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Abstract
The strain-generated potential (SGP) is a well-established mechanism in cartilaginous tissues whereby mechanical forces gen-
erate electrical potentials. In articular cartilage (AC) and the intervertebral disc (IVD), studies on the SGP have focused on fluid-
and ionic-driven effects, namely Donnan, diffusion and streaming potentials. However, recent evidence has indicated a direct
coupling between strain and electrical potential. Piezoelectricity is one such mechanism whereby deformation of most biological
structures, like collagen, can directly generate an electrical potential. In this review, the SGP in AC and the IVD will be revisited
in light of piezoelectricity and mechanotransduction. While the evidence base for physiologically significant piezoelectric
responses in tissue is lacking, difficulties in quantifying the physiological response and imperfect measurement techniques
may have underestimated the property. Hindering our understanding of the SGP further, numerical models to-date have negated
ferroelectric effects in the SGP and have utilised classic Donnan theory that, as evidence argues, may be oversimplified.
Moreover, changes in the SGP with degeneration due to an altered extracellular matrix (ECM) indicate that the significance of
ionic-driven mechanisms may diminish relative to the piezoelectric response. The SGP, and these mechanisms behind it, are
finally discussed in relation to the cell response.
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Introduction

Cartilaginous tissues, such as articular cartilage (AC) and the
intervertebral disc (IVD), are known to remodel in response to
a variety of stresses (Grodzinsky et al. 2000; Fearing et al.
2018). Cells embedded in the extracellular matrix (ECM)
sense such forces and respond through a milieu of signalling
pathways to produce anabolic or catabolic effects. This re-
sponse is highly dependent on the type, magnitude and fre-
quency of the applied force, as well as the matrix which the
cells are embedded in (Buschmann et al. 1995; Neidlinger-
Wilke et al. 2006; Korecki et al. 2009; Zhang et al. 2011).

Altered biomechanics, leading to a catabolic cell response,
can disrupt this important homeostatic control mechanism.

The IVD is highly susceptible to degeneration, a con-
dition which is strongly implicated in low back pain
(Luoma et al. 2000, 2016). The primary function of the
IVD is to transmit spinal loads while providing for flexi-
bility. As such, the mechanobiology of the IVD have been
identified as key processes in maintaining tissue or induc-
ing degeneration (Vergroesen et al. 2015), while the
mechanotransduction pathways involved remain poorly
understood (Fearing et al. 2018; Molladavoodi et al.
2020). Similarly, biomechanical factors play a critical role
in the maintenance or degeneration of AC, while the pre-
cise relationship between altered biomechanics and in-
flammation is not well known (Guilak 2012; Martínez-
Moreno et al. 2019).

Many mechanotransduction pathways in AC and the
IVD have been elucidated. Most known mechanosensors
in both tissues are thought to be signalled by deformations
of the local extracellular matrix (ECM) or pericellular
matrix (PCM) (Zhao et al. 2020). These lead to a cascade
of downst ream int race l lu lar s ignal l ing to al te r
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transcription in the nucleus, modify gene expression and
synthesise protein effectors to repair or degrade the ECM.
PIEZO channels (Lee et al. 2014), TRPV channels
(O’Conor et al. 2014) and integrins (Le Maitre et al.
2009) are some of the most well-studied mechanosensors
in cartilaginous tissue that can be signalled by compres-
sion, tensile stretch, hydrostatic pressure, shear stress or
other such mechanical cues. The mechanotransduction
pathways involved in IVD cells and chondrocytes have
been reviewed in-depth elsewhere and thus is beyond
the scope of this review (Sanchez-Adams et al. 2014;
Fearing et al. 2018).

A well-established mechanism in these tissues in re-
sponse to loading, distinct from mechanical cues, is the
strain-generated potential (SGP). This electrophysiologi-
cal mechanism was first observed in bone, whereby the
mechanical strain of bone generated differential electrical
potentials (Friedenberg and Brighton 1966). The SGPs
were first attributed to piezoelectricity, whereby
noncentrosymmetric molecules generate a charge upon
deformation, though streaming potentials, a fluid- and
ion-driven electrical mechanism, drew greater interest in
subsequent years. SGPs were later observed across several
types of cartilage (Bassett and Pawluk 1972), widening
the field of stress-induced remodelling to soft tissues.
The observation that chondrocytes can respond to loading
through voltage-gated ion channels (Tanaka et al. 2005;
Mouw et al. 2007; Srinivasan et al. 2015) has further
highlighted the role of the SGP in AC and IVD
mechanotransduction. The highly hydrated nature of these
tissues has made Donnan, diffusion and streaming poten-
tials the dominant topic of study in the mechanisms be-
hind the SGP.

Despite a greater focus on ionic-driven SGPs, piezoelec-
tricity continues to be studied at all hierarchal levels of bio-
logical structures, from macro-scale lung tissue (Jiang et al.
2017) to micro-scale amino acids (Guerin et al. 2018). The
demonstration of piezoelectric effects has become so wide-
spread that it can be assumed that most biological structures
have inherent piezoelectric properties (Guerin et al. 2019).
However, the physiological relevance of these effects remains
in doubt, largely due to the magnitude of observed piezoelec-
tric responses in comparison to the full electrical potential
generated in a loaded tissue.

This review will focus on the SGP in cartilaginous tissue
(specifically AC and IVD) and the mechanisms behind it:
namely Donnan, diffusion, streaming potentials and piezo-
electricity. Both experimental and numerical investigations
are discussed in light of the relevant contribution of these
mechanisms to the SGP.While many studies have argued that
streaming and diffusion potential dominate, an argument is
presented herein for the physiological relevance of piezoelec-
tricity in generating and modifying the SGP.

Ionic-driven mechanisms

Donnan potentials

Cartilaginous tissues must follow the law of electroneutrality;
that is, the tissue must carry a zero net charge. ECM macro-
molecules in the IVD and AC, however, possess negatively
charged surfaces which accumulatively are known as the
fixed-charge density (FCD). Proteoglycans are the primary
component in cartilaginous tissue that contribute to the FCD.
Glycosaminoglycan (GAG) chains, covalently bonded to the
proteoglycan monomer, contain negatively charged sulphate
and carboxyl groups, creating a net negative surface charge on
the GAGs (Frank and Grodzinsky 1987). The FCD attracts
positively charged counter-ions, such as calcium and sodium,
which become bound within the ECM to preserve electroneu-
trality. The resulting imbalance of mobile ions between the
hydrated matrix and the surrounding solution generates a
swelling pressure, or Donnan osmotic pressure, that is bal-
anced with the constraining forces in the collagen network
and external loads (Maroudas 1968; Mow and Guo 2002).
The associated difference in electrical potential between ma-
trix and surrounding fluid is the Donnan potential, which
varies with local FCD. A Donnan potential can also be created
within the tissue by a difference in FCD between two local
points (Fig. 1a), whereby water and ions may flow between
points but the FCD cannot (Huyghe and Bovendeerd 2004).

Diffusion potentials

Diffusion potentials are also dependent on the FCD. The mo-
bile ions bound within tissuematrix have a tendency to diffuse
to areas of lower concentration, but the if the FCD is nonuni-
form, such as in cartilage (Maroudas 1968) and across the
IVD (Urban and Maroudas 1979), Donnan potential gradients
will create areas of ion concentration gradients even at equi-
librium. A diffusion potential is generated when displacement
of the local FCD and ion concentration occurs, driving ionic
diffusion. This diffusion potential acts in the direction oppo-
site to diffusion (Fig. 1b) (Lai et al. 2000).

The IVD is subjected to a diurnal loading pattern
throughout the day, whereby approximately 25% of tissue
fluid is exuded by the pressure of external forces during
daytime activity and subsequently imbibed during rest at
night (Sivan et al. 2006). This exudation of water increases
FCD concentrations and ECM osmolarity during the day.
Both Donnan and diffusion potentials are highly dependent
on FCD and water content and are therefore susceptible to
significant changes with this diurnal cycle of loading/
unloading. AC similarly undergoes a diurnal cycle of fluid
exudation/recovery of water content, where diurnal strains
can be expected to range between 1 and 6%, dependent on
AC location (Coleman et al. 2013).

92 Biophys Rev (2021) 13:91–100



Streaming potentials

Streaming potential is an electrokinetic phenomenon observed
in connective tissue, caused by convective movement of ions
bound by the FCD. The inverse of this, electro-osmosis, gen-
erates fluid flow by application of an electric field. Electro-
osmosis was first discovered in 1807, as Reuss (1809) ob-
served fluid flow across a porous barrier towards the cathode
when subject to an electric field. Streaming potential was later
observed by Quincke (1861), by measuring the potential dif-
ference at either ends of a tube of flowing water. In relating
streaming potential to electro-osmosis, Quincke introduced
the concept of the double layer theory. Streaming potentials
were first measured in bone by Cerquiglini et al. (1967). These
were hypothesized to be part of the stress-induced remodelling
process, distinct from piezoelectricity. Measurement of
streaming potential in cartilage followed shortly after
(Maroudas 1968).

The FCD of connective tissue creates a double layer of
electrically bound ions in the interstitium, or fluid-filled
spaces in tissue. Adsorbed counter-ions are electrostatically
bound to form the inner Stern layer, while a higher concentra-
tion of counter-ions than co-ions are weakly held further from

the surface to form a second diffuse layer (Eriksson 1974). An
electric current, or streaming current, is generated when tissue
strain induces convective fluid flow that disrupts the diffuse
layer, while the voltage difference is termed the streaming
potential (Fig. 1c). With regards to ionic fluid flow through
a thin cylindrical channel with charged surfaces, the streaming
potential is given by Eq. 1 (Gross and Williams 1982).

ε ¼ ϵζΔP
ση

ð1Þ

Where ε is the electrical potential, ϵ is the dielectric constant of
the solution,ΔP is the pressure difference through the channel,
σ is the conductivity of the solution and η is the solution vis-
cosity. The zeta potential, designated by ζ, refers to the electri-
cal potential created between the surface and fluid bulk.

The strain-generated potential

When cartilaginous tissues such as the IVD are subject to a
load (Fig. 1), the SGP is generated through Donnan, diffusion
and streaming potentials, as well as through piezoelectricity as

Fig. 1 The IVD under a compressive load (F), highlighting the major
ECM macromolecules of collagen fibres and proteoglycans, with detail
views on the different mechanisms of the SGP. aDonnan potential. Non-
uniform strain (ε) of the matrix yields a higher concentration of FCD on
the right-hand side. This generates a Donnan potential (φD) from areas of
less-concentrated FCD to areas of higher-concentrated FCD, separated
here by the dashed line. bDiffusion potential. Loading generates net fluid
flow ( f ) that pulls the distributed charged ions (denoted by “+” and “−”
symbols) with it. This generates a diffusion current (Id) in the opposite
direction to fluid flow by disrupting the balance of positive and negative
ions in the ECM. c Streaming potential. The double-layer of charged ions

by each macromolecule is disrupted by the convection of ions. As shown
by the fluid velocity profile (vf), the outer charged layer is disrupted,
generating a streaming current (Is) in the direction of fluid flow and an
opposing conduction current (Ic). The differential disruption of the
double-layer generates a zeta potential (ζ) acting from the molecule sur-
face to the fluid bulk. d Piezoelectricity. The noncentrosymmetric struc-
ture of collagen, owing to its non-uniform distribution of charged groups
along the triple helix, generates dipole moments when subject to strain (as
shown by tensile forces (Ft) here in the AF). This generates a net zeta
potential (ζ) acting out from the surface
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discussed in this review. Under a load, interstitial fluid is
forced through pores and disrupts the balance of counter-
ions and co-ions throughout the ECM. The initial convective
current of fluid disrupts the diffuse double layer by pulling
counter-ions away from the surface of molecules. This gener-
ates a streaming current in the direction of fluid flow while,
through electroneutrality, also creating a conduction current in
the opposite direction (Frank and Grodzinsky 1987). The net
potential generated by disruption of the double-layer is termed
the streaming potential. The applied load generates Donnan
potentials acting with streaming potentials, whereby non-
uniform deformation of the matrix yields a difference in local
FCD (Huyghe et al. 2007). When a streaming current disrupts
the local ionic concentration gradients, a diffusion current, and
therefore diffusion potential, also acts in opposition to the
streaming current (Lai et al. 2000). The net potential created
by these mechanisms generates an electrical field and a zeta
potential acting out from the surface of the ECM.

Piezoelectricity

Many tissues have long been known to remodel and heal in
response to stress. Wolff’s law accounted for this response in
bone, whereby the shape and structure of the tissue adapts to
the external mechanical stimulus (Wolff 1986). This relation-
ship has been argued to be electrically driven, largely due to
the link between electrical stimulation and fracture healing
(Yasuda 1977). These earlier studies postulated that piezo-
electricity was the mechanism responsible for these effects,
linking stress to remodelling through an electrical response.

Piezoelectricity is a ferroelectric phenomenon, whereby
mechanical energy is directly coupled to electrical energy. In
structures that lack a centre of symmetry, a mechanical strain
can generate an electrical charge by the direct piezoelectric
effect (Fig. 1d) . Many biological s t ructures are
noncentrosymmetric and demonstrate this linear electrome-
chanical coupling, with collagen being the most studied pie-
zoelectric structure among these. Subject to a deformation,
polar groups change conformation and reorient in the direction
of applied strain, inducing a dipole moment about the axis
(Zhou et al. 2016). This perturbation of electroneutrality, oc-
curring at many different sites in the strained molecule, gen-
erates a net polarisation at the surface (Stapleton et al. 2017).
The inverse piezoelectric effect has also been demonstrated in
these materials, whereby an applied electrical field can induce
a surface deformation. The electrical displacement, D, gener-
ated by the direct piezoelectric effect is given by Eq. 2:

Df g ¼ d½ � Tf g þ ϵt½ � Ef g ð2Þ
where [d] is the direct piezoelectric effect matrix, T is the
constant stress field, [ϵt] is the transpose of the permittivity

matrix and E is the electric field strength.
Piezoelectricity was first studied in biological tissue in the

1950s (Fukada and Yasuda 1957) and attracted much interest
due to the recent discovery, at the time, of the link between
stress, electrical stimulation and fracture healing. Many stud-
ies followed, attempting to ascertain the relationship between
piezoelectricity and bone healing. However, while the theory
of piezoelectricity-driven remodelling garnered support in
studies of dry bone, several studies disputed this mechanism
when bone was studied in a hydrated state (Anderson and
Eriksson 1970; Dwyer and Matthews 1970; Johnson et al.
1980). Instead, these studies argued that streaming potentials
were the dominant mechanism in mediating the SGP owing to
the magnitudes of charge generated by both mechanisms.

While interest in the role of biological piezoelectricity in
SGPs diminished until more recent years, the field has inten-
sified on piezoelectric energy harvesting in materials engi-
neering. Inorganic piezoelectric materials, such as zinc oxide,
have been widely studied for use as nanosensors (Wang
2004), in-vivo energy harvesters for implant monitoring
(Platt et al. 2005) and self-powered nanosystems (Wu et al.
2014). With a view to design drug delivery systems, research
has also accelerated on understanding the piezoelectric prop-
erties of organic biomolecules (Guerin et al. 2019). However,
Ahn and Grodzinsky (2009) proposed a novel mechanism of
piezoelectricity in SGPs, in that piezoelectric effects work in
conjunction with streaming potentials in bone. This re-ignited
interest in understanding biological piezoelectricity, leading to
more recent measurements of piezoresponses in tendon
(Denning et al. 2012) and intervertebral disc (IVD) (Poillot
et al. 2020). Through decades of study, piezoelectricity has
been proposed to be an inherent property of most biological
structures (Guerin et al. 2019), while the molecule primarily
responsible for this effect in bone, and likely connective tis-
sues, is collagen (Halperin et al. 2004). The question remains,
however, of the physiological relevance of piezoelectricity in
such hydrated tissues when compared with ionic- and fluid-
driven phenomena.

Numerical models

Triphasic and quadriphasic mixture models

Several different numerical models have been developed to
account for ionic-driven SGPs in tissue using continuum mix-
ture theory; that is, every point in the model is occupied si-
multaneously by each phase of the mixture (solid, fluid, ionic).
Mixture theory originates from the work of Truesdell (1957)
and Truesdell and Toupin (1960), and attempts to unify all
theories involving miscible and immiscible mixtures of
solids, fluids and gases. Bowen (1976, 1980, 1982) was the
first to demonstrate that classical porous media theories in
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small deformations (Biot 1941) and large deformation (Biot
1972) can be derived frommixture theory. McCutchen (1959,
1962) describes cartilage as a porous medium, obeying Biot’s
theory. Along the same lines, Mow et al. (1980) used mixture
theory to model cartilage as a biphasic medium, which treated
cartilage as a linear-elastic solid phase of ECMmolecules and
a fluid phase of viscous interstitial fluid.

This theory was later expanded to a triphasic mixture the-
ory (Lai et al. 1991), whereby the ionic phase was introduced
as a second fluid phase to account for the FCD and ionic
diffusion. The triphasic theory was the first comprehensive
model to account for the ionic phase in soft tissue and was
used extensively to model cartilage deformation (Gu et al.
1993, 1997; Mow et al. 1998; Sun et al. 1999). The model
was expanded several times, allowing for the modelling of
streaming potentials, diffusion potentials and Donnan poten-
tials (Gu et al. 1998).

The triphasic theory was limited, however, in that it
neglected electrical fluxes. Huyghe and Janssen (1997) devel-
oped a finite deformation quadriphasic theory to overcome
these limitations, in which the four phases consist of the solid
phase, fluid phase, monovalent cation phase and monovalent
anion phase. The quadriphasic theory, like the triphasic theo-
ry, has been widely employed to model the behavior of soft
porous tissue and gels. These mixture theories utilized the
classical Nernst equation (Nernst 1889) to derive the SGP in
cartilage from Donnan, diffusion and streaming potentials.

Both the triphasic and quadriphasic theory, however, only
account for electrochemical potentials associated with ionic
and fluid flow. As evident from those model’s equations, the
electrical potential of the tissue or gel depends only on ionic
activity and concentration terms, that themselves are modified
by local FCD and fluid movement. These models implicitly
assume that strain-generated electrical potentials depend only
on the movement of ions and fluid in the tissue, neglecting
ferroelectric effects such as piezoelectricity.

Mixed hybrid finite element model

More recently, Yu et al. (2018) developed a mixed hybrid
finite element method to model large deformation in
hydrogels which employed local mass conservation and
calculated fluid flux as an independent variable to better
replicate large deformation in porous media. This was
modified by Fennell and Huyghe (2020) to reflect experimen-
tal data on hydrogel (Roos et al. 2013) and on cartilage (Jin
and Grodzinsky 2001) subject to shear. Both Roos et al.
(2013) and Jin and Grodzinsky (2001) subjected hydrogel/
cartilage to simple shear while altering the bath osmolarity
and found that st iffness was dependent on ionic
concentration, thereby disobeying classic Donnan theory.
The model of Fennell and Huyghe (2020) derived new
Donnan equations and found a direct dependence of electrical

potential on strain. While previous models used regular
Donnan theory to couple Donnan potential to volume change,
the experimental evidence and subsequent model shows po-
tential dependence on shape change as well. As shape change
occurs immediately upon loading of cartilaginous tissues, this
demonstrates a direct, immediate coupling of strain and elec-
trical potential, independent on fluid and ion movement.

The authors of the cartilage experiment (Jin and
Grodzinsky 2001), hydrogel experiment (Roos et al. 2013)
and numerical model (Fennell and Huyghe 2020) attribute this
strain-dependent potential to electrostatic interactions between
GAG molecules as they move relative to one another. While
such electrostatic interactions are caused by polarization of
ions in the double layer relative to the fixed charge, piezoelec-
tric effects may also be the responsible mechanism. In such a
scenario of simple shear, piezoelectric molecules could be
expected to undergo immediate polarization, independent of
fluid flow and volume change. As collagen is primarily a
shear-piezoelectric material (Minary-Jolandan and Yu 2009),
this response seems plausible in cartilage and the IVD.
Furthermore, Fennell and Huyghe (2020) describe the poten-
tial difference due to shape change as the order of mV, but
only when such shape changes is of the order of 200%. In
smaller, physiologically relevant shape change, the potential
difference is in the order of nV, which is in the range of
piezoresponse measured in tissues and biological molecules.

Relative contribution to SGPs

Fluid-driven mechanisms

Many experimental studies have been performed to investi-
gate the SGP in cartilaginous tissues. These have employed
confined and unconfined dynamic compression stimuli on AC
and IVD tissue samples while measuring the potential differ-
ence either within a sample or across a sample (Lee et al.
1981; Frank and Grodzinsky 1987; Garon et al. 2002;
Iatridis et al. 2016). Such studies have consistently found an
electrical potential of the order of ≈ 1 mV, which has usually
been referred to as the “streaming potential” only. In most
cases, only numerical models attribute the electrical potential
generated in loaded tissue to a combination of streaming, dif-
fusion and Donnan potentials. Indeed, it has been demonstrat-
ed that, in soft tissue such as cartilage, the diffusion potential
may dominate the streaming potential (Lai et al. 2000).

The GAG-collagen ratio in the healthy NP of the IVD
(27:1) is much higher than in the outer AF (1.6:1) or in AC
(2:1) (Mwale et al. 2004). As the difference in GAG content
between NP and AF is large, the Donnan potential between
these two neighboring tissues is likely to be significant.
Similarly, as the NP has a high proteoglycan content with
low constraining collagen forces, one could speculate that
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the local FCD could be more easily altered upon loading,
leading to a greater Donnan potential in the NP than in the
AF or AC. The greater FCD in the NP also indicates a greater
streaming and diffusion potentials in the NP than in the AF
(Iatridis et al. 2016) and, likely, the AC. Differences in load-
ing, environmental conditions and measurement methods
make a precise comparison between studies on the SGP in
the IVD and AC impractical.

In degeneration, the magnitude of the SGP is reduced, in
correlation with reduced GAG content, in the IVD (Gu et al.
1999; Iatridis et al. 2003) and in AC (Chen et al. 1997; Légaré
et al. 2002; Abedian et al. 2013). Concurrently to this loss of
GAG and water content in degenerated tissues, more stress
upon loading is placed on the solid matrix components
(Iatridis et al. 2003). Moreover, the ratio of GAG-collagen in
both tissues decreases with degeneration (Mwale et al. 2004).
In the NP, aggrecan and collagen II synthesis is diminished
while more collagen I is produced. With reduced water con-
tent, higher ratios of less-compliant collagen I and a stiffer
collagen network owing to increased cross-linking (Duance
et al. 1998), loading of the IVD generates higher shear stresses
in place of physiological hydrostatic pressure and tension in
the NP and AF, respectively (Vergroesen et al. 2015).
Similarly in AC, abundant collagen II molecules stiffen in
osteoarthritis due to increased cross-linking (Rahmati et al.
2017). As more stress, particularly shear, is born by more
collagen molecules, it is likely that the magnitude of piezo-
electric responses would be greater, and thus more physiolog-
ically relevant to the SGP, in degenerated IVD and AC.

Piezoelectricity

Despite the evidence for piezoelectricity across most biologi-
cal structures, no experimental or numerical study has incor-
porated piezoelectric effects in the electromechanical response
of AC or IVD under load. Experimental investigations on
piezoelectricity in these hydrated tissues have faced the chal-
lenge of isolating piezoelectric effects from fluid-driven elec-
trical effects. The most obvious approach to overcome this is
to remove the water content of the tissue being tested, an
approach that has traditionally been used to investigate bone
piezoelectricity (Fukada and Yasuda 1957; Shamos et al.
1963). While dehydrated bone is not physiological, the much
more hydrated nature of cartilaginous tissues makes such an
approach even less so in those tissues. Despite this, attempts
have been made to isolate and quantify piezoelectric effects in
the hydrated IVD (Poillot et al. 2020).

The more recent development of piezoresponse force mi-
croscopy (PFM) has made investigations of isolated piezo-
electric effects in hydrated tissues more attainable. PFM is a
variant of atomic force microscopy, whereby an AC voltage is
applied by a conductive probe tip in contact with the sample of
interest. The electrical field generated results in surface

deformation, via the inverse piezoelectric effect, which is
measured by deflection of the cantilevered probe. This ap-
proach has been used to study piezoelectricity across wide
length scales, including bone (Halperin et al. 2004), tendon
(Denning et al. 2012), IVD (Poillot et al. 2020), collagen
(Minary-Jolandan and Yu 2009), elastin (Liu et al. 2014)
and amino acids (Guerin et al. 2018). The magnitude of iso-
lated piezoresponse in soft tissues, however, is of a much
lower magnitude than the net potential, of ≈ 1 pC/N, or 1 nV
in the loaded IVD.

There are two hypotheses as to how the relatively small
recordings of piezoelectricity in tissues may be physiological-
ly relevant. The first is proposed by Minary-Jolandan and Yu
(2009), who demonstrate that collagen is primarily a shear-
piezoelectric structure, while longitudinal piezoelectricity, the
response usually measured by PFM and dehydrated macro-
scale measurements, is almost negligible. They calculate that,
subject to physiological loading, type I collagen fibrils could
generate local shear piezoelectric charges of the order of mV.
In differentiating isolated amino-acids, Guerin et al. (2018)
confirmed unusually high shear-piezoelectric responses of
glycine. The second hypothesis is proposed by Ahn and
Grodzinsky (2009), who argue that piezoelectric effects work
in conjunction with streaming potentials by altering the zeta
potential acting out from the collagen surface and modifying
the streaming current of ions. Both of these mechanisms may
act in tandem, whereby a high shear-piezoelectric response
modifies the zeta potential and thus the streaming potential
through the tissue.

Cell response

Asmentioned earlier, resident cells sense and respond to load-
ing through many different mechanotransduction pathways.
The cell response to the SGP, distinct from response to the
mechanical load itself, is of particular interest here. Voltage-
gated ion channels (VGICs) are one such mechanosensing
pathway that are implicated in this. Chondrocytes in large
mammals have a resting membrane potential, of about –
10 mV (Lewis et al. 2011), that allow for a cell response to
electrical potential changes. VGICs channels, such as voltage-
gated calcium or potassium channels, have been widely stud-
ied in this role, as they can mediate a rapid influx of that
specific ion upon cell depolarisation to launch the cell re-
sponse (Matta et al. 2015). These VGICs have been shown
to partly mediate a variety of mechanoresponses in
chondrocytes, such as protein expression in response to cyclic
tensile strain (Tanaka et al. 2005), protein and GAG synthesis
in response to static/dynamic compression (Mouw et al. 2007)
and aggrecan synthesis in response to shear strain (Srinivasan
et al. 2015). Such differential responses to a variety of stresses
are likely due to the generation of different SGPs. No such
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investigations have been performed on VGICs, or other
electrically-driven pathways, in IVD cells.

In osteoarthritis, chondrocytes respond differently to load-
ing with different mechanotransduction pathways involved
(Millward-Sadler and Salter 2004; Lohberger et al. 2019).
IVD cells similarly respond differently in degeneration, and
through different pathways (Le Maitre et al. 2009; Gilbert
e t a l . 2 0 1 3 ) . I n r e l a t i o n t o t h e SGP , VG IC
mechanotransduction is altered in osteoarthritic AC
(Srinivasan et al. 2015), as is the basic chondrocyte electro-
physiological response (Millward-Sadler et al. 2000). This
altered mechanotransduction is thought to be driven by a
change to the cell phenotype as well as changes in the ECM.
Indeed, as was discussed earlier, degenerated IVD and AC
have been shown to generate an altered SGP under loading.
As the mechanotransduction pathway between the SGP and
healthy/degenerate cells is so complex, much more work
needs to be done to elucidate the relationship between the
SGP, the composition of the ECM and the cell response.

Conclusion

Difficulties in quantifying the piezoelectric response of carti-
lage and the IVD has hampered the evidence for its physio-
logical relevance. The reported small values of piezoelectric-
ity may be an underestimation at the macro-scale, as higher
shear-piezoelectric responses may be more relevant in modi-
fying other mechanisms in the SGP, particularly the streaming
potential. This may be particularly true for degenerated tis-
sues, where a reduced water content, stiffer matrix and altered
biomechanics all support a greater role for piezoelectricity.
The relevance of the SGP to mechanotransduction is not as
clear; a definitive link has been demonstrated but the precise
relationship between the magnitude of Donnan, diffusion or
streaming potential and the cell response, likely through
VGICs, is yet to be elucidated. Further, the relevance of pie-
zoelectricity to the cell response has only been inferred.
Numerical models, that have so far neglected ferroelectric
effects, could be of great use in this regard, particularly as
new evidence supports a direct link between strain and the
SGP. Only further investigations, particularly in isolated bio-
logical components and comprehensive numerical models,
may elucidate the true physiological significance of
piezoelectricity.
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