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Monocyte and macrophage diversity is evidenced by the modulation of cell surface markers and differential production of soluble
mediators. These immune cells play key roles in controlling tissue homeostasis, infections, and excessive inflammation.
Macrophages remove dead cells in a process named efferocytosis, contributing to the healthy tissue maintenance. Recently, it
became clear that the main macrophage functions are under metabolic control. Modulation of glucose, fatty acid, and amino
acid metabolism is associated with various macrophage activations in response to external stimuli. Deciphering these metabolic
pathways provided critical information about macrophage functions.

1. Introduction

Monocytes and macrophages are part of the mononuclear
phagocytic system and share multiple cell surface markers.
Historically, monocytes were described as necessary precur-
sors for tissue-resident macrophages. However, this concept
has recently been challenged by the discovery of embryoni-
cally derived macrophage subsets in several tissues including
those of the brain and heart [1–5]. The pool of embryonically
derived macrophages renews via self-proliferation, indepen-
dently from the pool of bone marrow-generated monocytes
[6]. Another observation that defied the initial concept is
the presence of monocytes in peripheral tissues, outside the
blood vasculature [7]. A genome-wide transcriptional analy-
sis of macrophages, isolated from a large pattern of tissues,
revealed that each subset of tissue-resident macrophages
has a unique transcriptional profile despite a conserved
core signature. This suggests diversity in the pool of tissue-
resident macrophages driven by their local environment
[8]. Those observations were followed by the identification
of transcription factors controlling the development and fate
of a single population of tissue-resident macrophages [9–12].
For instance, tissue-specific signals induce a core signature
refinement by signal-dependent transcription factors [13].

This allows macrophages to perform unique functions.
For example, splenic macrophages are dependent on the
transcription factor Spi-C regulated by heme concentra-
tions. Red pulp splenic macrophage absence in Spi-C-
deficient mice induces splenic iron accumulation due to
impaired erythrocyte clearance [14]. Another example is
the large peritoneal macrophage population that relies on
dietary retinoic acid induction of the transcription factor
Gata6 to develop and survive [11]. Macrophage plasticity
with respect to environmental cues is supported by large
peritoneal macrophage loss of phenotypic and transcrip-
tional core-specific signature once transferred to a new
environment or when Gata6 is genetically removed [11, 15].
However, comprehensive links between local microenviron-
mental cues and tissue-resident macrophage fate are still
largely lacking.

Recently, macrophage modulation of metabolism
emerged as a central player during their activation [16].
Nevertheless, to what extent does the wide transcriptional
diversity of tissue-resident macrophages reflect on and to
what extent is it driven by environmental and metabolic
adaptations remain to be elucidated. The purpose of this
manuscript is to review the metabolic demands of monocytes
and tissue-resident macrophages.
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2. Mononuclear Phagocytic Cells

2.1. Monocytes.Monocytes are generated in the bone marrow
from progenitor cells during a process named myelopoiesis
(for review, see [17]). Once these cells complete their matura-
tion, they eventually egress to the blood circulation and
peripheral tissues. Monocyte retention in the bone marrow
and their entry into blood vessels are under the tight control
of chemokine and chemokine-receptor interactions. For
instance, the CXCR4-CXCL12 and CCR2-CCL2 axes have
been implicated in this process [18–20]. The contribution
of these pathways is illustrated through blood monocyte drop
and bone marrow accumulation in genetic models where
these pathways are ablated. Recently, metabolic factors have
also been implicated in the control of monocyte pool in the
bone marrow [21, 22].

Blood monocytes are easily separated into at least 2
subsets based on the expression of the cell surface marker
Ly6C in mice. Using this criterion, classical/inflammatory
monocytes are characterized by a high level of Ly6C, while
nonclassical/patrolling monocytes are Ly6Clow. The latter
subset is dependent on the transcription factor Nr4a1
(nuclear receptor subfamily 4 group Amember 1), as demon-
strated by their loss in Nr4a1-deficient mice [23]. Interest-
ingly, Ly6Clow monocytes are resident of the blood
vasculature where they play a critical role in vessel homeosta-
sis eliminating stressed and dying endothelial cells [24].
Recently, it was also demonstrated that Ly6Clow monocytes
detect metastatic cells inside blood vessels and, with the help
of NK cells, protect mice against metastatic development
[25]. As opposed to the resident nature of the Ly6Clow popu-
lation, Ly6Chigh monocytes leave the blood circulation to
enter injury sites. Once more, the CCL2-CCR2 axis is critical
for Ly6Chigh monocyte peripheral tissue recruitment during
infection and inflammation [19, 26]. Once monocytes infil-
trate peripheral tissues, they can differentiate into inflamma-
tory macrophages.

2.2. Macrophages. Macrophages are critical players in host
defense against infections, during inflammation and in
response to injury (for review, see [27]). Macrophages are
highly specialized in phagocytosis contributing to tissue
remodeling and to the removal of cellular debris. At a steady
state, each organ independently regulates the size of its
intrinsic macrophage pool. This implies lifelong residency
of tissue macrophages and is probably responsible for the
distinct transcriptional signature that each tissue macro-
phage population adopts [15, 28]. Interestingly, this specific
signature also includes metabolic traits. A recent study that
used metabolic transcriptional signature revealed, for
example, that microglia, brain-resident macrophages, seem
to have low steady-state metabolic demands [29]. We tried
to illustrate the impact of organ cues on the transcriptional
signature of metabolic genes by comparing 4 different mac-
rophage populations, of which two populate the peritoneal
cavity and the other two populate the intestine (Figure 1).
Large and small peritoneal macrophages have a similar
metabolic signature despite their different origins and
transcriptional dependencies (Figure 1(a)) [9–11, 30]. The

same observation is also valid when two distinct populations
of intestinal macrophages are compared to each other
(Figure 1(b)). Nevertheless, when both peritoneal macro-
phages were compared to intestinal macrophages altogether,
the number of metabolic pathways differentially expressed
was much larger suggesting that changes in resources inside
different environments could be themainmetabolic challenge
that tissue macrophages have to adapt to (Figure 1(c)). As it is
now suggested that macrophage key functions such as
cytokine release and phagocytosis are associated with singu-
lar metabolic signature [29], organ cues are probably major
drivers of their functions as well. From organ cues and key
transcriptional regulators, which prevail in defining macro-
phage function and responses, are and will be an exciting area
of research. As an example in Figure 1 of such complex and
recursive regulation, the metabolic differences between small
and large peritoneal macrophages seem to be defined by the
large peritoneal macrophage mandatory transcription factor
GATA6, while GATA6 expression is driven on maturing
macrophages by the availability of the key metabolite vitamin
A [11]. Interestingly, intestinal macrophages and alveolar
macrophages are predicted to rely on inositol and arachido-
nate pathways, respectively [29]. Beside adaptation to tissue
cues, macrophage activation is also consubstantial with met-
abolic rewiring. This is illustrated during macrophage activa-
tion with canonical microbial compounds such as LPS
(lipopolysaccharide), a specific TLR4 ligand (Toll-like recep-
tor 4), leading to classically activated (M1) proinflammatory
macrophage generation. This activation induces an increased
glycolysis and a disrupted Krebs cycle, in order to supply cell
metabolic adaptations and cytokine production. On the other
hand, macrophage stimulation with IL-4 (interleukin 4) gen-
erates alternatively activated (M2) anti-inflammatory macro-
phages. In this case, cells rely on fatty acid oxidation (FAO)
and oxidative phosphorylation to support the metabolic
program initiated by IL-4.

A metabolic shift observed between macrophages from
different tissues suggests that they adapt their metabolism
to fit local resources. Metabolic adaptation might also be
a way to vary functions and responses starting with the
same resources. As an example, Gata6 deficiency beside
its mandatory role for maintaining large peritoneal macro-
phages leads to an increased alternative polarization in
the remaining large peritoneal macrophages associated
with altered metabolism [9]. Here, we will discuss the
metabolic pathways in macrophages at a steady state and
during activation.

3. Metabolic Control of Monocyte and
Macrophage Functions

3.1. Glucose. The proinflammatory versus anti-inflammatory
(M1/M2) macrophage classification has been criticized as an
oversimplification of a more complex reality. Indeed, it
appears that the local tissue signaling leads to a much broader
spectrum of macrophage phenotypes in tissues. How local
microenvironment impacts macrophage metabolism and
functions is still a field of intense research. M1/M2 classifica-
tion has nevertheless allowed the demonstration of how
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Figure 1: Metabo-transcriptional network representing differences between small and large peritoneal macrophages (a), serosal and lamina
propria intestinal macrophages (b), and peritoneal (large and small) versus intestinal (serosal and lamina propria) macrophages (c). The
analysis is based on the gene expression data from Immgen Consortium. Boxes are colored according to differential enzyme expression
(green versus red) as indicated in the figure panels.
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metabolic plasticity is associated with and participates in
macrophage polarization. A pioneering work demonstrated
that LPS stimulation induces increased glucose uptake and
glycolysis into macrophages (Figure 2(a)). Members of the
Glut family mediate glucose uptake, and macrophages
express high levels of Glut1 and Glut3 but lack Glut2 and
Glut4 [31]. Among the members of the Glut family, Glut1
expression is upregulated following LPS exposure and is
required for increased glucose uptake [31–33]. Furthermore,
macrophage-specific Glut1 overexpression is associated with
increased glycolysis and pentose phosphate pathway inter-
mediates mirrored by the induction of proinflammatory
mediators such as TNFα (tumor necrosis factor-alpha) and
IL-6 [31]. This is also paralleled by increased ROS production
that might drive the proinflammatory signature of Glut1-
overexpressing macrophages. Nevertheless, another study
documented that glycolysis is crucial for macrophage inflam-
matory cytokine production, whereas Glut1 overexpression
has no detectable effect on this parameter [33]. This study
revealed that increasing the macrophage glycolytic rate has
no impact on cardiovascular disease and atherosclerosis
and in particular on a plaque area [33]. This was quite
surprising as macrophages are the main cell population
composing the plaque. Recently, the use of 18F-fluorodeoxy-
glucose- (FDG-) positron emission tomography (PET)
imaging, which provides a noninvasive measure of tissue
glycolysis, demonstrated increased glucose uptake in plaque
areas in cardiovascular disease-affected patients [34–36].
The biological significance of increased glucose incorpora-
tion in the atherosclerotic plaque still needs to be identified.
One could speculate that this increase just reflects changes
in cell populations that normally occupy the vessels or it
could be a reflection of the hypoxic nature of plaques that
favor glycolysis in multiple cell types. By contrast, in

hematopoietic tissues, enhanced glycolytic activity was also
detected and could predict the production, differentiation,
and activation of immune cells. Glut1 deficiency in hemato-
poietic precursor cells during atherosclerosis directly affects
myelopoiesis and prevents disease outcome [21].

Glucose metabolism is also central during macrophage
pathogen phagocytosis [37]. Nevertheless, the macrophage
glucose dependence during microbial infections represents
an opportunity for pathogens to defy the host immune sys-
tem. Pathogens, such as Candida albicans, consume high
amount of glucose and thus limit local glucose availability
for immune cells and notably macrophages [38]. This
dampens macrophage glucose uptake, decreases their
phagocytic skills, and limits their survival during C. albicans
infection [38]. The extent to which this competition affects
infection outcome is an important question to solve in an
already complex field. Thus, LPS induces an Hif1α-depen-
dent heightening of glycolysis in macrophages. Blocking
glucose uptake early during LPS sepsis (in a sterile setup
and therefore in the absence of bacterial glucose competition)
has been shown to blunt inflammation and sepsis. That
glycolysis impact is on macrophages is supported by similar
protection and reduction of inflammation when using
Hif1α macrophage-deficient mice [39]. Nevertheless, inhi-
bition of glycolysis later on, in an otherwise similar setup
of LPS-induced sepsis, does not impact inflammation but
is still protective. This protection is due to a modulation
of nonimmune organ adaptation to stress imposed by
inflammatory states, notably in the brain [40]. By contrast,
blocking glycolysis is lethal during influenza virus infec-
tion [40]. Further analysis revealed that blocking glycolysis
does not affect viral burden or immune cell infiltration.
Interestingly, inflammation does not seem to account for
the effect, and blocking glycolysis did not impact on the
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Figure 2: Schematic representation of M1 (a) andM2 (b) macrophage metabolic demands. CommonM1 andM2markers are indicated in (a)
and (b), respectively.
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lung tissue morphology in virus-infected animals. Blocking
glycolysis during flu infection rather decreased critical vital
processes such as body temperature and heart rate. With
respect to glucose competition between immune cells and
pathogens, it is quite fascinating that the lethality of multiple
infections might be due to appropriate immune or nonim-
mune metabolic protection chosen in response to the first
infection that was inappropriate and ultimately enhanced
the competitive metabolic advantage or destructive power
of the second infection. Such scenario could explain excess
morbidity associated with influenza infection that is often
observed during pneumococcal superinfection.

3.2. Fatty Acids. During alternative polarization in response
to IL-4 stimulation, macrophages rewire their metabolic
demands towards fatty acid oxidation into their mitochon-
dria (Figure 2(b)) [41]. Alternative macrophage polarization
relies on the transcription factors Ppar-γ (peroxisome
proliferator-activated receptor-gamma) and Ppar-δ, as well
as on their coactivator PGC1β, for an efficient metabolic
reprogramming [42–44]. Indeed, this program promotes
fatty acid oxidation and mitochondrial biogenesis. To fulfill
their metabolic needs, alternatively activated macrophages
have to generate or internalize fatty acids (FA).

3.2.1. Cell-Intrinsic Fatty Acid Metabolism. Free fatty acids
(FFA) are released through lipolysis from triacylglycerol
(TG). Lipolysis mostly occurs in adipocytes and participates
in triacylglycerol stock mobilization during exercising,
fasting, or adrenergic receptor stimulation. Adipocyte TGs
are stored inside lipid droplets. The first enzyme that breaks
triacylglycerol into diacylglycerol (DG) and a FA is named
adipose triglyceride lipase (Atgl), encoded by the Pnpla2 gene
in mice. Secondarily, the hormone-sensitive lipase (Hsl),
encoded by the Lipe gene, uses DG as a substrate and trans-
forms it into monoacylglycerol (MG) and releases one more
FA. The final step during lipolysis is controlled by the mono-
acylglycerol lipase (Mgl) and by the breaking down of MG
into FA and glycerol. Atgl expression is not strictly limited
to adipocytes and, to a lesser degree, is also detected in
cardiac and skeletal muscle cells, testis, and immune cells
such as macrophages and neutrophils [45]. Metabolomic
analysis of classically (M1) and alternatively (M2) activated
macrophages revealed MG accumulation in M2 cells,
suggesting increased lipolysis [41]. Nevertheless, Atgl−/−

peritoneal macrophages responded with the same magnitude
to IL-4 stimulation and upregulated M2 cell surface markers
to a similar extent as Atgl-sufficient control cells [41]. Inter-
estingly, the activity of Lipa (lysosomal acid lipase), another
enzyme that uses fatty material as a substrate, is increased
in IL-4-stimulated macrophages [46]. Lipa inhibition leads
to defective M2 polarization and decreased fatty acid
oxidation [41]. Additionally, macrophage deletion of Ascl1
(acyl-CoA synthetase long-chain family member 1), encod-
ing for a key enzyme involved in fatty acid synthesis that
catalyzes the thioesterification of fatty acids, is associated
with diminished inflammatory cytokine (TNFα and IL-
1β) and chemokine (CCL2) production, pointing out the
role of fatty acid synthesis during the proinflammatory

response [47]. Altogether, these data demonstrate that mac-
rophage fatty acid metabolism supports the metabolic
rewiring in response to external stimuli.

3.2.2. Cell-Extrinsic Fatty Acid Metabolism. Another option
for alternatively activated macrophages to supply their
metabolic needs is to internalize and incorporate metabolites
from the local microenvironment. This requires cell surface
receptors or transporters that recognize a specific metabolite
combined with intracellular delivery to a precise organelle
where this metabolite will eventually be included into macro-
phage metabolic circuits. During alternative macrophage
polarization, it was recently demonstrated that fatty acid
uptake via the cell membrane receptor CD36 plays a crucial
role for their metabolic adaptation [41]. CD36-dificient mac-
rophages have impaired alternative polarization suggesting
that TG uptake and delivery into lysosomes, the place where
Lipa is located, play an essential role in M2 polarization.
However, macrophages deficient in Ldl receptor (Ldlr−/−)
do not have impaired alternative polarization suggesting that
this receptor is not required for fatty acid uptake [41]. Finally,
as much as 3× 108 cells in our body die by apoptosis each
hour, and CD36 together with integrins and the TAM/
opsonin system participates in the uptake of apoptotic cells
by tissue macrophages representing a tremendous source of
metabolite input at a steady state and during apoptotic bursts
associated with development or inflammation. This is
strongly associated with metabolic changes in macrophages.
For example, it has been shown that efferocytosis triggers
mitochondrial uncoupling trough the increased expression
of uncoupling protein 2 (UCP2) [48]. Furthermore, an
increase in FAO is also observed in macrophages during
efferocytosis, which could be due to the excess of lipids
brought by dead cell membranes [48]. Interestingly, an excess
of glucose [48, 49] or changes in the environment modulat-
ing macrophage metabolism like inflammation [50] and oxi-
dative stress [51] as well as oxidized LDL [52] and hypoxia
[53] inhibit efferocytosis capacity, suggesting that the macro-
phage metabolic profile is intrinsically linked to its function
[48, 49]. Moreover, it is well known that M2 macrophages
are more efficient than M1macrophages to perform efferocy-
tosis, suggesting that different metabolic rewiring could
determine the efferocytosis ability in macrophages [50, 54].
Efferocytosis, beside its metabolic input, directly regulates
macrophage polarization toward an anti-inflammatory and
prohomeostatic phenotype. This includes transcriptomic
upregulation of lipid digestive and secretive capacity. Opti-
mal efferocytosis also indirectly prevents inflammatory sig-
nals triggered by noningested apoptotic cells. Lipid efflux
might also insure redistribution of lipids systemically via
lipoprotein export and/or to the local tissue from which the
apoptotic cell comes from.

3.3. Itaconate. In M1 macrophages, the TCA cycle is
interrupted at two points. The first breaking point occurs at
the level of isocitrate dehydrogenase 1 (Idh1), which is
strongly inhibited in LPS-stimulated macrophages [55]. As
a consequence, α-ketoglutarate levels are reduced whereas
(iso)citrate accumulates and serves as a precursor for
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itaconate synthesis. Itaconate is an antibacterial metabolite
which is among the most highly induced metabolites in
activated macrophages [55, 56]. Itaconate controls the
second breakpoint by inhibiting succinate dehydrogenase
(Sdh), which mediates oxidation of succinate into fumarate
[55, 56]. As a consequence, malate accumulates, which is
explained by the induction of the aspartate argininosuccinate
shunt [55], which happens to be essential for the increase in
nitric oxide (NO) production by activated macrophages [55].
Itaconate activity results in succinate accumulation and
decreased oxygen consumption [56–58]. Surprisingly, itaco-
nate exerts anti-inflammatory effects by limiting IL-1β, IL-
18, IL-6, and IL-12 expression and NO production [56, 58].
In mice that are deficient in aconitate decarboxylase 1 (Irg1),
the enzyme which converts (iso)citrate into itaconate, an
increase in mitochondrial respiration, a decrease in succinate
accumulation due to an increase in its conversion into fuma-
rate and malate, and an increase in proinflammatory gene
andNO production are observed [56]. Thus, itaconate appears
to be one of themaster regulators ofmetabolic reprogramming
and inflammation in macrophages [56].

Type I interferons, typically secreted during viral infec-
tion, induce Irg1 expression in macrophages and subsequent
itaconate production [59]. The newly generated itaconate
inhibits type I interferon immune response suggesting
the existence of a negative feedback loop orchestrated by
this compound. Recently, it was suggested that itaconate
also activates the transcription factor Nrf2 (nuclear factor
(erythroid-derived 2)-like 2), a key element of the anti-
inflammatory response in macrophages [59]. Nrf2 activation
follows itaconate alkylation of cysteine residues of KEAP1
(Kelch-like ECH-associated protein 1), a protein that nor-
mally associates and promotes the degradation of Nrf2.
Nevertheless, it was elegantly demonstrated that itaconate
additionally induces electrophilic stress targeting glutathione
levels and affecting cellular oxidative stress. Itaconate inhib-
ited late, but not initial, transcriptional response to LPS.
One of these early responses includes the transcription factor
IκBζ which is the major orchestrator of the secondary tran-
scriptional response. Thus, itaconate did not affect IκBζ
mRNA induction but affect IκBζ protein levels and the sub-
sequent secondary response [60]. Interestingly, IκBζ protein
regulation is Nrf2-independent and relies on the transcrip-
tion factor ATF3 (activating transcription factor 3) [60].
Importantly, in vivo administration of cell-permeable deriv-
atives of itaconate protects mice against psoriasis when
challenged with a TLR7 agonist, demonstrating a novel
potential therapeutic opportunity [60]. Further, myeloid
cell-specific Irg1-deficient mice challenged with Mycobacte-
rium tuberculosis (Mtb) showed an excessive accumulation
of neutrophils associated with decreased survival rate [61].
This shows that Irg1 and endogenous itaconate play an
important role in dampening inflammation during Mtb lung
infection. Irg1 and itaconate are also induced in perito-
neal macrophages in tumor-bearing mice [62]. Metabolic
reprogramming of peritoneal macrophages and increased
OXPHOS parallels this observation. Irg1 inhibition in perito-
neal macrophages decreases tumor progression demonstrat-
ing that this pathway could also be of therapeutic interest

in cancer [62]. In humans, branched-chain amino acid
(BCAA) catabolism has been shown to be involved in the
IRG1/itaconate axis in activated macrophages [63]. In
mice, branched-chain aminotransferase 1 (BCAT1) inhibi-
tion through the leucine analogue ERG240 administration
decreases itaconate production and macrophage infiltration
in nephrotic nephritis models pointing out to amino acids
as participants in the pivotal itaconate control of macro-
phage function [63].

3.4. Amino Acids. Amino acids are key elements in immune
cells for building proteins and nucleotides. They are also
critical metabolic intermediates that participate in a variety
of physiological processes [64]. A seminal work during the
early 1980s demonstrated that macrophage activation
stimulates amino acid utilization and glutamine in particular
[65, 66]. Here, we will illustrate the involvement of amino
acids in macrophage metabolic reprogramming by using
two examples—glutamine and arginine.

3.4.1. Glutamine. Glutamine is the most abundant amino
acid in the plasma and is internalized in macrophages via
the membrane transporter Slc1a5 (solute carrier family 1
member 5) (Figure 2(b)). In macrophages, glutamine is
converted into glutamate by the enzyme glutaminase 1
(Gls1). Glutamate is then converted into oxoglutarate to be
incorporated in the TCA cycle in the mitochondria [67].
Glutamine is involved in multiple physiological functions
including energy supply, nucleotide biosynthesis, and resis-
tance against oxidative stress. At a transcriptional level,
glutamine metabolism is highly associated with alternative
macrophage polarization upon IL-4 stimulation [55]. Short-
term glutamine deprivation of macrophages blunts, at least
partially, the increased expression of M2 markers following
IL-4-induced activation [55, 68]. This validates the involve-
ment of glutamine metabolism in M2 macrophage metabolic
adaptation. Glutamine is essential for the biosynthesis of
UDP-GlcNAc which is required for the glycosylation of
lectin or mannose receptors that are required for pathogen
recognition [55]. Glutamate is also used by M2 macrophages
to feed the TCA cycle since more than 30% of the TCA cycle
intermediates come from glutamine [55]. Therefore, whereas
glutamine is used differently in M1 and M2 macrophages, it
appears to be a key resource to support polarization and
function of both M1 and M2 macrophages.

Glutaminolysis controls macrophage M2 polarization
by regulating epigenetically the transcriptional activity of
key genes [68]. Indeed, glutamine supports alternative
polarization by favoring Jmjd3- (jumonji domain contain-
ing -3-) dependent demethylation on the promoters of M2-
associated genes. Interestingly, Jmjd3 controls the activity
of the transcription factor IRF4 (interferon regulatory factor
4), and retroviral expression of IRF4 in Jmjd3-deficient
macrophages restored normal M2 marker expression [69].
In recent years, monocytes, macrophages, and NK cells have
been shown to display a form of memory called trained
immunity. Upon infection or vaccination, those cells display
long-term changes in their functional programs that allow
increased inflammatory response upon secondary response.
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Glutaminolysis also controls the production of inflammatory
cytokines by monocytes in the context of trained immunity,
again by modulating gene methylation, a mechanism that
seems suited for long-term control of this type of innate
memory [70].

3.4.2. Arginine. Arginine is a substrate for nitric oxide
synthase (NOS) and plays a key role during NO generation.
Three different forms of NOS have been identified: NOS1
(expressed by neurons (nNOS)), NOS2 (inducible and
expressed by immune cells (iNOS)), and NOS3 (expressed
by endothelial cells (eNOS)). Macrophages express iNOS,
and this enzyme is induced after LPS or IFNγ (inter-
feron-γ) stimulation [71]. Classically activated macrophages
convert arginine into NO and citrulline (Figure 2(a)). Inter-
estingly, it was demonstrated recently that NO, through the
inhibition of mitochondrial respiration [72, 73], played a
key role in the LPS-induced shift from OXPHOS to glycolysis
in macrophages [55, 74] (Figure 2(a)). Moreover, the newly
generated NO contributes to macrophage killing of intracel-
lular bacteria and host defense against infection. Neverthe-
less, excessive and uncontrolled NO production leads to cell
toxicity and tissue damage. To avoid this scenario, redirect-
ing arginine flux away from iNOS seems to be crucial. In
alternatively activated macrophages, arginine is metabolized
by the enzyme arginase 1 (Arg1) (Figure 2(b)). This reaction
leads to the production of ornithine and urea. Ornithine is
subsequently used to generate polyamines and proline.
Proline is an important substrate for collagen synthesis and
therefore plays a key role in wound healing while polyamines
are used during cell proliferation [75, 76]. Thus, during
parasite infection, characterized by the generation of M2
macrophages and wound healing, it was expected that
macrophage-specific Arg1 deletion will play a detrimental
role. Surprisingly, macrophage-specific deletion of Arg1 led
to accelerated death during Schistosoma mansoni parasite
infection [77]. This is not due to an increased susceptibility
to infection but rather to excessive liver fibrosis. Interestingly,
macrophage arginase 1 expression is required for the control
of T cell activation and proliferation [77]. Therefore, arginine
plays a key role during macrophage activation and, when it is
used by iNOS or Arg1, determines the fate of the cell
activation. Of interest, iNOS and Arg1 can be coexpressed
and both have their own advantage over arginine processing,
with the former having higher affinity while the later showing
higher catalytic rate. Therefore, understanding this dual
expression and the context in which binding versus activity
prevails will certainly shed light on the direction of immune
cell responses.

4. Conclusion and Future Directions

Metabolism controls key macrophage functions such as
phagocytosis and efferocytosis contributing to healthy tissue
homeostatic maintenance and protection against infection
and inflammation. Diversity of macrophage functions and
responses can be modulated through cell-intrinsic metabolic
rewiring and/or cell-extrinsic environmental metabolite
change. This led to the establishment of an oversimplified

but efficient macrophage classification into classically M1
versus alternatively M2 subsets. Nevertheless, this pattern is
observed in tissue-resident macrophages at a steady state
probably reflecting on their metabolism governed by each
specific organ microenvironment. During tissue inflamma-
tion, for example, in the case of obese adipose tissue, a
switch of macrophage markers towards a proinflammatory
phenotype parallels tissue structure remodeling and
metabolite availability in the local environment. Therefore,
one is interested to control macrophage metabolic demands
and maintain their tissue homeostatic role by blocking
metabolites leading to a proinflammatory phenotype. This
requires better understanding and characterization of tissue
macrophage populations and whether conserved metabolic
pathways are present and functional in both embryonically
and monocyte-derived macrophages. Currently, with the
emergence of omics approaches, this aim seems more and
more realistic and promises that new metabolic targets
used to limit inflammation related to macrophages shall
soon be confirmed.
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