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The increasing number of data studies on the biological impact of anthropogenic

chemicals in the marine environment, together with the great development of invertebrate

immunology, has identified marine bivalves as a key invertebrate group for studies

on immunological responses to pollutant exposure. Available data on the effects of

contaminants on bivalve immunity, evaluated with different functional and molecular

endpoints, underline that individual functional parameters (cellular or humoral) and the

expression of selected immune-related genes can distinctly react to different chemicals

depending on the conditions of exposure. Therefore, the measurement of a suite of

immune biomarkers in hemocytes and hemolymph is needed for the correct evaluation

of the overall impact of contaminant exposure on the organism’s immunocompetence.

Recent advances in -omics technologies are revealing the complexity of the molecular

players in the immune response of different bivalve species. Although different -omics

represent extremely powerful tools in understanding the impact of pollutants on a

key physiological function such as immune defense, the -omics approach has only

been utilized in this area of investigation in the last few years. In this work, available

information obtained from the application of -omics to evaluate the effects of pollutants

on bivalve immunity is summarized. The data shows that the overall knowledge on this

subject is still quite limited and that to understand the environmental relevance of any

change in immune homeostasis induced by exposure to contaminants, a combination

of both functional assays and cutting-edge technology (transcriptomics, proteomics,

and metabolomics) is required. In addition, the utilization of metagenomics may explain

how the complex interplay between the immune system of bivalves and its associated

bacterial communities can be modulated by pollutants, and how this may in turn affect

homeostatic processes of the host, host–pathogen interactions, and the increased

susceptibility to disease. Integrating different approaches will contribute to knowledge on

the mechanism responsible for immune dysfunction induced by pollutants in ecologically

and economically relevant bivalve species and further explain their sensitivity to multiple

stressors, thus resulting in health or disease.
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INTRODUCTION

Bivalves, Pollutants, and Immunity
Bivalves, the second largest group in Mollusca, show a large
diversity in anatomical structure and size, physiology and
behavior, and adaptation to different environments. Moreover,
several bivalve species represent an important food source for
humans and are of considerable economic value in aquaculture in
estuarine and coastal areas (1). Coastal environments are not only
characterized by natural fluctuations in different environmental
parameters but are also generally subjected to a variety of
anthropogenic pressures, including the release of pollutants
from different sources. Due to their worldwide distribution,
sedentary nature, and filter-feeding habits, knowledge on the
biochemical and physiological adaptations of bivalves, and their
feasibility for experimental handling, have been long recognized
as “sentinel” organisms for the evaluation of responses to
chemical contamination of the aquatic environments (2–4).
These responses, called biomarkers, have been widely and
thoroughly investigated in species representative of bivalve
groups that are of main commercial interest (mussels, oysters,
and clams) and have been applied worldwide in marine
biomonitoring programs to identify early signs of exposure
to contaminants and to quantify the health status of coastal
waters (2–4). Biomarkers are also currently applied to evaluate
responses of marine bivalves to emerging classes of pollutants,
such as microplastics (5), nanomaterials (6), and pharmaceuticals
(7). Among the biomarkers, particular attention is given to
those that can reveal processes whose disturbances from the
molecular, cellular, tissue, and whole organism level can be
reflected at a higher level of biological organization (population
and community level). These include physiological functions,
such as energy metabolism, reproduction, and immune response
[(8) and references quoted therein].

The bivalve’s affords efficient protection against different
potential invaders, based on the activity of circulating
immunocytes, the hemocytes, which can recognize potential
pathogens and foreign particles through phagocytosis and
different cytotoxic reactions, secreting soluble factors in the
hemolymph fluid (8–14). Bivalve hemocytes, thanks to their
capacity to cross epithelial barriers and the characteristics of the
open circulatory system, play pleiotropic roles in other functions,
such as nutrient transport, biomineralization, and reproduction
(15–17). As more information is available on the molecular and
functional traits of hemocyte function (18, 19), understanding
the potential impact of pollutant exposure on bivalve immune
defense is gaining increasing attention.

Immune Response of Bivalves to
Contaminant Exposure
The first overview of the immune responses of marine
invertebrates, including bivalves, to environmental perturbation,
including contaminant exposure, was provided by Ellis et al.
(20). In this work, available information was also discussed
within the context of “ecological immunology,” which refers
to the role of environmental stressors on the evolution
of the immune response (21). Ellis et al. (20) analyzed

available data on cellular/humoral immune responses to
environmental stress evaluated across different species, obtained
utilizing immune biomarkers as classical parameters: changes
in hemocyte abundance and subtypes, morphology or viability,
and functional parameters, from phagocytic activity as a
proxy for immunocompetence, to oxyradical and nitric oxide
production, release of antimicrobial enzymes, etc., evaluated by
standard biochemical and cellular techniques. The importance
of evaluating expression of individual antimicrobial peptides
(AMPs) and immune-related genes by quantitative PCR was
also underlined, but the application of gene expression to
bivalve immunity was not yet straightforward enough (20). This
study underlined the following: (1) differences among species in
response to a single stressor, intraspecific responses to different
stressors, or to single stressors at different levels of exposure;
(2) the importance to evaluate immune responses of a wider
range of species from different phyla; (3) the need to investigate
a greater number of environmental stressors, alone and in
combination; (4) the influence of seasonal factors in determining
the immune response to environmental stress; and (5) the
need to evaluate how changes in immune responses induced
by environmental stress will impact host–pathogen interactions.
These points are still crucial in understanding the potential
impact of environmental contaminants on immune defenses of
marine invertebrates.

The first review article focusing on pollutants and immunity
in marine bivalves was from Renault (22), where different
classes of inorganic and organic pollutants, including emerging
contaminants such as pharmaceuticals and nanoparticles (NPs),
were considered. Also, in that case, most of the available
data were obtained evaluating classical immune biomarkers as
described above; in particular, this study underlined how research
on potential immunotoxicity of NPs was also focused on the
identification of their mechanisms of action in bivalve hemocytes
(22). Actually, studies on NPs and bivalve immunity are of
interest since they also represent a unique, particulate form of
pollutants that can be utilized as a model of non-self material to
investigate the response of the innate immune system (6, 23).

In the last few years, the number of publications on the effects
of pollutants on bivalve immunity has greatly increased, and no
updated review papers are available yet. However, a systematic
review of the advances in this field has become an extremely
difficult task, not only because of the large amount of datasets
obtained with a number of chemicals (tested in a variety of
experimental settings and different bivalve species), but also the
number and type of immune biomarkers measured, and the
type of responses observed to be increasing the concentration
of pollutants. With regard to this latter point, an example
was first provided by data obtained in the model bivalve,
the mussel Mytilus galloprovincialis, on immune responses
evaluated after exposure (in vitro and in vivo) to a number
of estrogenic compounds, alone and in mixture (24). Classical
functional immune parameters (phagocytosis and lysozyme
release) showed no changes, stimulation/inhibition, at increasing
concentrations of chemicals. Subsequent data obtained in
M. galloprovincialis with other classes of contaminants (such
as heavy metals, nano-oxides, and nanoplastics) supported

Frontiers in Immunology | www.frontiersin.org 2 February 2021 | Volume 12 | Article 618726

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Balbi et al. Bivalve Immunity, Pollution and -Omics

these observations (24–27). In this respect, functional immune
biomarkers behave as “bell-shaped” biomarkers, that is, those
showing increases and subsequent decreases at increasing
stress conditions, such as the many general and specific
biomarker responses utilized in biomonitoring (28). Thanks
to the progress in the identification of immune-related genes
and protein sequences in different bivalve species, more
recent data on functional responses are reported together with
expression of individual genes in hemocytes. Examples of
stimulation/inhibition of different functional parameters and
up- and down-regulation of selected immune-related genes
have been described in different bivalves exposed to a variety
of contaminants (23, 29–34), thus reflecting the capacity of
different species to adequately respond to a certain amount
of stress.

Overall, available data generally show that whatever individual
parameter is measured (cellular or humoral/functional or
molecular), each can change in response to contaminants
depending on the conditions of exposure (concentration, time
of exposure, and experimental setting). In this light, in analogy
with the general biomarker approach, where integrated multiple
biomarker responses are utilized to identify the response to
environmental stress (35, 36), only the determination of a battery
of different functional and molecular immune biomarkers will
be able to describe the overall impact of contaminants on
bivalve immunocompetence.

Moreover, this scenario is further complicated by the
general capacity of the bivalve immune system to cope
with changing environmental conditions. The in vivo effects
of contaminants can often be reversible, suggesting the
establishment of compensatory mechanisms (37). Recent
data indicate that mussels can establish mechanisms of
tolerance in their immune defenses after repeated exposure
to microplastics and nanoplastics (23, 38). Finally, interactive
effects of pollutants with natural abiotic variables (temperature,
salinity, and pH) on immune responses have been described
in different bivalves (39–44). In the natural environment, the
immunomodulatory properties of a variety of pollutants at
low and variable concentrations, in the presence of changing
environmental factors, may be crucial in affecting the health
status of bivalves, contributing to mass mortalities in the
most susceptible species. Renault (22) pointed to the need of
investigating in detail the potential interference of pollutants
in host–pathogen interactions, in an attempt to understand
the complex relationship between contaminant exposure,
immunocompetence, and susceptibility to disease. To reach
this goal, a great experimental effort is needed, utilizing
different experimental settings: in vitro exposure of hemocytes
to screen the immunomodulatory properties of different
contaminants and to identify the main mechanisms of
action at the cellular level; in vivo exposure of individuals
at realistic concentrations for each contaminant, trying to reach
conditions compatible with environmental exposure; finally,
and most importantly, to evaluate the response of pollutant-
exposed hemocytes or individuals to challenge with different
pathogens, to gain an insight on the subsequent effects on
host–pathogen interactions.

In this context, in vivo experiments, in addition to the
obvious experimental relevance, offer a further advantage to
understand how immune homeostasis is affected by pollutant
exposure. These studies allow not only the measurements of
immune biomarkers in hemocytes and hemolymph serum but
also to investigate the immune response at the tissue level.
This is important when considering the capacity of bivalves to
accumulate different classes of contaminants in different tissues
(i.e., the gills and the digestive gland or hepatopancreas). In
particular, the gills, which through their filter-feeding activity
represent the first contact with water-borne pathogens, are
also the first site of uptake and accumulation of water-soluble
pollutants (i.e., heavy metals). In this light, the possibility to
evaluate the immune response also at the tissue level, not only
as hemocytic infiltration as a sign of inflammation (45), but
also by measuring tissue-specific molecular immune responses
to contaminant accumulation, will greatly contribute to the
understanding of how bivalves are able to orchestrate the
immune response at the whole organism level. To this end,
high-throughput molecular techniques represent a powerful
tool that is not fully exploited yet. Recent contributions of -
omics approaches to bivalve immunity (18, 46–49) offer an
extraordinary potential to identify critical molecular targets and
pathways of contaminants and, in general, the biochemical
response of organisms to environmental stress.

IMPACT OF POLLUTANTS ON BIVALVE
IMMUNITY IN THE POSTGENOMIC ERA

Due to the enormous development of DNA high-throughput
sequencing, in the last decade draft genomes have been
generated for different molluscan species, including several
bivalves (mussels, oysters, and clams) (50). Although producing
quality assemblies for molluscan genomes has proven extremely
challenging, due to several factors (i.e., genome size, composition
of repetitive elements, and levels of heterozygosity), the
increasing amount of data has increased the quality of the
assemblies and annotations [reviewed in Gomes-dos-Santos et al.
(50)]. Studies on the genome of selected bivalve species will
contribute to unraveling the molecular mechanisms underlying
multiple adaptations to different environments (49) and will
greatly improve the interpretation of transcriptome datasets that,
in comparison, are relatively easy to generate.

In the last decade, the application of -omics approaches
in ecotoxicology has been proposed and applied in order to
identify toxicity pathways, to more precisely quantify classical
biomarkers, to identify novel ones, and to draw adverse outcome
pathways (AOPs) (51–53). In parallel, several studies have been
focused on the application of -omics, mainly transcriptomics,
to bivalve immunity (46). In comparison, publications on
immune proteomics and metabolomics are currently limited,
but their expansion should be facilitated as more complete
genome sequences and transcriptome datasets become available
for different species.

However, the -omics approach has only been utilized in
the last few years to investigate the effects of contaminants
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on bivalve immunity. Although a PubMed search for “Bivalve
Immunity & Pollutants” gave 29 hits for “transcriptomics,” 14 for
“proteomics,” and seven for “metabolomics,” respectively, only
a few of these publications focused on immune responses. In
this mini-review, we made a first attempt to highlight the main
advancements in knowledge, the limitations of available data, and
future developments of the application of the -omics approaches
to evaluate the impact of contaminants on bivalve immunity in
health and disease.

Transcriptomics
As mentioned above, the transcriptomic approach has been
largely applied to the study of disease processes inmarine bivalves
[reviewed in Nguyen and Alfaro (48)]. Although a detailed
overview of a large number of available data is outside the scope
of this work, these studies greatly contributed to the increasing
knowledge on innate immunity, bivalve–pathogen interactions,
and mechanism of resistance to disease and pathogen virulence.

Transcriptomics has also been increasingly utilized in
evaluating the effects of exposure of several inorganic and
organic contaminants in different bivalve species. A number
of studies identified a significant impact of a wide range of
contaminants (heavy metals, pesticides, pharmaceuticals, and
hydrocarbons), on different pathways, such as response to stress,
redox balance, metabolism, biotransformation of xenobiotics,
apoptotic processes, and immunity (41, 54–61). However, these
data were obtained from the analysis of the transcriptome at the
tissue level (digestive gland, gills, and gonads), indicating that
changes in immune transcriptome reflect a general perturbation
of homeostatic processes. Although this information represents
an enormous increase in knowledge on changes in immune
gene expression induced by pollutants, which is crucial in
understanding the most susceptible pathways, only a few
publications were focused on immune responses. Moreover,
transcriptomic data are seldom associated with the determination
of functional immune parameters and do not explain how
the physiological response of the organism to infection may
subsequently be affected.

In Mytilus edulis, the effects of cadmium (Cd) were evaluated
in an in vitro model of mussel hemocytes by transcriptomics
(RNA-seq andDGE analysis) and the determination of functional
parameters, namely phagocytosis and hemocyte viability (62).
The results showed among the Cd-regulated genes, several
toll-like receptors, and genes involved in phagocytosis and
apoptosis pathways, underlying a link between molecular and
functional responses.

Recently, the molecular responses of hemocytes to both
cadmium exposure and pathogen stimulation were investigated
in vivo in the oyster Crassostrea gigas (63). Transcriptome data
revealed specific molecular responses to cadmium exposure
in the absence or the presence of Vibrio splendidus. The
results showed the activation of a neuro-endocrine-immune
regulatory network in response to Cd2+ and vibrio exposure; in
particular, bacteria stimulation could reverse or strengthen the
expression pattern of some Cd-responsive genes (63). Although
no functional immune parameters were evaluated, at present, this
is the only transcriptomic study reporting data on the effects of

contaminant exposure on the response to pathogen challenges in
bivalves. Overall, although transcriptomics represents the most
utilized -omics tool in the field of immunity and in response to
contaminants in bivalves so far, further studies are needed to
establish a link between contaminant exposure, transcriptional
changes in hemocytes, and alterations in immune responses
toward potentially pathogenic microorganisms.

Proteomics
Examples of the application of proteomic studies on bivalve
immunity are available in different species (59, 64–68). These
studies not only add information on the protein repertoire
expressed by hemocytes and hemolymph plasma, including
proteins potentially involved in recognition, binding and
intracellular and extracellular destruction of microorganisms,
but also can contribute to identifying potential new immune
biomarkers that can be used for the evaluation of the impact of
environmental pollutants on immune processes.

Environmental proteomics focus on the detection of
changes in the level of individual proteins/peptides induced by
environmental stressors. A good example of their application to
immune responses to natural stressors was provided by a study
on the oyster C. gigas exposed to ocean acidification (OA) and
challenge with V. splendidus, alone and in combination (69).
The results showed that several hemocyte functional parameters
[cell number and viability, phagocytic activity, and production
of reactive oxygen species (ROS)] were affected by OA and
that V. splendidus infection exacerbated the impaired immune
responses under OA exposure. Proteomic analysis revealed
differential responses to OA stress and pathogen challenge, alone
or in combination. OA appeared to act via a generalized stress
response by causing oxidative stress, subsequently leading to cell
injury through disruption of the cytoskeleton, protein turnover,
energy metabolism, and immune responses. In contrast, V.
splendidus alone induced similar cell injuries in the absence of
oxidative stress and could act directly on the immune system.
Combined exposure to OA and vibrio challenge presented a
similar, but stronger effect on the proteome compared with OA
treatment alone, indicating synergistic effects on oyster immune
functions, with OA exposure potentially increasing the risk of V.
splendidus infection (65). The application of a similar approach
would represent a significant advancement in the study of the
impact of contaminants on immune responses.

The application of environmental proteomics in different
bivalve species, as sentinel organisms in biomonitoring pollution
of the aquatic environment, was first extensively reviewed
by Campos et al. (70). After describing the main techniques
utilized, the Authors summarized available knowledge on the
identification of biochemical markers of exposure to a number
of pollutants (i.e., heavy metals, hydrocarbons, phthalates,
polybromodiphenyl ethers, and bisphenol A). The potential
for identification of subproteomics, redox proteomics (protein
modification due to oxidative stress), or posttranslational protein
modification, was also underlined. A recent work reviewed
available proteomic data on aquatic organisms, including the
mussel Mytilus as the most studied bivalve species, in response
to pollutants; the results indicate that both heavy metals and
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organic contaminants generally induce alterations of structural
and metabolic proteins, antioxidant enzymes, and immune-
related proteins (71). Advantages and drawbacks of aquatic
pollution biomonitoring utilizing the proteomic approach were
discussed, underlying as the main future development the need
to focus on alternative protein isoforms, protein interactions, and
posttranslational modifications, to increase knowledge on the
relationship between proteins and their functions, as well on the
regulation of protein signaling networks (71). However, it is only
recently that proteomic data has revealed the specific impact of
pollutants on the immune response. Green et al. (72) investigated
the effects of microplastics (MPs) on M. edulis in a long-
term outdoor mesocosm experiment; the exposure to different
types of MPs resulted in changes in the humoral components
of mussel hemolymph, including many proteins involved in
detoxification, metabolism, and structural development. Among
immune-related proteins, members of the complement C1q
domain-containing proteins were affected by certain types
of MPs. Although no immune or general stress biomarkers
were evaluated, MPs significantly reduced the production of
byssal threads and their strength of attachment. The authors
hypothesized that these immunological changes may be due to
physical abrasion from ingested MPs (72).

In the Sydney rock oyster Saccostrea glomerata, the effects
of a neonicotinoid insecticide broadly utilized in agriculture,
imidacloprid (IMI), on immune responses were investigated
under two salinity regimes, evaluating both functional immune
parameters and changes in proteome (73). The IMI exposure
significantly altered the expression of several hemolymph
proteins, including an increase in extracellular superoxide
dismutase (SOD), severin, ATP synthase β subunit, and different
stress response proteins (heat shock proteins, serine/threonine-
protein kinase DCLK3, and peroxiredoxin-1). The results
indicated that the oyster immune system was affected by IMI at
environmentally relevant concentrations (73).

Overall, the application of proteomic studies focused on
hemocytes and plasma, together with measurements of different
functional hemolymph parameters, in contaminant-exposed
bivalve species, may reveal specific responses induced by
pollutant exposure, thus contributing to identifying those protein
components involved in host-pathogen interactions that are
more susceptible to the action of chemical contaminants.

Metabolomics
During the last decade, environmental metabolomics has
been applied in ecotoxicological studies to investigate the
mechanisms of action of single contaminants and mixtures (74–
78). Metabolomics allows for the identification of low molecular
weight (LMW) metabolites (50–1500 Da) whose production and
levels can vary with the physiological and pathological state
of cells, tissues, organs, or whole organisms, as well as with
development [(79) and references therein]. Metabolomics can
offer an excellent snapshot of what is actually happening in
the organism at a given time (80) and could be considered as
a tool for early identification of ongoing homeostatic changes.
Data obtained are highly accurate and reproducible, sample
preparation requires minimal effort and time, and acquisition of

spectral data is quite fast (81). However, spectra assignment is still
one of the main challenges of metabolomics (74, 82). Moreover,
in several organisms, including bivalves, due to the current
lack of knowledge on their metabolism, few metabolites can be
annotated or identified (79). Finally, metabolomics responses can
be hindered by both environmental variables (i.e., temperature,
pH, predation, food availability, etc.) and endogenous factors
(i.e., gender, age, size, genetic, etc.) (79).

Metabolomics represents an excellent tool to investigate
the effects of contaminants in aquatic organisms, especially
if integrated with classical biological assays and/or other
-omics techniques. However, to date, only one study was
focused on hemocyte responses. In the clam R. philippinarum,
cadmium, exposure induced alterations in total hemocyte
counts and oxyradical production in a dose-dependent manner
(83). Metabolomic analysis in the hepatopancreas showed that
Cd2+ exposure induced immune stress and disturbance in
energy metabolism.

Moreover, most metabolomic data obtained at the tissue
or whole organism level indicate an alteration of immune-
related processes in bivalves in response to contaminants. The
effects of 17α-ethinylestradiol (EE2) on the unionid mussel
Lampsilis fasciola were evaluated by traditional behavioral and
reproductive endpoints and a metabolomic approach (84).
Interestingly, based on the traditional reproductive endpoints,
EE2 exposure induced fewer adverse effects than hypothesized.
In contrast, metabolomic studies showed that EE2 significantly
affected several metabolic processes in gills, leading to a
reduction in energy reserves. Moreover, a modification of a
set of metabolites involved in the immune response, among
others, was observed. In the clam R. philippinarum, arsenite (As)
and arsenate induced oxidative stress in the digestive gland. A
metabolomic analysis demonstrated that both chemical forms of
As induced immune stress, as shown by the increase in branched-
chain amino acids (valine, leucine, and isoleucine) and osmotic
stress (85). Cong et al. (86) showed that ammonia exposure
of the clam R. philippinarum could cause not only lysosomal
destabilization, but also metabolic disorders, malformations of
gill structures, and changes in neurotransmitters, thus resulting
in an alteration in feeding, respiration, and immune function. A
metabolomic approach highlighted the disruption of metabolic
pathways in the mussel M. galloprovincialis exposed to a
wastewater treatment plant (WWTP) effluent (79). A common
response observed in both males and females was represented by
the main change in glycerophospholipid levels, possibly caused
by oxidative stress, which could lead to reproductive disorders;
in addition, gender-specific metabolic alterations in some polar
lipids and kynurenine pathway were observed, suggesting a
disturbance in the energy metabolism and immune system only
in males. An integrated metabolomic and proteomic approach
was utilized to evaluate the effects of Cd and As(V) on the
early larval stages of M. galloprovincialis (87). Metabolomic data
responses indicated an alteration in energy metabolism and
osmotic regulation in response to both Cd and As. Proteomic
analysis showed that Cd exposure induced several alterations
at the protein level, thus leading to immune and oxidative
stress, disturbance in nucleic acid metabolism, and cellular
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injury. A similar approach was utilized to study the effects of
benzo(a)pyrene (BaP) on the gills of the pearl oyster Pinctada
martensii (88). The results indicated that the two -omics
techniques were complementary to demonstrate that the toxic
effects of BaP were mainly due to alteration of immune response,
osmotic regulation, and energy metabolism. Overall, available
data underline the potential contribution of metabolomics in the
identification of the immune function as a potential target of
contaminant exposure in bivalves.

Lipidomics
With the rapid advances in mass spectrometric detection,
significantly increasing resolution and accuracy, untargeted
lipidomic analysis represents a powerful tool for the
identification of all detectable lipids and their metabolites,
including unknown chemicals (89). In a recent study, a
comparative analysis of lipid profiles was performed in four
edible bivalve species (including clams, oysters, and mussels),
which led to the identification of more than 600 different
lipids belonging to 14 classes (90). Although this study was
essentially carried out to establish a relationship between the
nutritional value of each species and their lipid composition,
the application of lipidomics will provide the baseline data for
further studies on the effects of pollutants on the lipidome of
other species utilized in biomonitoring programs. To date, the
only available data are those obtained from oysters (Crassostrea
hongkongensis) exposed to copper (Cu) (91). The observed
changes in the lipidome profile in the digestive gland of Cu-
exposed oysters were analyzed in aspects of membrane dynamics,
lipid signaling, and energy metabolism; among the changes in
different lipid classes, copper exposure induced phospholipid
remodeling, and increased in polyunsaturated fatty acids that
represent precursors of inflammatory mediators (91). Although
the correlation between an imbalance in lipid homeostasis
and the abundance of different molecular species and host
defense is a poorly explored area of research (92), the possibility
that pollutant exposure may affect immunomodulatory lipids

in bivalves represents an intriguing field of investigation.
However, the effects of contaminant exposure on hemocyte
lipidomics related to immune functions remain unexplored
to date.

Metagenomics
High-throughput sequencing technologies also provide the
ability to fully characterize the diversity of complex microbial
populations (i.e., the microbiome) in environmental matrices,
both at the taxonomic (e.g., DNA barcoding, 16S or 18S
rDNA sequencing) and functional (e.g., metagenomics,
metatranscriptomics, metabolite production, and gene pathway
analysis) levels (46). It is now recognized that the innate immune
system plays an important role in shaping the composition
of the microbial communities associated with the host into
configurations that can be not only well-tolerated but also
beneficial for its metabolism; in turn, the microbiota integrate
into the physiology of the host and, through its interactions with
the innate immune system, can influence multiple homeostatic
processes (93). In this light, it has been proposed that this issue
should be considered in the broader context of the impact
of anthropogenic activities, including chemical pollution, on
different ecosystems (94).

The rich and complex microbiome of bivalves has been shown
to be influenced by host genetics, environmental conditions,
stress, and infection (14, 52, 95–100). An alteration of bivalve
microbiota, in both tissues and hemolymph by environmental
changes and/or stressful conditions, has been associated with
changes in health status and higher susceptibility to disease
(58, 59, 99, 101–107). A recent study showed that in oysters, the
composition of bacterial communities in the hemolymph is more
strongly shaped by environmental factors than by the genetic
background of the host (108).

However, few there is not a lot of data available that focuses
on the effects of pollutant exposure on the microbiome of
bivalve hemolymph and on the possible relationship with the
immune defenses of the host. We have recently shown that in

TABLE 1 | Summary of available publications focused on the application of -omics to evaluate the effects of pollutants on bivalve immune responses.

Contaminant Exposure Species Endpoints References

Transcriptomics Cadmium In vitro 21 h Cd 10−9–10−3 M Mytilus edulis Hemocyte RNA-seq,

phagocytosis, viability

(62)

Cadmium,

cadmium/Vibrio

splendidus

1 d, 100 µg/L CdCl2, bacteria 106

CFU/mL

Crassostrea gigas Hemocyte RNA-seq (63)

Proteomics Microplastics Outdoors mesocosm 52 d, 25 µg/L Mytilus edulis Hemolymph proteins (72)

Imidacloprid In vivo, 4 d (0.01, 0.1, 1 µg/L) Saccostrea glomerata Hemocyte functional parameters,

hemolymph proteins

(73)

Metabolomics Cadmium In vivo 2 d, 20 and 200 µg/L Ruditapes philippinarum Hemocyte functional parameters,

digestive gland metabolomics

(83)

Metagenomics n-TiO2 In vivo exposure, 4 d 100 µg/L Mytilus galloprovincialis Hemocyte functional parameters,

hemolymph microbiome

(30)

Nanoplastics

amino-modified

nanopolystyrene

In vivo exposure, 4 d, 10 µg/L Mytilus galloprovincialis Hemocyte functional parameters,

hemolymph microbiome

(109)
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M. galloprovincialis, in vivo exposure to nanoparticles induced
significant shifts in the composition of microbial communities of
the hemolymph, at the same time inducing changes in immune
parameters, with distinct effects observed with different NPs
(30, 109). Titanium dioxide NPs (nTiO2) induced an overall
stimulation of immune responses, which was associated with
an almost complete disappearance of Vibrio and Psychrobium
from mussel hemolymph. These data indicate that nTiO2-
induced activation of immune defenses may contribute to
creating an unfriendly medium for the most sensitive bacterial
communities present in hemolymph (30). On the other hand,
polystyrene nanoplastics negatively affected different immune
parameters, at the same time increasing the relative abundance
of Arcobacter-like, Psychrobium, and Vibrio, suggesting that

the downregulation of immune defenses may favor potentially
pathogenic bacteria (109).

To decipher the factors underlying susceptibility to diseases
and mass mortality in the field, Milan et al. (110, 111)
proposed a broader approach on gene expression profiling and
functional analyses of microbial communities based on the
combination of RNA-sequencing and 16S microbiota analyses.
In the Manila clam, R. philippinarum, tissue microbiota were
affected by the interactions between seasonal variables and
exposure to pollutants (110). Moreover, the results obtained
in the striped venus clam, Chamelea gallina, indicate that
opportunistic pathogens may take advantage of compromised
host immune pathways and defense mechanisms by chemical
exposure, thus contributing to periodic mortality events (111).

FIGURE 1 | Schematic overview showing the integration of different -omics approaches in evaluating the impact of pollutants on the immune responses of bivalves

and their consequences on organism health. Left: The effects of different contaminants (heavy metals, organic xenobiotics, and nanoparticles) can be evaluated on

the main components of the immune system, hemocytes, and hemolymph plasma, determining functional immune responses as classical immune biomarkers. The

application of metagenomics to hemolymph samples can provide an estimation of how contaminant exposure may shape the interactions between innate immune

defenses and the associated microbial communities. Right: Different -omics tools approaches applied to both hemocytes and tissues can reveal perturbations of

immune responses as changes in gene and protein expression networks and metabolic profiles related to immune processes at cellular and tissue level and can

identify immune targets for different classes of pollutants. The overall information will help understanding how contaminant exposure can affect the capacity of different

bivalves to cope with pathogen challenge, thus increasing their susceptibility to disease, with possible consequences on the health status of natural populations and

aquacultured species.
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These studies will further our understanding of how
exposure to different types of contaminants may shape the
interactions between the host immune defenses and the
associated microbiota in bivalves, thus affecting the health
status of key species in coastal ecosystems that are subjected
to natural environmental fluctuations and the impact of
human activities.

CONCLUSIONS AND PERSPECTIVES

The major advances, current perspectives, and future directions
of the application of the three main -omics approaches
(transcriptomics, proteomics, and metabolomics) in bivalve
hemocytes and hemolymph aquaculture research have been
recently reviewed (48). The authors underlined how data
obtained on the characterization of these multilevel responses
to pathogenic infections can provide valuable information
on the mechanisms that drive the innate immune system
in response to stress, and on the complex host–pathogen–
environment interactions across bivalve species. In this light, the
development of epigenomic studies in marine invertebrates
are also promising in evaluating the role of epigenetic
modifications (DNA methylation, histone modifications,
chromatin remodeling, and non-coding RNAs) on immune
responses, and how these processes may be affected by
environmental stress, thus affecting bivalve susceptibility to
disease (112).

However, when we look at the state of the art on the
application of -omics technologies to evaluate the effects of
pollutants on immune responses of bivalves, only a few studies
demonstrate a clear relationship between contaminant exposure
and alterations of immune responses (Table 1). This underlines
the need for specific studies focused on contaminant-induced
alterations of immune function.

Although the integration of different -omics approaches
would greatly expand our knowledge on the bivalve immune
system, and its responses to contaminant exposure, the need
for complex methodologies and the analysis of large-scale
datasets from different -omics platforms, currently makes this
approach unfeasible in environmental monitoring. However,
the differently expressed molecules that have been identified
through -omics studies can be used as candidate immune
biomarkers with applications in biomonitoring of environmental
pollutants as well as in aquaculture for early disease diagnosis.
At present, integrating data on functional immune responses
and susceptibility to pathogen challenge with the application
of individual -omics platforms at cellular and tissue level
appears to be the most suitable approach to better define the
mechanisms underlying the immune response to pollutants and
their significance for the health status of bivalves (Figure 1).
Understanding the capacity of bivalves to coordinate their
immune defenses in response to contaminants will contribute to
issues related to public health, food safety, and aquaculture.
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