knots at BMI values 23.875,

29.250 and 34.625 plus the boundary

BMI values 18.5 and 40 and for P-

splines 17 equidistant knots; 15 inner

knots plus the BMI values 18.5 and

40, and for Smoothing splines as many

knots as there were observations (not

shown). For the penalised splines (P-

splines and Smoothing splines) the

tuning parameter λ is selected through

a ‘leave one out’ GCV process. Thick

dashed curves indicate the true

underlying mortality risk, while the

thin continuous curves indicate the

estimated risk [Colour figure can be

viewed at wileyonlinelibrary.com]
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as restricted cubic splines, following the terminology of
Harrell.17

In our single study example, we used restricted cubic
spline transformations of X both as main effects and as
interactions with the treatment. We placed five knots at
values corresponding to 5%, 27.5%, 50%, 72.5%, and 95%
quantiles of X. In Figure 6a, we present the predicted
mortality risks per treatment arm, conditional on BMI,
along with the 95% confidence intervals. Subsequently,
we calculated the effect of the treatment conditional on
BMI, by calculating the conditional risk for the control
minus the conditional risk for the treated, see Figure 7a.
To calculate the absolute risk difference's 95% confidence
intervals, we followed the proposal of Newcombe, see
section 3. Note that in our artificial data the boundaries

and distribution of BMI-values for the treated and control
group are the same. In practice, this may not be true and
knots may be placed at different positions for the main
effects and the interaction terms.

4.1.2 | Natural B-splines

B-splines are another commonly applied regression
spline approach. As opposed to the global nature of
restricted cubic splines, the basis functions of B-splines
are generated locally, which improves numerical stabil-
ity.19 We refer to B-splines that are constrained with the
“natural” or “restricted” property as natural B-splines,
following the terminology of Chambers and Hastie.38

FIGURE 7 Treatment effect plots

derived from subtracting the predicted

risk of the experimental arm from the

control arm as presented in Figure 6,

estimated by (a) restricted cubic splines,

(b) natural B-splines, (c) P-splines, and

(d) Smoothing splines. Absolute

treatment effects were calculated as

described in section 3. The thick dashed

curve is the true underlying risk

difference, the thin curve is the

estimated risk difference, the dashed

vertical lines indicate the knot positions

and the dashed horizontal line reflects

the null effect (zero risk difference) line
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In Figure 6b we show the results of the natural B-
splines approach for the simulated single study data. In
order for natural B-splines and restricted cubic splines to
be comparable in terms of the degrees of freedom, we
used third degree B-spline transformations of X both for
the main effects and for the interactions with the treat-
ment. We used five equidistant knots (three inner knots
at BMI plus two at the boundaries 18.5 and 40). Subse-
quently, we calculated the effect of the treatment condi-
tional on BMI, see Figure 7b, similar as for the restricted
cubic splines.

4.1.3 | Common properties of regression
splines

The main advantages of regression splines are their rela-
tive simplicity and the fact that they can be represented
by a formula. As a consequence, the estimated regression
coefficients can be reported and used in further analysis,
for example, meta-analysis. Also both restricted splines
and natural B-splines are readily implemented in com-
mon models such as generalised linear models (GLMs)
and have low computational cost. Natural B-splines pro-
vide greater local support and numerical stability
than restricted splines, since their basis functions are
generated locally.24 Both restricted splines and natural B-
splines with κ knots require κþ1 degrees of freedom.24,38

The main disadvantage of regression splines is that their
model fit heavily depends on the number and position of
the knots, thus careful modelling is required to avoid
under- or overfitting. In some occasions, clinical knowl-
edge on the expected curvature or descriptive statistics
may be used to define the knots, but in others it is
unclear how many knots should be used and where they
should be placed. Commonly used criteria such as
Akaike's information criterion (AIC)40 can be used for a
databased choice of the number and position of the
knots. Alternatively, penalised splines have been pro-
posed to avoid these issues.

4.2 | Penalised splines

The two commonly applied penalised splines that we dis-
cuss, P-splines and smoothing splines, increase the num-
ber of knots to a large set (usually, 10–40 for P-splines) or
even to be equal to the number of observations (smooth-
ing splines). This way they circumvent the problem of
choosing the number and positions of the knots. Since
estimating one parameter for each observation would
clearly lead to a perfect fit and thus generate functional
shapes with extreme variability, penalised splines

introduce in their optimisation functions a penalty term
(Jβ) multiplied by a non-negative λ, often called a tuning
parameter. As the term, “tuning” implies, changing the
value of λ changes the magnitude of the penalisation.

Penalised splines circumvent the problem of knot
selection, but at a cost. By using a penalty in their optimi-
sation function, they introduce bias in their estimate in
order to obtain a more stable solution. Furthermore, in
both P-splines and smoothing splines the tuning parame-
ter λ must be specified. Too high or too low values of λ
may lead to over- or undersmoothing respectively. Sev-
eral approaches have been proposed in order to deter-
mine the “optimal” λ, such as the AIC,40 “leave one out”
generalised cross-validation (GCV)41 or mixed-effects
modelling.22 These processes are automated in most of
the statistical packages. Briefly, when using the AIC, a
series of models fitted with different λ values are com-
pared and the one with the lowest AIC is selected. “Leave
one out” GCV is an iterative process, the algorithm goes
as follows: (1) one observation is omitted, (2) a model is
fitted, (3) using the model, a prediction of the omitted
value is generated and (4) the distance between the
observed and predicted value is calculated. This proce-
dure is repeated for each observation and for a series of λ
values. The λ that minimises the sum of the squared dis-
tances, that is, the GCV score, is selected. In Bayesian/
mixed effects, modelling approaches the penalty term is
estimated in a similar way as a random effects parame-
ter.22 More details are given in the online Appendix
section 2.

4.2.1 | P-splines

A specific type of penalised splines, P-splines, proposed
by Eilers and Marx,21 is a penalised version of B-splines,
using a specific penalty term based on the sum of squared
p-order differences between the coefficients of two con-
secutive intervals Jβ ¼

P
Δpβwð Þ2. Due to this penalty, the

number of basis functions and thereby the flexibility is
allowed to be large, but the penalty forces adjacent coeffi-
cients to be similar when the data do not support such
flexibility. The choice of the number of knots is not as
important as with regression splines as long as it is
sufficiently large. Note that the degree of the underlying B-
splines may be different from the order of the differences. A
common combination is that of a third degree B-spline with
a second order difference. Using a penalty based on a zero-
order difference results in the ridge penalty.42

P-splines are usually based on equidistant knots.
While it is possible to use a knot sequence that is not
evenly spaced, this would require the introduction of
weights,22,24 and they are rarely used in practice. In our
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single study example, we used P-spline transformations
of X for both its main effect and the interaction with
treatment. We used 17 equidistant knots; 15 inner knots
plus the boundaries, while the λ parameter was selected
through a ‘leave one out’ GCV process as described
above. In Figure 6c, we present the resulting mortality
risks per treatment arm conditional on BMI, along with
the 95% confidence intervals. Subsequently, the effect of
the treatment conditional on BMI, calculated as the dif-
ference between the two curves in Figure 6c, is presented
in Figure 7c.

4.2.2 | Smoothing splines

Smoothing splines are another member of the family of
penalised spline methods. Similar to P-splines, the idea is
to increase the number of knots, but this time to be equal
or approximately equal to the number of observations. O0

Sullivan43 suggested a penalty based on Reinsch's integral
of the second derivative of f Xð Þ, where f Xð Þ is a cubic
spline.

In our single study example, we used smoothing
spline transformations of X for both the main effect and
its interaction with treatment, while the λ parameter was
selected through a ‘leave one out’ GCV process as
described above. In Figure 6d, we present the resulting
mortality risks per treatment arm conditional on BMI,
along with the 95% confidence intervals. The effect of
treatment conditional on BMI is presented in Figure 7d.

4.2.3 | Common properties of penalised
splines

Penalised splines reflect the belief that the predicted
regression lines are more likely to be smooth than not.
Therefore, their main advantage is that they are more
likely to show smoother functional shapes as compared
to unpenalised splines. Another advantage is that they
circumvent the need to specify the positions and the
number of knots, which in most cases are not known
beforehand and may need to be estimated. Penalisation
also affects the inference, due to the bias-variance trade-
off. For instance, the coefficient estimates are subject to a
smoothing bias, therefore their interpretation may be
problematic. Note that this issue does not necessarily
apply to the predicted outcomes. A related issue is that
the degrees of freedom have to be modified to account for
the penalisation. Wood suggests the use of effective
degrees of freedom of a model. Effective degrees of free-
dom are calculated using the Welch-Satterthwaite

approximation formula and can be used to compare
models fitted with different types of splines.44

5 | INDIVIDUAL PARTICIPANT
DATA META-ANALYSIS USING
SPLINES

In the previous sections, we focused on estimating
non-linear main effects and interactions with the treat-
ment in a single study. As trials are typically not
powered to investigate effect modifiers, exploring non-
linear effects in a single study may often be problem-
atic or yield very wide confidence intervals. Depending
on the underlying curvature, splines need a high
amount of data and therefore their use is more feasible
in the context of an IPD-MA, where they enable the
statistical modelling of complex relationships such as
non-linear associations.45 They can be applied in a
two-stage or one-stage meta-analysis approach. We
apply the methods on three IPD-MA scenarios of five
studies each. In the first scenario, the underlying cur-
ves are heterogeneous whilst the BMI ranges are the
same across studies. In the second scenario, the under-
lying curves are homogeneous but the BMI ranges are
different across studies. In the third scenario, both the
underlying curves and the BMI ranges are different
across studies.

5.1 | Two-stage pointwise meta-analysis

In pointwise meta-analysis, a separate meta-analysis is
conducted per distinct value (point) of X, using the out-
comes and standard errors as estimated per study. In the
first stage of a two-stage pointwise meta-analysis, as pro-
posed by Sauerbrei and Royston in method 3,14 we fit an
appropriate model and estimate the predicted outcome
per study. If needed, e.g. in case of observational data,
the predicted outcomes should be controlled for individ-
ual-level confounders by first building a confounder
model.14 Note that instead of using fractional polyno-
mials as in Sauerbrei and Royston, we may use any of the
spline approaches described in section 4. After fitting the
study-specific models, we should decide, for example, by
plotting the results, whether it is sensible to pool the
predicted outcomes across studies. If so, the second stage
consists of distinct meta-analyses, for each value of X, of
the study-specific predicted values and standard errors,
using either a fixed or a random effects approach.14 Given
a continuous variable X the algorithm proceeds as
follows:

264 BELIAS ET AL.



5.1.1 | Stage 1

1. Select a spline approach and fit an appropriate model
per study including interaction between X and the
treatment. Since pointwise meta-analysis pools
predicted outcomes instead of model coefficients, the
study-specific models need not be the same. Different
modelling techniques may be applied across studies,
including linear models, fractional polynomials, and
splines of different degrees and with different knot
specifications. During this stage, we may use several
criteria to find the best fitting model per study, for exam-
ple, Aikaike information criteria, GCV or likelihood ratio
tests (possibly with a nominal significance level larger
than 0.05 as proposed by Sauerbrei and Royston.14

2. Using the models from step 1, estimate regression
lines bf Tj

Xð Þ and bf Cj
Xð Þ for the treated and control

group in study j respectively, along with their stan-
dard errors and 95% confidence intervals. In order to
smooth the pooled regression lines from stage
2 (below), we can extrapolate the regression lines to
cover the full domain of X. Automatically, the stan-
dard errors of the predicted outcomes in the extrapo-
lated regions will be increasing along with the extent
of extrapolation, and ensure small weights for the
extrapolated outcomes in the meta-analysis.

3. Depending on the outcome we wish to show and
depending on the scale on which we wish to make
inferences, we may choose to use a link function g
and its inverse g�1:
1. If, in stage 2, we aim to show the predicted out-

come per treatment arm and conditional on X, we
calculate the predicted outcome per treatment
arm, g�1 bf Tj

Xð Þ
� �

and g�1 bf Cj
Xð Þ

� �
for visualisa-

tion of the results per study. Pooling in stage 2 will
be done on the scale of the link function, for exam-
ple on the logit scale, per treatment arm, while in
case of different ranges across the studies, the out-
come is predicted for the full range (i.e., across
studies) of X.

2. If, in stage 2, we aim to show the effect of the
treatment conditional on X, we first calculate per

study the absolute treatment effect g�1 bf Tj
Xð Þ

� �
�

g�1 bf Cj
Xð Þ

� �
or the relative treatment effect

g�1 bf Tj
Xð Þ –bf Cj

Xð Þ
� �

, again over the full range of X,

and calculate the corresponding confidence interval
(see section 3). Note that if the goal of our meta-anal-
ysis is to make inferences on the treatment effect,
this approach is preferable to step 3.1, to avoid amal-
gamating the within and between study
heterogeneity.46,47

5.1.2 | Stage 2

For each value within the boundaries of X we perform
either a fixed or random effects meta-analysis to get the
pooled outcome of choice as a function of X along with
its pointwise 95% confidence interval. Note that if the
available data across the studies vary over different
regions of X, pooling of the predicted outcomes may pro-
duce unsmooth results, see Figures 8 and 9, especially in
the second and third scenario. From our experience, this
may be caused by unsmooth estimates of the heterogene-
ity parameter τ across the range of X. As τ plays an
important role in random-effects meta-analysis, it is rec-
ommended to visualise the heterogeneity estimates over
the range of X.

We applied pointwise meta-analysis using all afore-
mentioned spline approaches in all three IPD-MA scenar-
ios. First, we estimated the mortality risk conditional on
BMI per study and treatment arm (step 3.1), and we esti-
mated per study the absolute risk difference and the con-
fidence interval (step 3.2) over the full range of X. In the
second stage, we pooled both the predicted curves per
treatment arm (on logit scale) and their risk differences
(on probability scale), using random effects meta-ana-
lyses with REML estimators for τ2, except when there
were problems with the convergence of the Fisher scor-
ing algorithm in the estimation of τ2. In those cases, we
replaced the REML estimator with the DerSimonian-
Laird estimator for τ2 which does not require an iterative
procedure, and which in our example generally resulted
in smoother estimates than REML. In a random effects
meta-analysis the size of the estimated τ2 affects the
pooling weights of the individual studies. The pooled
mortality risks per treatment arm are presented in Fig-
ure 8, and the pooled treatment effects conditional on
BMI in Figure 9. Detailed figures for the third scenario,
including visualisations containing study data, can be
found in the online Appendix, section 5.1 for the first
stage, and sections 5.2–5.5 for the second stage. Since the
underlying curvature (i.e., the amount by which the
curve deviates from being a straight line) per study is dif-
ferent across the first and the two remaining scenarios,
we followed different modelling strategies for the regres-
sion splines to avoid overfitting during the first stage. For
the first scenario for the restricted cubic splines, we
placed four knots, following Harrell's suggestion to use
the 5%, 35%, 65% and 95% quantiles of BMI and for natu-
ral B-splines four equidistant knots (two inner knots plus
the boundaries per study). For the second and third sce-
nario, for the restricted cubic splines we placed three
knots at 10%, 50% and 90% quantiles of BMI and for
natural B-splines three equidistant knots (one inner
knot plus the boundaries per study. For all scenarios
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for P-splines we used 17 equidistant knots (15 inner
knots plus the boundaries per study). For the penalised
splines (P-splines and smoothing splines) the tuning
parameter λ was selected through a ‘leave one out’
GCV process.

5.2 | Two-stage multivariate meta-
analysis

Instead of using pointwise meta-analysis per distinct
value of X, the functional shapes can also be pooled using

FIGURE 8 Estimated mortality risks, pooled per treatment arm using pointwise meta-analysis. Upper row: heterogeneous dataset with

equal BMI ranges; second row: non-heterogeneous dataset with different BMI ranges; last row: combined dataset with different BMI ranges

and between study differences in the mortality risks. Results from (a) restricted cubic splines, (b) natural B-splines, (c) P-splines, and (d)

Smoothing splines. The regression lines were pooled using random effects meta-analysis, with REML τ2 estimator, except for restricted cubic

splines in the second and last row, where we used the DerSimonian-Laird estimator for τ2 [Colour figure can be viewed at

wileyonlinelibrary.com]
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multivariate meta-analysis. This approach, as proposed
by Gasparrini et al.,23 pools the set of regression coeffi-
cients estimated in the first stage, accounting for their
within- and (if applicable) between-study correlation,
using a fixed or random effects multivariate meta-

analysis approach. Assumptions are a normal distribu-
tion, a constant between-studies covariance matrix, and a
normal distribution for the random effect, which implies
that this is symmetrical and thus does not allow for heavy
or light tails.48 The use of penalised splines in

FIGURE 9 Estimated treatment effect plots, using pointwise meta-analysis. Upper row: heterogeneous dataset with equal BMI ranges;

second row: non-heterogeneous dataset with different BMI ranges; last row: the combined dataset with different BMI ranges and between

study differences in the mortality risks. Results from (a) restricted cubic splines, (b) natural B-splines, (c) P-splines, and (d) Smoothing

splines. Treatment effects conditional to BMI were estimated per study by subtracting the regression lines for treated minus the control, as

described in section 3. Subsequently, study specific treatment effects were pooled using pointwise random effects meta-analysis, with REML

τ2 estimator, except for P-splines and Smoothing splines in the second and last row, where we used the DerSimonian-Laird estimator for τ2
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multivariate meta-analysis still wants further research, e.
g. with respect to possible over-penalisation in small
studies and low/no data areas within studies, and is
therefore beyond our current scope. Note that in order to
pool the results of the first stage, each study should pro-
vide the same set of coefficients, estimated in the same
domain of X. Therefore, in order to apply multivariate
meta-analysis, the basis functions for the splines in the
individual studies should be of the same degree, and
also defined on the same intervals across studies, using
the same knot positions. In case of different ranges of
X across studies, the use of common positions for the
knots may leave some coefficients inestimable in some
studies and meta-analysing them may cause complica-
tions.23 A solution is to conduct data augmentation as
a preliminary step. Data augmentation as described by
White et al.49 and Riley et al.26 refers to the generation
of pseudo data beyond the per study boundaries of X,
with minimal weight and arbitrary outcome. Note that
in multivariate meta-analysis a careful specification of
the knots may be required. Use of a large number of
knots may cause convergence issues during the second
stage, in case of a rank-deficient variance covariance
matrix.

The multivariate meta-analysis algorithm proceeds as
follows:

5.2.1 | Stage 1

1. As a preliminary step, choose the knots corresponding
to the optimal locations across the studies along with
the degree of the unpenalised spline.

2. Per study j, fit a model including interaction between
X and the treatment with the chosen specifications of
step 1.

3. With Q the total number of coefficients and q ∈ [1, 2,
…, Q], extract per study the estimated coefficients bβqj
along with their variance–covariance matrix.

5.2.2 | Stage 2

1. Use either fixed or random effects multivariate meta-
analysis to estimate the pooled bβq

2. To calculate the predicted outcome given X and
treatment T, multiply the pooled estimates with the
design (or model) matrix containing the values of X
along with their spline transformed values.

3. To estimate the treatment effect conditional on X, sub-
tract the pooled-per-treatment arm outcomes and cal-
culate the confidence interval as described in section 3.

We applied multivariate meta-analysis in combina-
tion with regression splines in all three scenarios. To do
so we performed data augmentation as a preliminary
step26,49 in the second and third scenario. This way all
studies had curves estimated over the full range of BMI.
In stage 1, we fitted restricted cubic spline and B-spline
transformations of BMI both as main effects and as inter-
actions with the treatment per study. For the restricted
cubic spline transformations, we used five knots, follow-
ing Harrell's suggestion to use the 5%, 27.5%, 50%, 72.5%
and 95% quantiles of BMI, for natural B-splines four equi-
distant knots (two inner knots plus the boundaries per
study). Note that we positioned the knots over the full
domain of BMI. Subsequently, we pooled the estimated
coefficients using a random-effects meta-analysis with
the REML estimation method. We calculated regression
lines per treatment arm by multiplying the design
(or model) matrix with the pooled coefficients. Absolute
risk differences were calculated by subtracting the pooled
mortality risks, conditional on the covariables, of the
treated minus the control, while for the confidence inter-
vals we used the proposal of Newcombe.36 In the second
and third scenario, multivariate meta-analysis failed to
converge for the restricted cubic splines approach. For
restricted cubic splines based on truncated power series,
some of the basis functions are defined over the whole
range of data and others on truncated parts only. To
apply multivariate meta-analysis, the same type of spline
needs to be fitted over the same data range in all individ-
ual studies. In studies with a limited range of data, data
augmentation in combination with a restricted cubic
spline basis might lead to high correlations between some
basis splines, implying numerical instabilities in spline
estimation. Therefore, for these scenarios we present only
results for natural B-splines. The pooled mortality risks
per treatment arm are presented in Figure 10, and the
pooled treatment effects conditional on BMI in Figure 11.
A visualisation of the models per study using the natural
B-splines in the third scenario can be found in the online
Appendix, section 5.6.

5.3 | One-stage generalised additive
mixed effects model

Instead of using a two-stage meta-analysis, we may also
conduct the analysis in one stage, using a mixed effect
model with splines, that is, a generalised additive mixed
effect model (GAMM). Hereby, we may include spline
transformations of X as main effects and as interactions
with the treatment as described in section 3. Note that
spline transformations of X are the sum of several basis
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functions, as described in section 4. The effects of the
basis function may be common to all studies, stratified
across studies, or allowed to have study-specific devia-
tions from the overall effect that follow a (usually) nor-
mal distribution (i.e., random effects). Common effects
may be modelled straightforward by including the basis
functions as they are. Stratified effects can be modelled
by including an interaction between the basis function
and the (categorical) clustering variable (study in this
context). Random effects can be modelled by penalising
the interaction of the basis function with the clustering
variable, as Wood22,50,51 and Kimeldorf and Wahba52

have shown.
Depending on the estimand of choice and the

assumptions researchers wish to make they may use any
combination of the above assumptions for their model.

On the one side, full stratification provides least bias at
the cost of high variance (i.e., high uncertainty with
respect to the coefficients). On the other side, a model
with only common effects has most bias and least uncer-
tainty with respect to the parameters. A model utilising
random effects will be somewhere in-between since the
variability across studies is forced to follow a certain dis-
tribution, which will shrink study-specific estimates to
the overall mean. Note that interaction terms included in
one-stage mixed effect models may be prone to ecological
bias and amalgamate the within and across study
effects.46,53–55 This is easily seen from the random effect
mechanism, which shrinks study specific estimates
towards the overall mean. To model ecological bias in
this setting, two methods have been proposed. One
approach is to stratify by study all or some of the main

FIGURE 10 Estimated mortality

risks per treatment arm conditional on

BMI, pooled using multivariate

metaanalysis. Upper row:

heterogeneous dataset with equal BMI

ranges; second row: non-heterogeneous

dataset with different BMI ranges; last

row: the combined dataset with

different BMI ranges and between study

differences in the mortality risks.

Results from (a) restricted cubic splines

and (b) natural B-splines. Multivariate

meta-analysis with restricted cubic

splines failed to converge for the second

and third scenario. The regression lines

were pooled using random effects meta-

analysis, with REML variance

covariance matrix estimator [Colour

figure can be viewed at

wileyonlinelibrary.com]
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effects including at least the treatment effect.26 Another
approach is to centre the covariable X around its study-
specific mean Xj creating a new variable Z¼X�X j. Sub-
sequently, include Z, X j, and the interaction of Z with
the treatment in the one-stage model.26,56 While these
methods have been demonstrated to be sufficient in
presence of linear effects, adequate modelling choices to
prevent introduction of ecological bias in presence of
non-linear relations are still ongoing research.

In our three scenarios, we used the four aforemen-
tioned spline transformations both as main effect and in
interaction with the treatment. We used a random inter-
cept and random slope for BMI in combination with a

fixed spline part. For the restricted cubic splines, we
used five knots (the 5%, 27.5%, 50%, 72.5% and 95% qua-
ntiles of BMI), for natural B-splines four equidistant
knots (two inner knots plus the boundaries), and for P-
splines we used 17 equidistant knots (15 inner knots
plus the boundaries). Note that we positioned the knots
over the full domain of BMI and that no manually con-
ducted data-augmentation nor extrapolation was
needed. The pooled mortality risks per treatment arm
are presented in Figure 12, and the pooled treatment
effects conditional on BMI in Figure 13. A visualisation
of the estimated models per study using the restricted
cubic splines in combination with GAMM in the third

FIGURE 11 Treatment effect

plots using multivariate meta-

analysis. Upper row:

heterogeneous dataset with equal

BMI ranges; second row: non-

heterogeneous dataset with

different BMI ranges; last row: the

combined dataset with different

BMI ranges and between study

differences in the mortality risks.

Results from (a) restricted cubic

splines, and (b) natural B-splines,

in the heterogeneous dataset with

equal BMI ranges. Multivariate

meta-analysis with restricted cubic

splines failed to converge for the

second and third scenario.

Absolute treatment effects along

with their confidence intervals

were calculated as described in

section 3, using the pooled

mortality risk for treated and

control and their confidence

intervals as shown in Figure 10.

The dashed horizontal line shows

the null effect (zero risk

difference) line
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scenario can be found in the online Appendix,
section 5.7.

5.4 | Properties of the pooling methods

We illustrated the association between BMI and mortality
risk in three scenarios using four spline methods and two
two-stage approaches (pointwise and multivariate meta-
analysis) and one one-stage approach (GAMM). Table 1
summarises the properties of the aforementioned
approaches. An advantage of two-stage approaches is that
they provide insight into between-study variability during

the first stage. This is easily overlooked when starting
from a one-stage model. Furthermore, in two-stage
methods we may use heterogeneity measures such as
Cochran's Q statistic, τ2, and prediction intervals per
value of X to assess whether it is sensible to pool the asso-
ciations. Therefore, it is always informative to start with
investigating the results per study, similar to the first
stage in two-stage methods. However, two-stage methods
may not always be feasible when some studies are too
small with respect to model complexity, that is, when the
number of parameters that needs to be estimated is large
compared to the number of observed events (e.g., the
number of deaths).

FIGURE 12 Estimated

mortality risks per treatment arm

conditional on BMI, pooled using a

random effects GAMM. Upper row:

heterogeneous dataset with equal

BMI ranges; second row: non-

heterogeneous dataset with

different BMI ranges; last row: the

combined dataset with different

BMI ranges and between study

differences in the mortality risks.

Results from (a) restricted cubic

splines, (b) natural B-splines, (c) P-

splines, and (d) Smoothing splines.

For penalised splines the λ
parameter is selected through a

‘leave one out’ GCV process

[Colour figure can be viewed at

wileyonlinelibrary.com]

BELIAS ET AL. 271

http://wileyonlinelibrary.com


5.5 | Pointwise meta-analysis: Robust
and flexible but non-smoothness may
occur

The main advantages of pointwise meta-analysis are its
flexibility, robustness (i.e., have less error) and ease of
use. In particular, pointwise meta-analysis is flexible
since we are allowed to fit different models across the
studies, as we are pooling the predicted outcomes rather
than the coefficients. As an extreme example, in one
study, we may apply a restricted cubic spline transforma-
tion of X, in another a second degree B-spline and in

another we may choose to not transform X. Such differ-
ences are more likely to occur when studies greatly differ
in sample size and in their baseline characteristics,
(e.g., more narrow covariate range). Also we are allowed
to vary the number and position of knots per study. As
we are fitting per study a best fitting model, pointwise
meta-analysis is also robust to model misspecification.
When the ranges of X are different across studies,
pointwise meta-analysis uses the whole domain of X,
even without data augmentation, by means of extrapola-
tion. The main disadvantage of pointwise meta-analysis
is that the pooled curve may not be smooth. This might

FIGURE 13 Treatment effect

plots using GAMMs. Upper row:

heterogeneous dataset with equal

BMI ranges; second row: non-

heterogeneous dataset with

different BMI ranges; last row: the

combined dataset with different

BMI ranges and between study

differences in the mortality risks.

Results from (a) restricted cubic

splines, (b) natural B-splines, (c) P-

splines, and (d) Smoothing splines.

Absolute treatment effects along

with their confidence intervals

were calculated as described in

section 3, using the pooled

mortality risk for treated and

control and their confidence

intervals as shown in Figure 12.

The dashed horizontal line shows

the null effect (zero risk

difference) line
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be related to non-smooth estimates of heterogeneity
across the range of X (see also Figures 5.2.A–5.5.A in the
online Appendix sections 5.2–5.5, which show the esti-
mated τ across the range of BMI). Especially in case of
extrapolation, the variation between the predicted study
outcomes might be increased. Even though the
corresponding SEs are also larger, we noted that the
between-study heterogeneity can have a relevant effect

on the study weights, which in a random-effects meta-
analysis are based on a combination of SE2 and the
between study heterogeneity τ2. Consequently, a random
effects meta-analysis may give disproportionate weight to
the extrapolated outcomes. Hence, attention should be
payed to the role of the between-study heterogeneity in
the estimation of the pooled functional form. Also since
we are performing a meta-analysis for each value of X,

TABLE 1 Comparison of the pooling methods in IPD-MA

Characteristic Pointwise meta-analysis Multivariate meta-analysis GAMM

Input for pooling Predicted outcome
per value of X

Coefficients estimated per study One-stage approach using
crude data. Uses mixed
effects modelling to account
for within study clustering

Allows for different model
specifications (functional
forms) across studies

Yes No No

Allows for different ranges of
X across studies

Yes, by using the study-specific
models to predict outcomes
over the full range of X.
(Extrapolation)

Be cautious; in case of random-
effects meta-analysis the
pooled functional curve may
be overly influenced by the
extrapolated estimates.

Yes, by adding observations
with small weights at the
extremes of X. (Data
augmentation)

Further research is needed on
how to apply restricted
splines based on truncated
power series in case of highly
heterogeneous domains of X.

Yes, a single model is specified
across all values of X

All types of splines can be
used

Yes No
Further research is needed on
how to apply penalised
splines.

Yes

Main advantages Flexible as it allows study-
specific modelling, that is,
different models and splines
across studies.

Insightful, as the translation
from study-based curves to
the pooled curve is a
straightforward random-
effects meta-analysis per
value of X.

More efficient (i.e., smaller
confidence intervals) than
pointwise meta-analysis, if
the same model across
studies can be assumed and if
this model is specified
correctly.

Pooled curves are represented
by a formula.

Can handle different study
domains and small sample
sizes.

More efficient than pointwise
meta-analysis, if the same
model across studies can be
assumed and if this model is
specified correctly, taking
into account between-study
heterogeneity and ecological
bias. Pooled curves are
represented by a formula.

Main disadvantages Pooled curves can be less
smooth than with
multivariate meta-analysis or
GAMM.

Pooled curves are not
represented by a formula,
thus there are no pooled
regression coefficients to be
reported and used in further
analyses.

Highly sensitive to modelling
choices.

Inflexible as it needs the same
model specifications across
studies, including type of
spline and number and
positions of knots, and
assumes a constant
heterogeneity matrix.

Model complexity is limited by
the smallest study.

Requires careful assessment of
between study variability
since this is not automatically
provided, thus careful
modelling is required.
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pointwise meta-analysis may be more computationally
intensive and show wider confidence intervals than mul-
tivariate meta-analysis and GAMMs. Finally, the pooled
curves are not represented by a formula, thus there are
no pooled regression coefficients to be reported and used
in further analysis. This is especially inconvenient when
combinations of X are of interest.

5.6 | Multivariate meta-analysis:
efficient if specified “correctly”, but lacks
robustness and flexibility

White et al. show that the main advantage of multivari-
ate meta-analysis is that multivariate meta-analysis
appears to be more efficient, with narrower confidence
intervals, than pointwise meta-analysis if the model is
correctly specified.25 However, this argument may not
be relevant in practice, since models cannot be expected
to be correctly specified in general. For instance, in our
illustrative examples we generated quadratic and quar-
tic associations for the control and treated group,
respectively. However, during the analysis we used
cubic splines to model these associations and the
resulting curves were not a perfect representation of the
pre-specified curves but rather an approximation, thus
our model may be considered mis-specified. A major
limitation of multivariate meta-analysis is that it is
highly sensitive to model specification. In the first sce-
nario, the multivariate meta-analysis had similar effi-
ciency as pointwise meta-analysis and GAMM. But in
the second and third scenario with the different ranges
across the studies, multivariate meta-analysis showed
results only for natural B-splines, see Figures 10 and 11.
Furthermore, it is less flexible compared to pointwise
meta-analysis, since the models fitted per study should
have the same parametrisation e.g. same type of spline,
same number and positions of knots and the same
range of X.23 This restriction may be problematic in
cases where a subset of studies included in the meta-
analysis has a limited number of participants. In that
case, modelling the association between the outcome
and the spline transformations of X may fail to con-
verge for a subset of studies, and only multivariate
meta-analysis based on simple linear models may be
possible. Model complexity is thus limited by the
smallest study. Furthermore, it is assumed that the het-
erogeneity matrix is constant across X Finally, since
multivariate meta-analysis pools the coefficients esti-
mated during the first stage, it may not be compatible
with approaches where penalisation to those coeffi-
cients is applied.

5.7 | GAMM can handle different study
domains and sample sizes, whilst
producing smooth pooled regression
curves, but careful modelling is required

The main advantage of GAMMs is that they can more
easily handle differences in the distributions (ranges) of
X across studies, similar to pointwise meta-analysis, and
include all studies regardless of the number of observa-
tions. In contrast to pointwise meta-analysis, GAMMs
result in smooth pooled curves and confidence intervals,
also in case of differences in measured domains of X
across studies. The main disadvantage of GAMMs is that
they do not automatically provide insight into the full
amount of heterogeneity between studies as provided in
two-stage methods. Therefore, if the data allow, it is
advisable to fit study-level models anyway to inform the
one-stage model. Furthermore, since GAMMs are one-
stage mixed effects models similar to generalised linear
mixed models, they require careful modelling while tak-
ing into account between-study heterogeneity. Caution is
especially important when aggregation (ecological) bias
might be present, as discussed by Riley et al., Hua et al.,
and Belias et al.2647,56

6 | SOFTWARE

All analyses were performed with the statistical software
R version 3.6.0. For data manipulation we used the
tidyverse57 package, for the restricted cubic splines we
used rms58 package, for natural B-splines we used the
splines package included in base R and for P-splines,
smoothing splines and GAMMs we used the mgcv50

package. For pointwise and multivariate meta-analysis
we used the meta59 and mvmeta23 packages respectively.
Currently, package meta does not provide a function to
conduct pointwise meta-analyses over a grid of X values,
but the provided R-code shows how to implement this. It
is also possible to estimate splines in other software such
as Stata or SAS. However, since R is freely available for
every researcher, we provide the scripts to apply splines
in multiple studies scenarios only in R, using the third
illustrative scenario as an example.

7 | EMPIRICAL EXAMPLE

To illustrate the use of splines combined with the afore-
mentioned pooling methods in a real example we con-
sider a previously published IPD-MA investigating the
effect of antibiotics in children with AOM.28 Rovers et al.
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collected IPD from six randomised clinical trials with a
total of 1643 children, aged from 0 to 12 years old. The
primary outcome was fever and/or ear-pain 3–7 days
(yes/no) after antibiotics or placebo treatment. They con-
cluded that treatment was efficacious in young children
(till 2 years old) with bilateral AOM. Below, we investi-
gate the effect of antibiotics across the values of age, in
children with unilateral or bilateral AOM.

7.1 | Methods

Data from one study were omitted as information on uni-
lateral or bilateral AOM was not reported. We used data

of children till 9 years old, as AOM above 9 years is rare
and we had a limited number of children over that age
(only 15). From the remaining five studies, one study
(Appelman et al.) had a limited number of events (chil-
dren with fever/ear pain) and for some age-bilateral
AOM combinations no events at all. Therefore, we
followed different strategies across the pooling methods
for this study.

7.1.1 | Pointwise meta-analysis

For pointwise meta-analysis, for the Appelman study we
fitted a logistic regression model including the main

FIGURE 14 The risk of having

fever/ear-pain after 3–7 days in

children with either unilateral or

bilateral acute otitis media receiving

either antibiotics or placebo. The

presented results are estimated

using pointwise meta-analysis with

(a) restricted cubic splines, (b)

natural B-splines, (c) P-splines and

(d) Smoothing splines [Colour

figure can be viewed at

wileyonlinelibrary.com]
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effects of bilateral AOM, treatment and age and their
two-by-two interactions, without any spline transforma-
tion for age. For the remaining studies we fitted per study
a logistic regression model including the main effects of
bilateral AOM, treatment, and age transformed by each
of the aforementioned spline approaches, and we
included the interactions of the spline transformed age
with bilateral AOM (yes/no) and treatment (both two-
way). For restricted cubic splines we followed Harrell's
suggestion and used per study three knots at the 10%,
50% and 90% quantiles of age; for natural B-splines we
used third degree basis functions and per study three
equidistant knots (1 inner knot plus the boundaries per
study), while for P-splines we used third degree basis

functions and per study 17 equidistant knots (15 inner
knots plus the boundaries per study). For the penalised
splines (P-splines and smoothing splines) the tuning
parameter λ was selected through a ‘leave one out’ GCV
process. Subsequently, we extracted the predicted out-
comes for fever/ear pain in logit scale and pooled them
using a random-effects meta-analysis approach with
REML τ2 estimator. To show the pooled risk conditional
on children's age, bilateral AOM and treatment group,
we back-transformed the pooled curves into risk curves.
To show the treatment effect conditional on children's
age and bilateral AOM, we first back-transformed per
study the predicted fever/ear pain risk. To estimate per
study the absolute risk difference between the treated

FIGURE 15 The antibiotics

effect (risk difference of having

fever/ear-pain after 3–7 days) in

children with either unilateral or

bilateral acute otitis media,

conditional on age. The presented

results are estimated using

pointwise meta-analysis with (a)

restricted cubic splines, (b) natural

B-splines, (c) P-splines and (d)

Smoothing splines
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and control along with their confidence intervals, we
followed the proposal of Newcombe,36 see Section 3.
Finally, we pooled the risk differences using a random-
effects meta-analysis approach with the REML τ2

estimator.

7.1.2 | Multivariate meta-analysis

For multivariate meta-analysis, we omitted the
Appelman study mentioned above. Therefore, multivari-
ate meta-analysis was based on the four remaining stud-
ies with a sufficient number of observations to fit splines.
Also, since in multivariate meta-analysis the ranges of
age across the studies need to be the same, we performed
data-augmentation as a preliminary step. In the first stage
of the multivariate meta-analysis, we fitted a logistic

regression model including the main effects of treatment,
bilateral AOM and spline transformed age, and the two-
way interactions of spline transformed age with
treatment and bilateral AOM. Since in multivariate meta-
analysis the positions of knots need to be the same across
the studies, for restricted cubic splines we used three
knots at 10%, 50%, 90% quantiles of age calculated on the
four studies combined; for natural B-splines we used
third degree basis functions and three equidistant knots
(one inner knot at age 2.5 plus two at the boundaries of
age). Subsequently, we extracted the regression coeffi-
cients and their variance–covariance matrix and pooled
them using a random-effects meta-analysis approach
with REML estimator for τ2. Finally, to show the risk of
developing fever/ear pain conditional on age, treatment
and bilateral AOM, we multiplied the pooled coefficients
with the corresponding design matrix and back-

FIGURE 16 The risk of having

fever/ear-pain after 3–7 days in children

with either unilateral or bilateral acute

otitis media receiving either antibiotics

or placebo. The presented results are

estimated using multivariate meta-

analysis with (a) restricted cubic splines

and (b) natural B-splines [Colour figure

can be viewed at

wileyonlinelibrary.com]
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transformed the pooled outcomes using the inverse logit
function. To calculate the absolute risk differences and
their confidence intervals, we followed the proposal of
Newcombe,36 see section 3.

7.1.3 | Generalised additive mixed effects
models

For GAMMs, we included all five studies. We fitted a
logistic regression model including the main effects of
treatment, bilateral AOM and spline transformed age and
the two-way interactions of spline transformed age with
treatment and bilateral AOM. We used similar definitions
for knot positioning and degrees of splines as in
pointwise and multivariate meta-analysis, but using the
whole data-set without data-augmentation nor

extrapolation. We followed Wood's proposal and included
random-effects for the intercept and for the slope of age
additively to account for the within study clustering of
participants.39

7.2 | Results

Figures 14, 16 and 18 show the pooled regression curves
of pointwise meta-analysis, multivariate meta-analysis
and GAMMs, conditional on age and bilaterality of
AOM. Figures 15, 17, and 19 show the absolute risk dif-
ference between the treated and control group (the treat-
ment effect) conditional on age and bilaterality of AOM.
Efficacy of the antibiotics versus the control treatment
can be deduced from the confidence intervals for the
absolute risk difference by examining whether they

FIGURE 17 The antibiotics effect

(risk difference of having fever/ear-pain

after 3–7 days) in children with either

unilateral or bilateral acute otitis media,

conditional on age. The presented

results are estimated using multivariate

meta-analysis with (a) restricted cubic

splines and (b) natural B-splines
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exclude the value zero. Similar to the findings in the orig-
inal report, antibiotics seem efficacious in young children
with bilateral AOM.

Since this is an empirical example, the underlying
true associations are not known and we cannot draw firm
conclusions with respect to the appropriateness of the dif-
ferent approaches. However, we show the pooled curves
and compare them with regard to their smoothness and
width of confidence intervals, and report convergence
issues if any. As we were investigating interactions
between treatment, bilaterality of AOM and age, in some
studies the combinations of these variables created
groups of patients with a limited number of events at cer-
tain age ranges. Consequently, pointwise meta-analysis
resulted in wider confidence intervals compared to multi-
variate meta-analysis and GAMM. Furthermore, as in the

artificial data-sets, the predicted pooled regression lines
were not always smooth due to differences in the age
ranges across the studies. Multivariate meta-analysis
resulted in smooth pooled regression curves for both the
restricted cubic splines and the natural B splines
approach, see Figures 16 and 17. The confidence intervals
were also smooth and wider than those of GAMMs.
GAMMs resulted in smooth pooled regression lines and
narrower confidence intervals than pointwise and multi-
variate meta-analysis, see Figures 18 and 19.

8 | DISCUSSION

Our results, in which we illustrated four spline-based
approaches (restricted cubic splines, natural B-splines, P-

FIGURE 18 The risk of having

fever/ear-pain after 3–7 days in children

with either unilateral or bilateral acute

otitis media receiving either antibiotics

or placebo. The presented results are

estimated using GAMM with

(a) restricted cubic splines, (b) natural B-

splines, (c) P-splines and (d) Smoothing

splines [Colour figure can be viewed at

wileyonlinelibrary.com]
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splines and smoothing splines), and three pooling
methods (pointwise meta-analysis, multivariate meta-
analysis and GAMMs) on three scenarios with artificial
data, showed that in case of a heterogeneous data-set
with similar ranges of the effect modifier, all approaches
performed equally well in modelling the underlying true
association. In the two scenarios with different ranges,
pointwise meta-analysis showed less smooth pooled
regression lines and confidence intervals, which were
wide in subdomains of BMI. Multivariate meta-analysis
failed to converge for restricted cubic splines and showed
results only when combined with natural B-splines,
showing smooth regression lines and confidence inter-
vals. GAMM showed results in both scenarios. GAMM's
pooled regression lines and confidence intervals were

smooth in all cases. In the empirical example, we investi-
gated the association between age and the effect of antibi-
otics in children from 0 to 9 years with unilateral or
bilateral otitis media. Pointwise meta-analysis resulted in
non-smooth pooled regression lines and confidence inter-
vals, which were also wider than multivariate meta-anal-
ysis and GAMM. Multivariate meta-analysis showed
smooth pooled regression lines and confidence intervals
which were wider than GAMM's. In this specific exam-
ple, GAMM, especially when combined with penalised
splines, resulted in smooth pooled regression lines with
narrower confidence intervals than the other pooling
methods.

The major strength of our manuscript is that as far as
we are aware, we are the first to provide an introduction

FIGURE 19 The antibiotics effect

(risk difference of having fever/ear-pain

after 3–7 days) in children with either

unilateral or bilateral acute otitis media,

conditional on age. The presented

results are estimated using GAMM with

(a) restricted cubic splines, (b) natural B-

splines, (c) P-splines and (d) Smoothing

splines
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on how to apply a variety of spline methods in both sin-
gle and multiple studies, in order to investigate treatment
effect differences when non-linearities are present. In our
illustrative examples based on simulated data we intro-
duced three features into our generating mechanisms.
First, the association of mortality risk with BMI was sim-
ple and realistic as it was based on previously published
papers.29,30 Second, we generated IPD-MA scenarios suit-
able to pool as the between-study heterogeneity of the
regression curves was limited to I2 less than 40%. Finally,
in the second and third scenarios we generated different
boundaries for BMI per study, in order to illustrate the
differences between the pooling methods in scenarios
where study-specific domains of X have limited overlap.

Some potential limitations deserve attention. First, we
did not illustrate the performance of the aforementioned
approaches in a scenario with homogeneous associations
and similar ranges of the effect modifier across studies.
We considered that this scenario is rarely present in prac-
tice and that all approaches would produce similar
results. We defined three scenarios, with either none or
rather extreme differences in the ranges of the effect
modifier across studies, combined with either none or
limited between-study heterogeneity. We chose these set-
tings as they generated data that were appropriate for
pooling, and suitable for the purpose of an introductory
paper in IPD-MA, as illustration for the stronger and
weaker points of the approaches. We did not investigate
the performance of the methods in settings with weaker
interaction effects and/or larger between-study heteroge-
neity. However, it is reassuring that the findings from our
empirical example were similar. Second, we did not illus-
trate the performance of the pooling methods in scenar-
ios with ecological bias. Modelling choices that avoid
ecological bias in presence of non-linear associations still
require further research and were thus outside the scope
of this article. Third, we showed the performance of the
spline-based pooling methods in three scenarios and one
empirical example. Although results suggest that splines
in IPD-MA provide a helpful tool to evaluate and capture
non-linear treatment effect differences, more research is
needed to evaluate their specific strengths and weak-
nesses. Last, corresponding to our main aim to provide
an introduction to splines, we limited our study to spline-
based approaches whereas other techniques might also
be able to deal with non-linear associations, e.g. tree-
based approaches,7–11 meta-STEPP,12,13 locally
(weighted) estimated scatter-plot smoothing (lo[w]ess),
or fractional polynomials.14,15,17

Other researchers have also drawn the attention to
the importance of modelling non-linear associations in
IPD-MA.25,26 These studies focused on estimating relative
treatment effect functions whereas we focused on

estimating the absolute risk differences. Our examples
and results show that accounting for non-linearities is
also of great importance if the aim is to investigate treat-
ment effect differences on the absolute scale. Therefore,
we believe that this introduction on how to apply splines
in IPD-MA will aid researchers to consider non-linear
relations with a potential effect modifier. Doing so may
provide more insight in the underlying associations, con-
tributing to improved evidence synthesis, and ultimately
better clinical decision making.

In conclusion, taking non-linear associations into
account whilst combining multiple studies requires
careful modelling. Across three IPD-MA scenarios and
one empirical example we showed that pointwise meta-
analysis was flexible and robust to model differences,
but non-smoothness could occur in case of different data
domains across studies. Multivariate meta-analysis was
efficient if specified “correctly”, but lacked robustness
and flexibility when combined with restricted cubic
splines from studies with different domains. GAMM
could handle different study domains and sample sizes,
whilst producing smooth pooled regression curves, but
needs careful modelling. Splines provide a helpful tool
to capture non-linear treatment effect differences in
IPD-MA.
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