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ABSTRACT

By mapping translated metagenomic reads to a mi-
crobial metabolic network, we show that ruminal
ecosystems that are rather dissimilar in their tax-
onomy can be considerably more similar at the
metabolic network level. Using a new network bi-
partition approach for linking the microbial network
to a bovine metabolic network, we observe that these
ruminal metabolic networks exhibit properties con-
sistent with distinct metabolic communities produc-
ing similar outputs from common inputs. For in-
stance, the closer in network space that a micro-
bial reaction is to a reaction found in the host, the
lower will be the variability of its enzyme copy num-
ber across hosts. Similarly, these microbial enzymes
that are nearby to host nodes are also higher in
copy number than are more distant enzymes. Collec-
tively, these results demonstrate a widely expected
pattern that, to our knowledge, has not been explic-
itly demonstrated in microbial communities: namely
that there can exist different community metabolic
networks that have the same metabolic inputs and
outputs but differ in their internal structure.

INTRODUCTION

Vertebrates play host to an enormous diversity of microbes,
and while the numbers alone are impressive, exceeding our
own cell count by at least an order of magnitude (1), it is the
role of these organisms in critical host life processes that is
both more fascinating and less understood. For instance, in

species such as ruminants, the microbes of the digestive sys-
tem degrade substrates such as cellulose that are inaccessi-
ble to the enzymes encoded by the host genome. The result
of this symbiosis is to allow these animals to subsist off of
diets that would not sustain life in most other vertebrates or
invertebrates (2–4). In general, the symbiosis functions by
the host animal absorbing volatile fatty acids (VFAs) and
amino acids produced by microbes and using these com-
pounds both as energy sources and for biosynthesis (5,6).
The microbes that collectively allow for this remarkable ca-
pacity are many and varied (7,8), with only a fraction be-
ing well characterized and many being completely unstud-
ied (9,10).

Our poor understanding of these organisms is largely
due to the fact that they are quite difficult to work with:
many or most will not grow in laboratories and they in-
teract not only with the vertebrate host but also with each
other in a variety of complex ways. Fortunately, applica-
tions of inexpensive DNA sequencing technologies (e.g.,
metagenomics) are transforming our understanding of the
microbial world more rapidly than perhaps any technol-
ogy since van Leeuwenhoek first looked through his mi-
croscope. To date, most surveys of microbiomes both in
vertebrate hosts and in other environments have used tax-
onomic approaches, attempting to identify the different
species that are present. The most effective technique for
such assays has been using the 16S rDNA gene as a phy-
logenetic marker (3,7,11–13). This approach has uncovered
several interesting associations between the biology of vari-
ous animal hosts and their microbes: evolutionarily-related
organisms have more similar microbiomes that can be ex-
plained solely by diet, which is nonetheless an independent
predictor of microbiome structure (3,14). Likewise, aber-
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rant phenotypes such as obesity are associated with differ-
ences in microbiome taxonomic composition (15).

Metagenomic studies of obesity have also highlighted
the importance of linking the taxa present in an environ-
ment with broader genetic or functional patterns (16). For
instance, Turnbaugh et al. (15) extended their taxonomic
work by also elucidating the metabolic differences between
the metagenomes of obese and non-obese individuals. Their
results illustrate the rather obvious point that one gene
cannot fully capture the complexity of these ecosystems
(10,17–20). Indeed, there is considerable evidence that vari-
ation in the taxonomic structure of a microbiome may ac-
tually mask similarities in the gene content: several studies
have found that microbial ecosystems with significant dif-
ferences in taxonomic composition nonetheless have sim-
ilar functional categories of genes present (21–23). Like-
wise, genes from different metagenomic samples of related
environments are more similar than are the taxonomic
groups found in those same samples (17,24). A single tax-
onomic catalog also misses processes such as community-
structuring rules (species that are always or never found to-
gether, as an example) that only become evident in the pat-
terns of taxa co-occurrences (25,26) and changes in commu-
nity structure over time (27). In both cases, symbiotic rela-
tionships not just with the host, but between the microbes
themselves are likely critical (28,29).

Gene-centric approaches to the microbiome, while they
cannot capture all aspects of this ecosystem complexity, are
nonetheless complementary to taxonomic studies. Analyses
of the genes present in microbiomes have already helped to
identify novel, biotechnologically relevant enzymes (10), to
explore how much the microbiome expands the metabolic
capacities of the host (18,24) and to associate microbial
genes with host diseases (30). Of course, a catalog of genes
on its own has many of the same benefits and limitations as
does a catalog of organisms. In particular, the presence of
common gene functions in microbiomes with different tax-
onomic composition (21–23) might be attributable the use
of high-level annotation categories or the presence of house-
keeping genes involved in information processing. However,
the advantage of using genic approaches is that this knowl-
edge opens the door for systems biology approaches that
can illuminate the connections between those genes (16,19).
Metabolism has been a key focus of such gene-centered ap-
proaches (10,19,30–31). However, to our knowledge, only
a study by Greenblum et al., (19) has applied the powerful
tools of network biology (27,32) to metagenome-scale se-
quence data.

Here, we apply a similar strategy of mapping reads to an
enzyme database as did Greenblum et al., (19), but in service
of a different set of questions. As a result, there are several
differences between our approach and theirs: we consider
the ecologically complex microbiome of ruminant animals
rather than humans, use a more complete reference enzyme
database and, most importantly, develop and use a new
analysis framework that allows us to explore the ‘metabolic
network interface’ between the microbiome and the host.
As a result, we introduce a concept of metabolic distance
to the microbial networks and use that concept to explore
their structures.

In this initial study, we focused on two questions that
can be answered even with small samples. First, we asked
whether variation at the taxonomic level is invariably
matched by similar variation at the metabolic level. By map-
ping metagenomic reads to both a taxonomic marker (the
16S rDNA gene) and to a catalog of enzymes, we show that
some of the observed taxonomic dissimilarities are not nec-
essarily mirrored at the metabolic level. Second, we hypoth-
esized that, while the metabolic inputs and outputs of our
samples would be similar (the inputs because of the com-
mon diet and the outputs because of the needs of the host
species), there would be differences in the internal struc-
ture of metabolism between the samples. We tested this hy-
pothesis in several ways, including asking if the variation in
copy number for microbial enzymes that can interact with
the host is smaller than the variation observed in other en-
zymes and by showing that the variation in enzyme abun-
dance between the two animals is too large to be explained
by sampling variation in the metagenomic sequences. Since
the networks are also distinctly non-random in both their
reaction and metabolite distributions, we argue that there
are metabolically similar but not identical microbial assem-
blages that are capable of performing the same processes
from the host’s perspective, even if they appear distinct at
the taxonomic level.

MATERIALS AND METHODS

Animal selection and DNA sample collection

The two animals used for metagenomic sequencing were
selected from a group of Simmental by Angus crossbred
steers (n = 35; initial body weight = 333.77 ± 8.54 kg; age
= 10.14 ± 0.12 mo). These animals were weighed, admin-
istered an anthelmintic (1 ml per 50 kg of body weight;
Noromectin R© Norbrook R© Inc., Lenexz, KS, USA) and ran-
domly assigned to four pens (8 steers per pen; 7.6 × 16.5 m)
each equipped with two GrowSafe R© (Airdrie, AB Canada)
feed intake bunks (33). Steers were fed a receiving diet (Sup-
plemental Table S3) for 14 days. At the end of this period,
they were transitioned to a concentrate feedlot diet (Supple-
mental Table S4). Steers were allowed ad libitum access to
feed and water for the duration of the growth and feed in-
take trial. For a 120 day period, feed intake was monitored
and measured daily by the GrowSafe R© feed intake system.
Body weights were measured on days 0, 1, 36, 37, 70, 71, 119
and 120 prior to the daily delivery of feed. Feed efficiency
was characterized by residual feed intake (RFI) where the
model fitted was,

Yi = β0 + β1 × daily body weight gain+
β2 × metabolic mid − test body weighti,

where Yi = average actual daily feed intake for animal i, �0
= regression intercept, �1 = partial regression coefficient
of actual daily feed intake on daily body weight gain for
animal i, and �2 = partial regression coefficient of actual
daily feed intake on metabolic mid-test body weight for an-
imal i. The two steers chosen for the metagenomic experi-
ment had similar body weight gains with different feed ef-
ficiencies (Supplemental Table S5). To obtain the microbial
DNA for sequencing, we followed the procedure of Guan et
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al. (8). Rumen samples from these two animals were taken
in the feedlot and were immediately stored on dry ice until
returned to the laboratory and were then frozen at −80◦C.
Particulate matter from the samples was removed by low
speed centrifugation. Sterilized zirconia (0.3 g of 0.1 mm)
and silicon (0.1 g of 0.5 mm) beads and 1 ml lysis buffer were
added to thawed rumen fluid samples and tubes were ho-
mogenized using a Mini-Beadbeater-8 at maximum speed
for 3 min, incubated at 70◦C for 15 min with gentle mix-
ing every 5 min and centrifuged at 4◦C for 5 min. The su-
pernatant was transferred to a new 2 ml flat cap tubes and
fresh lysis buffer was added to the pelleted beads. The ho-
mogenization, incubation and centrifugation were repeated
and the supernatants were pooled. Precipitation of nucleic
acids, removal of RNA and proteins and purification were
completed using the protocol for the QIAamp DNA Stool
Mini Kit (Qiagen, Santa Clarita, C, USA).

Illumina sequencing

Genomic libraries from the two samples (i.e., animals) were
constructed following the manufacturer’s recommended
protocol with reagents supplied in Illumina’s DNA sam-
ple preparation kit. Genomic DNA was sheared using a
BioRuptor (Diagenode, Denville NJ, USA) to generate frag-
ments. The resulting 3′ and 5′ overhangs were removed by
an end repair reaction using a 3′ to 5′ exonuclease activity
and polymerase activity to blunt the fragment ends. A sin-
gle adenosine was added to the 3′ ends of the blunt fragment
followed by the ligation of Illumina adapters. The adapter-
ligated fragments were then size selected using an agarose
gel. Fragments of average length 436 (animal 1) or 477 (an-
imal 2) bp were recovered from the gel slice by elution and
ethanol precipitation. Each purified library was quantified
with a Qubit assay and fragment size was confirmed by Ag-
ilent BioAnalyzer High Sensitivity DNA assay.

Metagenomic sequencing, quality filtering and identification
of novel 16S rDNA genes

Libraries were diluted and sequenced according to Illu-
mina’s standard sequencing protocol on a GenomeAna-
lyzer II. The two libraries (one per animal) were each se-
quenced on two lanes of the instrument, resulting in 150
bp, paired-end sequences. The average insert size was 303
bp for animal 1 and 345 for animal 2. Raw sequence reads
are available from NCBI’s short read archive (Project acces-
sion number PRJNA291523).

Paired-end reads were quality filtered by truncating each
read after the first run of three bases with a phred quality
score <15 (34). From the filtered reads, any read pair where
one or both reads were <100 bases long or had an average
quality score of <20 were omitted. These reads were not
meaningfully contaminated with DNA from the host ani-
mal: only 0.14 and 0.65% of the reads mapped to the bovine
genome at 97% identity from animals 1 and 2, respectively.
The resulting reads were used for all subsequent analyses
(see ‘Results’ section).

Classification of 16S rDNA-derived reads

To explore the taxonomic structure of these two animals’ ru-
minal metagenomes, we searched the filtered reads for frag-
ments of 16S rDNA genes. We did so by comparing them
to a reference database made up of two pieces: 16S rDNA
genes from the Ribosomal Database collection of sequences
(35) and 16S rDNA genes from the sequenced prokary-
otic genomes available from GenBank (36). To merge these
two databases, we purged identical sequences and sequences
<1450 bases long or with undetermined nucleotides (e.g.,
‘N’s). Our final database contained 27 290 sequences. In
our previous work (37), we also used the EMIRGE pack-
age (38) to identify novel 16S rDNA genes in the samples.
However, using EMIRGE or attempting to assemble the
sequence reads, while it might uncover further taxonomic
diversity in the samples, will also bias the counting of mi-
crobial individuals in complex ways that would undermine
the comparisons we planned. Direct matching to a sequence
database, while subject to some biases (37), is more appro-
priate.

Database sequences were clustered into Operational Tax-
onomic Units (OTUs) by first computing all possible pair-
wise Needleman-Wunsch sequence alignments (39) using
our GPU-based pairwise alignment tool (40). From these
pairwise alignments, we created a network in which each
sequence was a node and edges connected sequences with
≥97% identity. OTUs were defined as connected compo-
nents within this network. We next used Bowtie (41) to align
reads to the database sequences. If both the forward and re-
verse reads matched sequences from one and only one OTU
with ≥ 97% identity, we classified that pair as representing
an individual from that OTU. These stringent criteria re-
sulted in a relatively small number of microbial individuals
being assigned to OTUs: nonetheless, there were 18 OTUs
with more than five individuals identified in both animals,
suggesting that we have reasonable sample depth for our
analyses.

As shown in Figure 1, we next fit the OTU counts to both
a power-law and a geometric distribution (37). We com-
puted Lb, the likelihood obtained from fitting both animals
to a common distribution, and L1 and L2, those obtained
when allowing distinct distributions for each animal. We
then compared the value �lnL = (ln(L1) + ln(L2)) − ln(Lb)
from the real samples to the same value computed on 1000
datasets where the OTUs were randomly repartitioned be-
tween the two animals (37). As the �lnL estimated from
the actual dataset was always greater than the values seen
in randomized samples, we could reject the null hypothesis
of a common OTU distribution for the two animals (P <
0.001).

Extraction of a reference metabolic enzyme database for
metagenomics

We obtained the complete catalog of microbial metabolic
networks known to the MetaCyc project (42). This catalog
includes metabolic reconstructions for more than 2000 mi-
crobes. Each reconstruction includes a set of reactions in-
ferred to be possible in that organism, with substrates and
products for each. Some, or all, of these reactions are anno-
tated to enzyme sequences that are also included with the
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Figure 1. Taxonomic and functional analyses of the ruminal metagenomes of two bovine individuals. (A) Distribution of the 122 OTUs found, with models
of the abundance distributions of those OTUs. On the x-axis is the rank abundance of each OTU for animal 1 (red) and animal 2 (blue): the most abundant
OTU has rank 1 and so forth. On the y-axis is the proportion of that animal’s total microbial individuals that that OTU comprises. We fit two statistical
distributions to these data: a discrete power-law (green) and a geometric (purple; see ‘Materials and Methods’ section). Taxon names for the first 10 OTUs
are shown above the panel. (B) Correlation between OTU abundance for animal 1 (x-axis) and animal 2 (y-axis). Note the log scale in both cases. (C)
Correlation of the number of mapped read pairs for each metabolic reaction (node) for the two animals. Axes are as for B and are also shown in log-scale.

reconstruction. We thus created an enzyme database from
MetaCyc where each enzyme sequence was linked to one or
more metabolic reactions.

Host and microbial metabolic network construction

We next constructed two metabolic networks for our analy-
sis, one for the bovine host and one for the microbes. In our
framework, nodes in the metabolic network (circles in Fig-
ure 2A) are reactions from MetaCyc. For the microbial net-
work, we merged any two reactions with identical metabo-
lite lists, resulting in 6140 microbial nodes with at least one
annotated enzyme sequence.

For the host metabolic network, we combined the human
and bovine MetaCyc metabolic reconstructions. First, us-
ing our previously described approach (43,44), we inferred
the bovine orthologs of human MetaCyc enzymes using
release 75 of Ensembl (45). Of the 2863 human enzyme-

coding genes annotated in MetaCyc and also found in En-
sembl release 75, we identified 1:1 bovine orthologs for 2553
(89%). These genes corresponded to 1850 network nodes.
We then added to these reactions all bovine reactions not
also in the human reconstruction (the bovine metabolic net-
work is smaller than the human reconstruction, with only
1404 annotated reactions, which is the reason for using the
human network as an initial framework). The resulting host
metabolic network had 2126 nodes.

For all networks, we defined edges in the metabolic net-
works to connect pairs of nodes that share a metabolite.
Only annotated metabolites present in at least two taxa
were considered for these purposes. Because a handful of
metabolites, such as water and hydrogen ions, occur in an
enormous number of reactions, it is necessary to remove
these ‘currency metabolites’ from the metabolic networks.
The alternative would be to have nearly every reaction con-
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Figure 2. Structure of the metabolic network induced by the microbiome of the bovine rumen. (A) Interface of the host (left) and microbial (right) metabolite
networks. Nodes (circles) are reactions: two nodes are linked by an edge if they share a metabolite (gray lines, currency metabolites were excluded at a
stringency of 25––e.g., N25 see ‘Materials and Methods’ section). The interface of the two networks is illustrated in the center. The five most common
interface metabolites are shown in color; all other interface metabolites are blue. Host/microbial reactions that employ an interface metabolite are shown
as the two closest layers: subsequent layers are removed from this interface based on their nearest metabolites to that interface (‘Results’ section). Microbial
nodes are color-coded based on the log2 difference in the normalized number of read pairs mapped for animal 1 versus animal 2: thus green nodes represent
over-abundance in animal 2 and red ones in animal 1. Only nodes with a binomial probability of P ≤ 0.01 of having an equal numbers of reads are shown
with fold-differences (all others shown in black). Numbers under each layer give the total number of read pairs mapped to that layer. Host nodes are shown
in purple (reactions annotated in humans), magenta (reactions annotated in cattle) and green (the added pseudo-reaction that allows the use of butyrate;
‘Materials and Methods’ section). (B) The proportion of nodes in each microbial layer with a mapped read pair is inversely correlated with the distance
from the host metabolic network (see ‘Results’ section). (C) The number of mapped read pairs per node is also inversely correlated with the distance to the
host metabolic network.

nected to every other reaction. Unfortunately, there is no
universal definition of a currency metabolite (46). Instead,
we use three definitions of currency metabolites: namely
compounds that appeared in more than 25, more than 50,
or more than 100 MetaCyc reactions (47). Each definition
corresponds to one metabolic network, which we refer to
as N25, N50 and N100, respectively. The number of currency
metabolites defined ranged from 261 (for N25) to 174 (for
N100).

Defining the interface between the host and microbial
metabolic networks

We defined three potential sets of metabolites exchanged be-
tween the microbes and the host animal, sets that we refer to
as ‘interface metabolites’. The most minimal set (set VFA)
consisted of (the anions of) three VFAs: acetate, propionate,
and butyrate. VFAs are important nutrients for ruminants
(48) but unfortunately are somewhat poorly represented in
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MetaCyc. Thus, two VFAs (valerate and isovalerate) are ab-
sent entirely from MetaCyc and isobutyrate, while present,
cannot be mapped to any vertebrate reactions (e.g., there is
no reaction in MetaCyc converting isobutyrate to the verte-
brate metabolite isobutyryl-CoA). Even butyrate itself does
not have a corresponding vertebrate reaction, but we added
a pseudo-reaction (known from the microbes) to the verte-
brate network that converts butyrate to butyryl-CoA (green
node in Figures 2 and 3).

Our second set (VFA + AA) expands the VFA set to
include the 20 amino acids, which are also important ru-
minant nutrients. Finally for completeness, we created a
greatly expanded interface metabolite set (VFA + AA +
HUM). In addition to the metabolites of VFA + AA, this
set incorporates a large number of metabolites known to be
transferred into human cells from the extracellular matrix.
To obtain this set, we started with the list of 404 exchange-
able human metabolites from the human metabolic network
of Duarte et al. (49). We matched 234 of these compounds
to their corresponding entries in MetaCyc (most of the un-
matched compounds are complex eukaryotic polysaccha-
rides or lipopolysaccharides; data not shown). From those
compounds, we selected only the organic compounds and
excluded the DNA/RNA nucleotides, carbon dioxide and
NAD and NADP, yielding a final list of 204 compounds
(Supplemental Table S2).

Given the interface metabolite list and these added re-
actions, we defined edges between the host and microbial
metabolic networks as any case where a reaction in the host
network and one in the microbe network shared an inter-
face metabolite. The result was a single merged metabolic
network for the host and microbes (VFA + AA shown; Fig-
ure 2A).

A distance-based approach to structuring the merged
metabolic networks

Using the merged metabolic network, we calculated the dis-
tance between each reaction in the host or microbial sub-
network and the other sub-network. To do so, we calcu-
lated the minimum path length between every pair of nodes
using Dijkstra’s algorithm (50). We then defined the dis-
tance between a node in one sub-network and the other sub-
network as the number of intermediate nodes that must be
crossed in order to reach the nearest node in the other sub-
network. These integer distances define the layers shown in
Figure 2A; a host node and a microbial node that share an
interface metabolite have the minimal distance of 0.

Translating metagenomic reads

We next assessed the status of the microbial metabolic net-
work in each animal using the metagenomic data. To do so,
for each paired read, we computed all six frame-translations
and retained any translations for which both reads in the
pair had open reading frames (ORFs) longer than 45 amino
acids. We then used these metagenomic ORFs as queries in
searching an enzyme database (see next section).

Nucleotide-based searches of the enzyme database are ineffi-
cient

We queried 1000 reads whose translations produced strong
hits to the MetaCyc protein database (>80% amino acid
identity, see ‘Results’ section) against the nucleotide version
of that database. The results were discouraging; only 30% of
those reads produced any BLASTN (51) hit.

Searching translated reads against the enzyme database

Programs such as BLAST, because they are optimized
to not miss distant matches, are very slow for searching
metagenomic ORFs against protein databases. To speed our
searches, we developed a tool based on the SeqAn library
and OpenMP (52). For each read, the tool first searches for
pairs of identical seven amino acid ‘seed’ matches between
the read and the database sequences. Any read/database se-
quence pair possessing two such seed hits is then exactly
locally aligned using the standard Smith–Waterman ap-
proach (53). If the resulting local alignment demonstrates
80% amino acid identity over 80% of the ORF, it is reported
as a match. To reduce the size of the database searched, we
first used our search tool on the database itself, removing se-
quences with greater than 97% amino acid identity to other
database sequences over 97% of their length. The resulting
database had roughly 760 000 enzyme sequences.

We next assigned reads to metabolic network nodes if
they had hits to annotated sequences for that node meet-
ing the above criteria. Enzymes in the sequence database
are often annotated as catalyzing more than one reaction.
In such cases, if an ORF pair has hits to multiple database
sequences, one of three scenarios can be observed. First, all
of the database hits may map to the same set of reactions.
Second, some of the database hits may only map to a subset
of the reactions of other hits. Finally, different database hits
may map to non-overlapping sets of reactions. In the first
two cases, we compute the reactions catalyzed by an ORF
pair as the union of the reactions catalyzed by each enzyme
with hits to that ORF pair. In the last case, the read pair is
discarded because we cannot be certain of the identity of the
reactions in question. Cases where read pairs did not both
map to the same enzymes were likewise omitted. Note that
while this mapping approach is applicable to many metage-
nomic datasets, our analysis of differences between animals
from similar environments precludes comparing these data
to other samples from different species (37) or environments
(10). Correlation statistics reported in ‘Results’ were calcu-
lated in R (54).

We sought to assess if there were highly connected en-
zymes from MetaCyc that might be expected to be in the
rumen that were not identified with our read mapping ap-
proach. Supplemental Table S6 lists the 10 most connected
reactions (e.g., nodes with the highest number of edges)
from networks N25, N50 and N100 with no mapped reads.
No major omissions are apparent from these data.

Correlation of number of occupied nodes or number of
mapped reads and network layer

For each layer of the microbial network in Figure 2A, we
computed the average proportion of nodes in that layer with
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Figure 3. Node-level differences between animals and volatile fatty acid metabolism. (A) The two animals studied differ considerably the relative abundance
of many enzyme-coding genes. On the x-axis is the absolute value of the log2 difference in enzyme abundance for the two animals, after correcting for the
different number of reads obtained for the two animals. Hence, a value of 2 on this axis represents a four-fold excess of reads mapping to a particular
node either in animal 1 over animal 2 relative to the other animal. On the y-axis is the number of nodes seen to have a log2 abundance difference at least
as large as x (purple curve, real data). For comparison, we show the number of such nodes seen when we randomly reassign reads to animals 1000 times
(green curve; error bars represent the maximum and minimum numbers seen across all 1000 randomizations. (B) Enzymes involving the volatile fatty acids
(VFAs) represent a minor fraction of the metagenomic reads. Host/microbe merged metabolic networks when only the three VFAs were considered as
interface metabolites (N50). All other details are as for Figure 2A. Note that the network is much smaller (fewer reactions are linked between the host
and the microbes). Moreover, even these linkages are weaker, since the number of mapped reads to the distance 0 microbial nodes is much lower than in
Figure 2A––glutamate alone accounts for roughly four times as many reads as are present in the entire ‘layer’ for this network.

mapped reads (p) and the average number of reads mapped
to those nodes with at least one mapped read (r). We then
calculated Pearson’s correlation coefficient between these
two values and the layer’s distance to the host network.
To assess whether the observed trends were stronger than
expected by chance we randomized the read assignments
among the microbial nodes 1000 times and recalculated
these two correlations. For p, we randomized read counts
across all microbial nodes, occupied or not. For r (the aver-
age number of mapped reads), we only randomized the read
numbers within the set of nodes with at least one mapped
node.

Testing abundance differences between the two animals

Sampling effects will lead to there being some nodes with
differing numbers of mapped reads for each animal. To
see if the observed differences in read counts for the nodes
could be explained by such sampling variation, we first com-
puted, for a range of abundance differences, the number
of nodes with such an abundance difference in the metage-
nomic data. Because we obtained differing numbers of total
reads that mapped to MetaCyc nodes for the two animals,
before computing the log2 ratio of abundances for the an-
imals, we normalized all reads counts by the total number
of reads mapped for each animal (n1 and n2; respectively).
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We then pooled the mapped reads, randomly reassigned n1
of them to animal 1 and n2 of them to animal 2 and recom-
puted the number of nodes with every abundance difference
(see Figure 3A). Repeating this procedure 1000 times al-
lowed us to assess if the number of differentially abundant
nodes for the two animals could be explained by chance.

RESULTS

Metagenomic sequencing of rumen fluid from two steers

We sampled ruminal fluid from two steers, extracting mi-
crobial DNA from that fluid and then shotgun sequenced
the DNA on an Illumina GenomeAnalyzer II. The result
was 33.7 million paired reads for animal 1 and 30.9 million
paired reads for animal 2. Mean read length after quality
trimming was 134.5 bp for animal 1 and 135.8 bp for ani-
mal 2 (‘Materials and Methods’ section).

rDNA analysis

To define microbial OTUs, we computed those OTUs (‘Ma-
terials and Methods’ section) from a database of known 16S
rDNA sequences by all-against-all pairwise alignment and
sequence clustering (40). Using this common set of OTUs,
we mapped the shotgun metagenomic reads from the two
animals onto that database: any read pair that mapped to
sequences from one and only one OTU was assumed to
represent an instance of that OTU (37). A total of 4127
read pairs mapping to 16S rDNA genes, comprising 122
distinct OTUs (56 common to both animals), were iden-
tified in the two samples (Figure 1A). Supplemental Table
S1 gives a phylum-level breakdown of the identified taxa.
To statistically describe these OTU counts, we fit the OTU
rank abundance distribution to both a power-law and a ge-
ometric distribution. In so doing, we found the power-law
distribution to provide a statistically better fit (ln-likelihood
= −10 133 versus −11 997 for the geometric distribution).
From this result, we conclude that the rumen environment
has a highly uneven taxonomic distribution dominated by
a handful of OTUs but with many other rare OTUs also
present. The OTU distributions were not identical for the
two animals: allowing each to have its own power-law or
geometric OTU distribution significantly improved the fit
(P < 0.001, ‘Materials and Methods’ section). We also nor-
malized the read counts for each animal and compared the
percentage of reads from the two that were mapped to the
same OTU: only 44% of reads from the two animals mapped
to the same OTUs.

Metabolic networks

It is conceptually obvious that one could infer the gene con-
tents of a metagenome from a reference database. As we
were interested in metabolism, we chose the collection of
metabolic network reconstructions in MetaCyc (42) as our
database. Unfortunately, nucleotide sequences are too de-
generate for this approach (‘Materials and Methods’ sec-
tion). We therefore instead employed our new, faster and
more sensitive amino acid-based pipeline to search for se-
quence similarity between the open reading frames (ORFs)
found in the reads and the enzymes of MetaCyc. First, we

computed six-frame translations of the metagenomic reads
and retained long ORFs. Using a custom sequence sim-
ilarity search tool (‘Materials and Methods’ section), we
then matched these ORFs to MetaCyc’s enzyme sequence
database (42). Also using that database, we defined a com-
munity metabolic network (19) for the microbes, where
nodes are enzyme-catalyzed reactions (represented by one
or more protein sequences from MetaCyc) and edges con-
nect reactions that share a metabolite (Figure 2A). Cur-
rency metabolites (such as water and adenosine triphos-
phate) were excluded from all networks at three stringencies
from high (N25) to moderate (N100; ‘Materials and Methods’
section). While these networks disregard the compartmen-
talization of the ruminal ecosystem into distinct cells, any
compartmentalized metabolic network for this environment
will be a subset of the community network.

More than 1.2 million read pairs from the two ani-
mals mapped uniquely to protein sequences from Meta-
Cyc. Those protein sequences in turn catalyze one or sev-
eral reactions each (‘Materials and Methods’ section). Of
the 6140 nodes in the microbial metabolic network, 2022
nodes had at least one mapped read pair and 1734 had
read pairs mapped from both animals. A reaction from the
electron transport chain interconverting ubiquinones and
ubiquinols had the largest number of mapped reads: 16 443
reads from a single animal.

We were concerned that the number of reads that mapped
to a reaction might simply be a function of the number of
known enzyme sequences for that reaction. For those nodes
with at least one read mapped, there is a statistically signif-
icant correlation between the number of reads that mapped
to a reaction and the number of known enzyme sequences
for that reaction (Pearson’s r = 0.31, Spearman’s � = 0.57, P
< 10−10 in both cases). However, given that one strong pre-
dictor of a reaction having many sequences in the MetaCyc
database is that the reaction is widely distributed phyloge-
netically, we argue that the magnitude of these correlations
do not suggest database coverage is the primary signal being
detected here. Similarly, the number of reads mapped to a
node is correlated to that node’s metabolic centrality (node
degree), but this effect is rather weak (0.15 < Pearson’s r <
0.17, 0.18 < Spearman’s � < 0.24 across N25, N50 and N100;
P < 10−5). Central nodes also have a very slight tendency to
be more variable between animals after accounting for the
number of mapped reads for networks N50 and N100 (Pear-
son’s partial correlation of node degree and the P-value of
the test of equal read abundance: −0.08; P < 0.006), but no
such effect was seen for N25.

The two animals are much more similar in their enzyme
node profiles than in their OTUs: 74% of the reads between
the two animals matched at the node level. A similar situ-
ation was observed when considering the between-animal
correlation in OTU counts or in nodes with mapped reads:
the OTU mapping was more variable between individuals
than was the node mapping, especially when considering
non-parametric correlation statistics (Figure 1B versus C).
Of course, the smaller sample of OTU individuals relative to
enzyme genes will induce increased OTU variance through
sampling. However, note that even the two most abundant
OTUs differ in frequency between the samples, despite the
fact that hundreds of individuals of both were identified in
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each sample (P < 10−5; � 2 tests). Moreover, there are 2022
reactions with mapped sequence reads compared with 122
OTUs detected, meaning that the metabolic network in fact
has more potential points of variation.

Metabolic interaction between the host and microbiome

We next sought to assess how the microbiome might in-
teract metabolically with the bovine host by inferring a
host metabolic network. To do so, we first used our pre-
viously described orthology inference tool (43) to map the
human metabolic network onto the bovine genome. We
then merged that network with the bovine metabolic net-
work from MetaCyc to create our final estimated bovine
metabolic network (‘Materials and Methods’ section). We
linked the resulting host network to the microbial network
using 23 interface metabolites: three VFAs and the twenty
amino acids (VFA + AA; ‘Materials and Methods’ section).
These interface metabolites allowed us to infer the layered
networks of Figures 2 and 3. Supplemental Figure S1 illus-
trates the network of Figure 2A with nodes colored by the
number of mapped reads.

We used these merged networks to measure how
closely a given microbial reaction interacts with the host’s
metabolism. A microbial reaction that involves one of the
interface metabolites has distance 0 from the host (and vice
versa for host reactions). If a reaction involves a metabolite
that is also involved in one of the distance 0 reactions (but
does not itself possess an interface metabolite), that reaction
has distance 1, and so forth. Note that interface metabo-
lites were considered whether or not they were also defined
as currency metabolites (see above). All of our observa-
tions also hold for a larger set of interface metabolites in-
cluding the VFAs, the amino acids and human extracellular
metabolites (data not shown; set VFA + AA + HUM; ‘Ma-
terials and Methods’ section). Supplemental Figure S2 illus-
trates how the network structure changes using this larger
interface set.

This layered network structure has several features that
suggest that it reflects an underlying biological reality. There
is a strong correlation between the distance to the host net-
work (layer number) and the proportion of nodes with at
least one mapped read pair (p) and the average number of
reads that mapped to a node (r) for all three networks (Ta-
ble 1 and Figure 2B and C). Since the total set of nodes in
the network represents all the reactions that are currently
known, it is not unexpected that only a subset of those re-
actions would be used in the restricted environment of the
rumen. There is also generally less variability in read count
between the two animals for the nodes from the closest
layer than from the next two, although this trend is not al-
ways statistically significant (Table 2). One might think that
these associations are simply the product of more known
sequences for reactions that are closer to the host metabolic
network. However, there is no correlation between a node’s
layer number and the total number of known sequences for
that node (−0.06 < Pearson’s r < −0.04; −0.05 < Spear-
man’s ρ < −0.03 across N25, N50 and N100).

The two sampled animals differ significantly in their distribu-
tion of enzyme abundance

Figure 1B and C suggest that the two surveyed animals dif-
fer less in their enzyme complements than in their OTU
abundances. However, the two animals still differ meaning-
fully in their metabolic networks. In Figure 3A, we show
the number of nodes with differing abundances for the two
animals at varying stringencies, compared to the number
of nodes with such differences observed when our metage-
nomic reads are randomly reassigned between the two an-
imals. For a wide range of abundance differences, the real
data show much higher divergences between the animals
in read abundance than can be explained by chance (P <
0.001; ‘Materials and Methods’ section).

Characterizing the metabolite profile of the microbiome

We can also make limited inferences regarding the set of
metabolites that are present in the microbiome by assess-
ing the proteins that are found there and the reactions that
they catalyze. We first ranked the interface metabolites by
the number of read pairs that mapped to each microbial re-
action that involved such an interface metabolite. As can
be seen in Figure 2A, glutamate and glutamine are the in-
terface metabolites that were found in reactions with the
largest number of mapped read pairs, followed by aspartate
and serine.

The total set of metabolites inferred to be present in the
microbiome (based on the enzymes present) is also non-
random. The number of metabolites associated to nodes
with mapped read pairs is smaller than would be expected
if the same number of nodes were selected at random (P
< 0.001 for all three networks). Moreover, the two animals
were more similar in their metabolite profiles than would be
expected by chance: for all reactions using each metabolite,
we computed the net difference in normalized read count
between animals. The sum of this statistic across all metabo-
lites was much smaller than that found when the read counts
were randomized between the two animals (P < 0.001 for all
three networks: only nodes with mapped reads were consid-
ered). Table 3 lists all compounds where more than 40 000
read pairs were mapped to reactions employing that com-
pound.

Metabolic networks of volatile fatty acids

Considering that much of ruminal nutrition is thought to
be provided by VFAs (48), we next visualized the metabolic
interface considering only the three VFAs as the interface
metabolites (Figure 3B). Since the amounts of carbohydrate
absorbed from the rumen are very low, VFAs provide both
the majority of the energy and many biosynthetic precur-
sors for these animals (6). Acetete is the most commonly
implicated VFA from the metagenomic reads, just as it is
the dominant VFA end-product in the rumen (5). However,
as acetate is also a common metabolic intermediate, some
caution is warranted in interpreting this result. We were ini-
tially surprised to observe that only 2521 microbial read
pairs mapped to reactions producing the VFAs butyrate and
propionate. However, this figure is actually a 1.8-fold over-
representation relative to the database (2521 reads out of 1.2
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Table 1. Association of layer position and microbiome structure

Networka Correl. (p, d)b Pc Correl. (r, d)d Pc

N25 −0.74 0.03 −0.78 0.026
N50 −0.84 0.007 −0.94 0.007
N100 −0.67 0.07 −0.98 <0.001

aThree different metabolic networks based on the exclusion of currency metabolites: N25 implies that all metabolites participating in >25 or more reactions
were considered currency metabolites and were ignored in network construction (‘Materials and Methods’ section). Layer structure was inferred with the
VFAs and amino acids (set VFA + AA) used as the interface compounds.
bPearson’s correlation of the proportion a layer’s microbial reactions/nodes occupied by metagenomic read pairs (p) and the layer number (d or distance
of the microbial reaction to the host network). Only a continuous set of layers with at least 10 nodes each were considered (e.g., we stopped considering
layers after the first one with <10 nodes).
cP-value for the test of the hypothesis of a stronger negative correlation between distance (d) and either p or r than expected. We randomized the read
locations in the network and recalculated p and r 1000 times and again calculated the correlation coefficient, counting how often it was as small or smaller
than that seen in the actual data (one column left; see ‘Materials and Methods’ section). Values shown in bold are significant at P<0.05.
dPearson’s correlation of the average number of read pairs mapped to each node (r) and the layer number (d or distance of the microbial reaction to the host
network). Only nodes occupied by at least one read pair were considered. Also, only a continuous set of layers with at least 10 nodes each were considered
(e.g., we stopped considering layers after the first one with <10 nodes).

Table 2. Association of layer position and animal-to-animal enzyme variation

Networka Binomial cutoffb
Avg log2(A1/A2)0 −
Avg log2(A1/A2)1

c Pd
Avg log2(A1/A2)0 −
Avg log2(A1/A2)2

c Pd

N25 0.05 −0.22 0.003 −0.28 0.03
0.01 −0.34 0.006 −0.24 0.06
0.001 −0.36 0.015 −0.24 0.09
0.0001 −0.46 <0.001 −0.32 0.05

N50 0.05 −0.36 <0.001 −0.24 0.03
0.01 −0.41 0.001 −0.25 0.03
0.001 −0.43 0.001 −0.24 0.05
0.0001 −0.53 <0.001 −0.29 0.03

N100 0.05 −0.31 0.002 −0.24 0.02
0.01 −0.36 0.002 −0.25 0.04
0.001 −0.36 0.007 −0.24 0.05
0.0001 −0.46 <0.001 −0.29 0.03

aThree different metabolic networks based on the exclusion of currency metabolites: N25 implies that all metabolites participating in >25 or more reactions
were considered currency metabolites and were ignored for network construction (see ‘Materials and Methods’). Layer structure was inferred with the VFAs
and amino acids used as the interface compounds (set VFA + AA).
bBinomial cutoff for determining if the two animals differ significantly in the number of reads for a given node. We computed the proportion p1 of the
total metagenomic read pairs belonging to animal 1 and then asked, for each node, whether there were significantly fewer or more read pairs mapped to
that node from animal 1, given p1 under a binomial distribution. Four cutoff values for significant differences in mapped read pairs were used.
cFor each node with a significant difference in read pair count between animals (see previous column), we calculated log2(A1/A2): the log2 of the ratio of
the read counts for the two animals. We then calculated the average of this value for layer 0 and subtracted from it that average for layer 1 (or 2). Hence,
the negative values show indicate more variability in mapped read pair counts in layer 1 (or 2) than in layer 0.
dP-value for the test of the hypothesis of more variable mapped read pair counts in layer 1 (or 2) than in layer 0. We randomized the mapped read paired
locations in the network (including nodes with no mapped reads) and recalculated the average differences (previous column) 1000 times, counting how
often it was a larger negative value than that seen in the actual data (one column left; see ‘Materials and Methods’ section). Values shown in bold are
significant at P<0.05.

Table 3. Compounds involved in reactions that have >40 000 read pairs mapped

Compound Mapped reads Compound Mapped reads Compound Mapped reads

H+ 1 342 371 Glutamine 156 972 Aspartate 85 059
ATP 633 063 NADH 154 573 GDP 79 945
Water 612 030 NH3 142 055 Fumarate 67 572
Inorg. Phosphate. 438 632 NH4

+ 127 611 Acetyl-CoA 48 955
AMP 385 809 Oxaloacetate 121 016 UMP 43 620
ADP 246 006 NADPH 108 199 Formate 43 007
CO2 235 605 NADP+ 108 196 Serine 42 619
Glutamate 228 789 �-ketoglutarate 104 468 Maltotetraose 42 431
Glucose-1-phosphate 166 257 GTP 95 572 Fructose-6-phosphate 41 805
NAD+ 163 449 Pyruvate 91 701
Phosphoenolpyruvate 157 805 Coenzyme A 90 809
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million mapped, versus 3487 sequences for these reactions
from a total of 3.0 million in the MetaCyc database). Recall
that we have assayed the gene content, not the gene expres-
sion, of this ecosystem: the proposal that 1 in 500 of the dif-
ferent ‘types’ of reactions present in the rumen is involved
in terminal VFA production does not appear unreasonable.
(Note that we are only counting reactions that actually in-
volve these two metabolites, not all the reactions in the path-
ways to their synthesis.) In fact, if we assume that the aver-
age microbial metabolic network contains about 500 reac-
tions per species, this would imply that each individual in
our community has one reaction involving one of these two
metabolites. Such a value is reasonably high, since in fact
many taxa do not produce these compounds, which are not
commonly part of intermediary metabolism.

DISCUSSION

We have presented an example where two bovine rumi-
nal microbiomes that appeared rather different at the tax-
onomic level were much more similar in their metabolisms.
While we do not, on the basis of two animals, claim this ob-
servation is universally true, it is in keeping with the known
complexity of microbial ecosystems, where it is both possi-
ble to create taxonomically distinct assemblages with sim-
ilar metabolic properties and taxonomically similar ones
with differing metabolic properties (24,55). It also refines
previous analyses suggesting that microbial ecosystems can
be functionally similar while having distinct taxonomic
structures (21–23). By having shown a detailed metabolic
example of differing taxa with similar roles, we have begun
to uncover the genomic and metabolic sources of such dis-
tinctions. Of course, the metagenome does not perfectly re-
flect the metabolic activities of the microbes present: for in-
stance our study did not assess the effects of gene expres-
sion, accounting for which would probably tend to increase
the degree of divergence between the two animals (23).

While previous work has compared taxonomy and gene
complements (15,17,21–24), genes such as information pro-
cessing genes may be common across samples without im-
plying ecosystem-level similarities. A metabolic network ap-
proach more closely tracks ecosystem-level properties and
provides evidence for the proposition that different taxa
might have similar functional rules. An alternative expla-
nation is that while housekeeping enzymes are common
across taxa (though see 56), taxonomic variation would
drive presence/absence differences in key enzymes. Our data
do not support this alternative, however: the largest number
of reads that mapped to a node in one animal for which no
reads were mapped in the other was 101 (out of more than a
million total mapped reads). Instead, on average, such dif-
ferentially present enzymes have only 3.4 reads mapped in
one animal compared to zero in the other. Rather it appears
that, while drawing on a generally common set of enzymes,
the two animals are much more different in their distribu-
tion of those enzymes than can be explained by mere sam-
pling variation in the metagenomic data (Figure 3A). This
variation is spread throughout the network (Figure 2A);
while the animals are actually more different in the num-
ber of mapped reads for central reactions, this effect is quite
weak. Instead, the networks show coherent patterns that ap-

pear to derive from organized interactions with the host an-
imal. Thus, the interface layer of Figure 2A is less variable
between animals than are the next two layers (Table 2) and
the reactions used by the microbiome decline as a fraction
of the possible reactions the further one moves from that in-
terface layer. Collectively, these observations are consistent
with the idea that the host environment selects for microbial
metabolic networks with a common interface but can toler-
ate variation in other parts of the network as long as that
interface is maintained. Such differences may also be mir-
rored at the phenotypic level; the two studied animals were
sampled because they differed in their growth rates relative
to the amount of feed consumed (data not shown).

It would be very desirable to understand this difference
in how feed is used for growth using predictive stoichiomet-
ric metabolic models (16,57–58). Unfortunately, such ap-
proaches do not currently scale to groups of hundreds or
thousands of genomes nor is a sample of two animals suf-
ficient for such a study. Note however, that as a matter of
logic, two samples are fully sufficient for the twin conclu-
sions of our study, which are essentially existence proofs.
We have shown that it is possible to create microbial as-
semblages that differ more in taxonomy than in their de-
tailed metabolism (e.g., that show differences not just in a
handful of compounds but across the full metabolic net-
work) and that the metabolic differences that are observed
are inconsistent with the existence of only a single micro-
bial metabolic network for a given environment. While more
samples might refine our estimates of the frequency of these
trends, they cannot dispute that such differences exist, either
between taxonomy and metabolism or within metabolism.
We cannot, at this point, assess ‘how’ these differences be-
tween animals are determined. Temporal variation (27) in
the microbiome might imply that the differences observed at
a single time point might not be maintained over the long
term. However, the timescale of metabolism is necessarily
fast relative to community turnover, so the existence of dis-
tinct community metabolic networks is still a relevant obser-
vation. Likewise, spatial variation within an animal is gener-
ally much lower than is variation between animals (59). The
fact that the taxonomic profile of an animal’s rumen can re-
establish itself after ruminal transplant (60) also suggests
that host/microbe interactions, including those across the
network interface of Figure 2A, are partly responsible for
animal-to-animal variation in ruminal ecosystems, rather
than such variation being truly random.

The conclusion that these two steers are functionally sim-
ilar in their metagenomic metabolic networks is hardly un-
expected given the shared environment and diet. However,
the fact that detectable differences are evident even under
these rather controlled conditions, suggests another point:
there is more than one way to build an ecosystem (61).
This possibility manifests itself at two levels. First, the fact
that the metabolic profiles of the two animals’ metagenomes
are more similar than are their taxonomic profiles implies
that different consortia of microbes can, at least in some
circumstances, build the same metabolic structure in the
ecosystem. As such, caution in the over-interpretation of
taxonomic differences in metagenomic studies may be war-
ranted. Second, even if we ignore taxonomy, the greater
variability of the nodes farther from the host network in
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Figure 2A suggests that there may be several combinations
of reactions and reaction frequencies that produce the same
set of output compounds for the host, albeit presumably
with subtle differences in their relative abundances.

This last result has an interesting linkage to one of the
more surprising discoveries of systems biology: the highly
redundant structure of metabolic networks (62,63). This re-
dundant structure means that there are actually a vast num-
ber of potential metabolic networks that have very differ-
ent enzymatic composition and yet manifest the same phe-
notypes (56). We therefore argue that results such as those
above extend this principle of redundancy through multi-
ple equivalent genotypes in single individuals to groups of
organisms acting in an ecosystem. This link between pop-
ulation genomics and ecology has previously been noted in
other contexts (64). It is worth considering whether this po-
tential multiplicity of ecosystem metabolic networks could
confound our attempts to qualitatively describe microbial
ecosystems using taxonomic or gene counting approaches.
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63. Duarte,N.C., Herrgård,M.J. and Palsson,B.Ø. (2004) Reconstruction
and validation of Saccharomyces cerevisiae iND750, a fully
compartmentalized genome-scale metabolic model. Genome Res., 14,
1298–1309.

64. Chave,J. (2004) Neutral theory and community ecology. Ecol. Lett.,
7, 241–253.


	&nbsp;rDNA analysis

