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Over time, with the increase in population and the subsequent increase in energy consumption and 
also due to the non‑renewability of fossil fuels, the study of alternative fuels has increased. One of 
these fuels is biodiesel, which is a suitable alternative to fossil fuels such as diesel and received much 
attention from researchers today. For this reason, measuring the physical properties of biodiesel 
is of great importance. Due to the high cost and time‑consuming nature of laboratory methods, 
numerical methods are used to estimate material properties. The novelty of this research was the 
use of two white box models, including Group method of data handling (GMDH) and Gene expression 
programming (GEP), which work on the basis of artificial intelligence. By using these models, two 
simple mathematical equations with high accuracy were presented to predict the surface tension of 
biodiesel. These models can be used at different temperatures and molecular weights. To do modeling, 
78 laboratory data available in the literature were gathered and the data were randomly divided 
into two groups, train and test, in a ratio of 80 and 20. The input parameters include mass fraction 
of fatty acid ethyl esters and temperature (T), and esters are divided into three groups according 
to their molecular weight: less than 200  (Mw1), between 200 and 300  (Mw2), and greater than 300 
 (Mw3). The statistical error parameters were calculated for the two models developed in this research 
and after comparing the results, it was found that the GMDH model estimates the surface tension 
of biodiesel with a higher accuracy. The average absolute relative error for GMDH and GEP models 
was reported as 0.97 and 1.89, respectively. Also, other statistical error parameters of GMDH such as 
RMSE, SD, and  R2 for the GMDH model were obtained as 0.444, 0.000233, and 0.9233, respectively. 
Moreover, sensitivity analysis showed that temperature has the highest impact on the surface tension 
of biodiesel, which is also an inverse effect. Finally, suspicious laboratory and outlier data points 
were identified using the Leverage technique. According to this analysis, only five data points were 
identified as outliers and suspicious laboratory data.
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Today, the problems caused by non-renewable energies have been widespread in the world. The production 
of greenhouse gases is due to the high consumption of fossil fuels, which makes the Earth  warmer1–3. Many 
measures have been taken to control the production of greenhouse  gases4. It exists as one of the most popular 
sources of fuel that causes less damage to  nature5. By combining fatty acid alkyl esters, biodiesel is produced. 
Transesterification of fats is carried out catalytically by different alcohols. Catalysts increase the reaction  rate6. 
The reason why biodiesel is known as a clean fuel is the presence of a small amount of sulfur in its composition, 
which reduces the production of greenhouse  gases7. Among other uses of biodiesel in diesel engines, it can be 
mentioned to increase the life of the engine due to its high  fluidity8. However, the use of biodiesel compared 
to petroleum-based fuels has disadvantages such as oxidation stability, higher viscosity, and production  cost9. 
Nowadays, due to the importance of biofuels, the focus on their properties and applications has increased, and 
many experimental relationships and modeling have been done to determine these  properties10. One of the 
important features of biodiesel is surface tension which is used in atomization, so atomization quality increases 
with the reduction of surface  tension10. Surface tension is one of the important issues in diesel fuels that affects 
economic and environmental issues.
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In the following, an overview of thermodynamic models, artificial intelligence, and experimental studies 
conducted for forecasting biodiesel and fossil fuels surface tension is presented:

At first, Queimada et al.11 established a model to estimate fuels’ viscosity and surface tension. Then, a smart 
model for predicting brine interfacial tension utilizing the least-squares method of support vector machine 
(SVM) was presented by Barati-Harooni et al.12 In this model, the inputs were water salinity, temperature, and 
pressure. Also, Rostami et al.13 presented a model using genetic programming algorithm for estimating water and 
hydrocarbon surface tension, and the value of  R2 for this model was reported as 0.91. Next, a model was presented 
by Pratas et al.14 for predicting biodiesel density with an error of 0.25–2.96%. Then a smart model was developed 
by Gahek et al.15 to approximate alkane density with an average absolute error of 0.6%. After that, a model using 
ANN methods was presented by Miraboutalebi et al.16.  R2 value and root mean square error (RMSE) for this 
model were reported as 0.95 and 2.53, respectively. Then cetane number of biodiesel was estimated by Hossein-
pour et al.17 using SVM.  R2 and RMSE values for this model were reported as 0.99 and 0.72. Then  Mostafaei18 
predicted the cetane number using the logical phase neural system. Bemani et al. developed models for estimating 
the cetane number of biodiesel based on FAME properties of experimental data. The LSSVM algorithm was used 
and coupled with three models: Genetic algorithm (GA), particle swarm optimization (PSO), and a hybrid of GA 
and PSO (HGAPSO) algorithms.  R2 values for LSSVM-GA, LSSVM-PSO, and LSSVM-HGAPSO were reported 
as 0.965, 0.966, and 0.978,  respectively19–21. Razavi et al. developed a precise model using LSSVM-PSO algorithm 
to predict biodiesel properties such as pour point, cloud point, iodine value, and kinematic viscosity based on 
fatty acid composition that the accuracy of test data of biodiesel properties are 0.99995, 0.99981, 0.99848 and 
0.99930,  respectivly22–25. Baghban et al. developed TLBO-NN and PSO-NN to improve the prediction of cetane 
number of FAMEs based on biodiesel. This study showed that the TLBO-NN was more accurate than PSO-NN 
and the R-squared and mean square of errors are 0.973 and 3.538 and 0.951 and 6.324,  respectively26. Nabipour 
et al. presented four advanced models, including Least Square Support Vector Machine (LSSVM), Radial Basis 
Function Artificial Neural Network (RBF-ANN), Multi-layer Perceptron Artificial Neural Network (MLP-ANN), 
and Adaptive Network-based Fuzzy Inference System (ANFIS), for forecasting biofuel density. These models 
leverage intermolecular interactions and the van der Waals radii of atoms in their predictions. The LSSVM model 
is more accurate than other models and the R-squared of this model is 0.847. This investigation demonstrates 
the potential efficacy of employing the LSSVM model as a proficient means of estimating biofuel density, thereby 
presenting a viable alternative to conventional thermodynamic modeling  approaches27.

In the following, studies on the biodiesel’s surface tension approximation will be reviewed. In order to predict 
the surface tension of pure FAME and biodiesel, Phankosol et al.28 presented two relations in terms of Gibbs 
free energy and, the error value of these models was reported as 1.84% and 1.21% for 10 & 8 distinct biodiesel 
FAME. Further,  Thangaraja29 proposed a relationship in the temperature range of 306–353 with 7% absolute 
error for the approximation of biodiesel and vegetable oil surface tension. The relationships presented by Miller 
and Macleod-Sugden were again examined by An et al.30 and it was concluded that the relationships presented 
by Miller have a higher performance than the Macleod-Sugden relationship. Then, in order to forecast fatty acid 
ethyl esters surface tension,  Valk31 used Brock and Rari/Olivier models and reported the following accuracies 
of 7.5% and 2.4%, respectively, for each correlation. Also, models utilizing intelligent methods to predict the 
surface tension of different oils in different temperature ranges by Melo-Espinosa et al.32 were presented. Accord-
ing to the results, it can be seen that artificial neural network (ANN) is more accurate than multilevel regression 
(MLR) in predicting surface tension. Moreover, ANN and thermodynamic models were developed by Hosseini 
et al.33 for approximation of the surface tension of 3 biodiesel and FAME at different temperatures with accura-
cies of 0.44 and 1.82%. Salehi et al.34 used machine learning methods to model the interfacial tension of  N2/CO2 
mixture + n-alkanes of oils. Their model estimated laboratory data with high accuracy with an average absolute 
relative error of 0.77%34. Also, biodiesel surface tension was predicted utilizing the models of Ceriani et al., Fer-
rando et al., and Marrero et al.35–37. Also,  Oliveira38 presented a model for predicting esters surface tension for 
a distinct temperature range by combining the gradient theory and the equation of cubic plus state (CPA). The 
accuracy value of the model for independent and temperature-dependent parameters was reported as 5.44% and 
1.5%. Some of the properties of biodiesel that have been investigated experimentally are given below:

The soybean oil biodiesel density in the temperature range of 298.15–393.15 K and pressures up to 140 MPa 
was experimentally measured by Aitbelale et al.39. Next, the surface tension of three different types of biodiesel 
was measured by  Chehtri40 at a pressure of 7 MPa and a temperature of 473 K. And finally, the surface tension, 
viscosity, and density of biodiesel were measured for an extensive temperature range by Blangino et al.41 and they 
used these data to validate their proposed models. The models presented above require accurate thermophysi-
cal properties and have long calculations and insufficient accuracy in predicting the desired parameter. Also, 
experimental studies conducted in the laboratory require a lot of time and money. Due to the great importance 
of biodiesel, we need an accurate method to predict its properties.

Other investigations have explored biodiesel production utilizing supercritical methanol (SCM), employing 
the LSSVM model and ANFIS  model42–46.

The Novelty of this research was the use of two white box models, including Group method of data handling 
(GMDH) and Gene expression programming (GEP), which work on the basis of artificial intelligence, and by 
using these models, two simple mathematical equations with high accuracy were presented to predict the surface 
tension of biodiesel, which these models are for the range different temperature and molecular weight can be 
used. The data used in this research are 78 surface tension laboratory data collected from the literature. The input 
parameters in this research were temperature and fatty acid ethyl esters mass fraction. Also, the effect of input 
parameters on the surface tension was evaluated using sensitivity analysis. Finally, the suspicious laboratory data 
and outlier data points were identified by leverage technique.
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Theory and methods
Data gathering
To approximate biodiesel surface tension, 78 laboratory data were collected from the  literature41. The statistical 
parameters related to the input data are given in Table 1. Input data includes temperature and mass fraction of 
fatty acid ethyl esters. In order to reduce the dimensions of the input data, esters are divided into three groups 
according to their molecular weight: less than 200 (Mw1), between 200 and 300  (Mw2), and greater than 300 
 (Mw3). The input parameters in the presented models and correlations are displayed with the abbreviations T, 
 Mw1,  Mw2, and  Mw3. Also, the data was divided into a 20/80 ratio for testing and training.

Gene expression programming (GEP)
GEP is a well-known Evolutionary Algorithm (EA), that uses the development of computer programs to address 
user-defined  problems47. GEP was verified to be efficient in the search for accurate and concise software. GEP is 
separated into numerous distinct sections. For simplicity, These are organized into eight groups in this survey. 
GEP includes encoding design, design of the evolutionary mechanism, design of adaptation, design of coopera-
tive coevolution, design of continual creation, design of parallel systems, theoretical research, and, last but not 
least, design of the applications of GEP. The design of the encoding has a significant impact on GEP performance, 
as it determines the research space of genotypes and phenotypes. Traditional evolutionary mechanisms GEP 
adopts multiple operators based on genetic algorithm (GA), such as random mutation and crossing a point, to 
make chromosomes  evolve48. Adaptation design refers to the design of adaptive control mechanisms for GEP 
parameters. It’s important to note that the GEP incorporates a number of control variables, such as population 
size, chromosomal length, and mutation rate. EAs are frequently enhanced with cooperative coevolutionary 
(CC) design when dealing with complex optimization issues. An optional GEP operator called constant crea-
tion searches for numerical constants to build precise GEP solutions. Further GEP processing time reduction by 
integrating parallel design. Theoretical studies of GEP have received the most attention, including the estimation 
of convergence speed and the proof of  convergence49. In the GEP strategy, an evolutionary algorithm is used to 
determine the most effective mathematical  format47,50. As a result, the GEP approach was used in this investiga-
tion to relate the inputs to the output of how much asphaltene precipitated. The evolutionary algorithm (EA) 
is used to find the optimum solution for optimization problems. This is comparable to characteristic evolution. 
GEP is really thought of as an improved form of Genetic Programming (GP), which was created by  Koza50,51. 
It addressed problems with GP, such as the use of just a few regression  techniques47,50. Like other evolutionary 
algorithms, GEP searches for the optimum expression technique by formalizing and representing alternative 
solutions using chromosomes. In particular, the Expression Tree (ET), a crucial element, is introduced by GEP. 
The chromosomes are transformed into real ET contenders. Genes having a head and terminals containing func-
tions are necessary for GEP. There is a set number of symbols for each gene that stand in for various operators, 
such as + , /, and log, as well as a terminal set, such as x, y, and  z50.

Algorithm framework of GEP has many steps, and each step is explained separately in the next paragraph. 
The flowchart of the algorithm framework of GEP is shown in Fig. 1.

The initialization step aims to create the initial population and create a set of chromosomes at random. 
Depending on the kind of element, each fixed-length string’s chromosome in the initial population is randomly 
assigned to one of the elements. In fitness assessment, all of the population’s chromosomes have their fitness 
values assessed. The performance of the algorithm is significantly impacted by the problem-specific fitness evalu-
ation function. Choice and Replication to create a new population for the following generation that this phase 
picks the population’s superior chromosomes. Many different selection techniques should be employed, such 
as the tournament selection strategy and the roulette wheel selection strategy, because these strategies perform 
better when addressing difficult  problems49,52. Every component on each chromosome is randomly altered with 
a preset mutation rate (pm) during the mutation process, according to the mutation  step53. The transposition 
step tries to swap out a section of the chromosome’s consecutive elements for a segment of the same chromo-
some’s consecutive elements. It consists of three sub-steps that are each carried out with a probability of pis, pris, 
and pg. A section of consecutive elements in the chromosome is known as an insertion sequence (IS). An IS is 
chosen at random in this step’s sub-step54. Then, a copy of the IS is generated and randomly placed into a gene’s 
head. So, the name of this step is IS-transposition. The RIS-transposition step has a group of subsequent items 
that begins with a function known as a root insertion sequence (RIS)55. So, genes’ heads are used to select RISs. 

Table 1.  Statistical parameters of the data utilized in the research to approximate biodiesel surface tension. 
The third to fifth columns of the following table represent the mass fraction of esters which molecular weight is 
less than 200, between 200 and 300, and more than 300, respectively.

Temperature, K Mw < 200 200 < Mw < 300 Mw > 300 ST, mN/m

Average 324.432 0.005 0.985 0.010 28.754

Median 318.150 0.000 0.987 0.013 28.500

Mode 313.150 0.000 1.000 0.000 28.500

Kurtosis − 0.980 36.593 28.997 13.355 − 0.663

Skewness 0.551 6.131 − 5.247 2.494 0.260

Maximum 353.150 0.188 1.000 0.064 32.180

Minimum 303.150 0.000 0.812 0.000 25.970
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The chromosome, the gene that will be changed, the start location of the RIS, and the length of the RIS are all 
determined at random in this sub-step56. As part of the IS transposition process, after a RIS is chosen, a copy of 
the RIS is created and put into the root of the chosen gene. In gene transposition, the chromosome that will be 
changed is picked at random. Then, a randomly chosen gene except for the first gene from the predetermined 
chromosome is picked and moved to the start of the  chromosome57. The purpose of the recombination process 
is to create two offspring by exchanging the gene information from the two parent chromosomes. Gene recom-
bination involves the random selection of a gene from one  parent58. The chosen gene is then switched for its 
counterpart from the other parent, producing two children. The three sub-steps in the recombination are carried 
out with a probability of as follows: pc1, pc2, and pcg. A new population, similar in size to the parent population 
is produced following the recombination procedure. The evolutionary process continues until the termination 

Figure 1.  The flowchart of the algorithm framework of GEP.
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conditions (such as producing a good result or reaching the maximum generation) are met, at which point the 
algorithm moves on to the fitness evaluation  phase49.

GEP mechanism is briefly described as follows:
In the GEP algorithm, predictive models are generated through the use of genetic ideas. First, an initial popu-

lation of predictive models is randomly generated as a set of genetic members. Then, these models are evaluated 
based on their performance in predicting the training data. Models that perform better are more likely to survive 
and reproduce in the next generation, while models with poorer performance are less likely to  survive59. This 
iterative process continues to arrive at new generations of models that perform better in predicting new data. 
Also, in each generation, genetic operators such as mutation and combination are used to increase population 
diversity and generate new models with different combinations of features. This process ensures improved per-
formance and accuracy of models in predicting new  data49.

Advantages and disadvantages have been reported for the GEP model, which are described as follows:
Advantages of GEP model:

• The ability to generate prediction models with complex structures and the ability to explore the space of 
different models.

• The possibility of using genetic operators to improve and adapt models to input data.
• Ability to quickly adapt and change models in response to changes in data or issues under investigation.

Disadvantages of the GEP model:

• Complexity in interpreting the resulting models, especially when using more complex structures.
• The need to adjust genetic parameters appropriate to the problem in order to improve the performance of 

the model.
• The possibility of encountering problems related to lack of training data or incorrect selection of genetic 

parameters that can lead to inferable  models60.

Group method of data handling (GMDH)
Basically, Volterra-Kolmogorov-Gabor (VKG) polynomials (Eq. (1)) are used to model complex  systems61.

where x =  x1,x2,…,xn are the input vectors, y is the output of the model, and  ai are polynomial constants. VKG 
polynomials are estimated by means of quadratic polynomials. These quadratic polynomials are built based on 
binary mixtures of network inputs. Utilizing knowledge as a learning technique, the GMDH algorithm has been 
introduced to model complex  systems61,62.

The GMDH neural network has the construction of a multi-layered and forward network and contains a set 
of neurons that are formed by connecting dissimilar input couples to complete a second-degree polynomial. 
Every layer in this network contains one or more processor parts, every of which has two inputs and one output. 
These parts truly play the role of model formation constituents and are presumed in the form of a second-degree 
polynomial (Eq. (2))63.

The unidentified parameters of GMDH algorithm are the polynomial constants of Eq. (2). In order to estimate 
the output value  yi for each input vector x =  xi1,xi2,…,xin based on Eq. (6), the mean square error of Eq. (3) must 
be  minimized60.

To find the minimum error value, the partial derivative of Eq. (3) is used. By replacing Eq. (2) in this partial 
derivative, a matrix equation (Aa = y) is gained. In the equation, a =  (a0,a1,a2,a3,a4,a5) and Y =  (y1,…,ym)T is matrix 
A according to Eq. (4) 50.

A solution method for this matrix equation (Aa = y) is to use the Singular Value Decomposition (SVD) 
method. If using the SVD method, the unknown α is estimated from Eq. (5).

In Eq. (1),  AT is the term of matrix A. By utilizing the method, the solution of the unidentified can be com-
puted in any case. As long as the matrix  (ATA) is not invertible, the Thikhonov method will be utilized to resolve 
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the equation.64. In the design of GMDH neural network, the goal is to avoid the growth of network divergence 
and to relate the shape and construction of the network to one or more numerical parameters, so that the network 
structure changes with the change of this parameter. To generalize GMDH neural networks, the condition of 
using the conjoining layer in building the next layer should be removed. This form of neural network is called 
GS and it uses all the former layers (including the input layer) to build a new  layer65.

The structure of the GMDH model is shown in Fig. 2.
Briefly, the mechanism of GMDH is written in several lines:
In the GMDH algorithm, simple mathematical models are automatically created by the algorithm when the 

process starts. These models include linear combinations of input variables. Then, by evaluating the perfor-
mance of each of these models on the training data, models that show better performance than other models are 
 selected50. The selected models are then combined with each other to create more complex models with better 
predictive ability. This process continues iteratively and models with better performance are added to the new 
models. Finally, the model with the best performance on the test data is selected to predict the new data more 
accurately. This process continues to improve the performance and prediction accuracy of the models to provide 
an optimal final  model65.

The GMDH model has advantages and disadvantages, including the following:
Advantages of GMDH model:

• The ability to create predictive models with variable complexity and the ability to adapt to different input 
data.

• Ability to automate the process of selecting and combining models based on their performance.
• Good performance in cases where there are more complex relationships between  variables66.

Disadvantages of the GMDH model:

• The need for larger training data volumes in order to create more accurate models.
• High computational processing to combine and upgrade models, which may be time-consuming and com-

plex.
• The complexity of the resulting models may be difficult to interpret for non-expert  users67.

Results and discussion
In the research, using GMDH and GEP, two models were developed to approximate biodiesel surface tension with 
high accuracy. The proposed correlations in the research to forecast biodiesel surface tension are presented in 
Table 2. The details related to each model, including the execution time and hyper-parameters set to achieve the 
desired accuracy, are listed in Table 3. As mentioned previously, model input parameters include 78 laboratory 
data including temperature and mass fraction of fatty acid ethyl esters and esters are divided into three groups 
according to their molecular weight: less than 200  (Mw1), between 200 and 300  (Mw2), and greater than 300 
 (Mw3). Classification of mass fractions is one of the methods of reducing the dimensions of input parameters, 
and input parameters with similar characteristics are placed in one category, and the similarity of the input 
parameters in this research was considered molecular weight. Among 78 laboratory data, 63 data were designated 
as train subset, and 15 points were randomly selected as test data for checking the precision and perfection of 
the presented models.

Determinant error parameters
The precision of the presented models was assessed utilizing the statistical parameters introduced  below68:

Average percent relative error:

Root mean square error

(6)APRE =
100

N

N∑

i=1

(
STact

− STcal

STact

)

T

Mw1

Mw2

Mw3

N2
N1

ST

Figure 2.  GMDH framework to approximate biodiesel surface tension.
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Average absolute percent relative error

Standard deviation

R-squared

In the correlations that were presented above, ST, ST  and N represent the surface tension, average surface 
tension and the number of data, respectively, and the predicted and experimental surface tension are shown 
with superscript cal and act.

Determinant error diagrams
One of the methods of evaluating the presented models is the use of error-determining diagrams. The error-
determining diagrams in this research include the relative error distribution diagram, cross-plot diagram, and 
bar chart diagrams. In the relative error distribution diagram, the deflection of the data from the zero error line 
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Table 2.  The presented correlations in the research to approximate biodiesel surface tension using GEP, and 
GMDH networks.

Models Equation

GEP
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GMDH

N2 = 38.5165+ T ×Mw1 × 27.7516− T ×Mw3

× 2.85178− (T)2 × 9.99647× 10
−5

−Mw1

× 8704.75+ Mw3 × 1066.18− (Mw3)
2
× 2869.59

N1 = 2.08003+ T ×Mw1 × 43.664−Mw1 × 45111.7

+Mw1 × N2× 1094.33+ (Mw1)
2
× 15771.5+ N2× 0.924756

ST = − 18.1792+Mw3 × N2 ∗ 93.2258−Mw3 × N1

× 93.3023− N2× N1× 10.0947+ N2
2
× 5.03386

+N1× 2.32169+ N1
2
× 5.03685

Table 3.  Hyper-parameters of the established models in the research to approximate biodiesel surface tension.

Models Hyper-parameters of the models Run time (min)

GMDH Number of folds = 30 Neuron imputs = 3 Limit neuron complexity to = 6 Max. number of layers = 3 Initial layer width = 2 2

GEP Chromosomes = 110 Genes = 4 Head size = 50 Tail size = 51 Dc size = 51 Gene size = 152 4
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is shown. In the cross-plot diagram, the degree of deflection of the data from the X = Y line is shown, and in both 
diagrams, the degree of compatibility of the experimental data with the predicted data by the model is checked.

Precisions and validities of the models
To check the accuracy of the developed models in this research, the statistical parameters were presented in 
Table 4, which shows the accuracy of these models. In this table, the training, test and total error values for both 
proposed models in this research were calculated. As mentioned in the table, the AAPRE value for the GMDH 
model is the lowest value and is equal to 0.97%, which indicates the high accuracy of this model. Also, other 
error parameters for this method are as follows:

It should be noted that between two introduced models, the GEP model reports a higher error than GMDH 
with AAPRE equal to 1.89%. Considering the amount of AAPRE for the GMDH model, which is equal to 0.97%, 
it can be concluded that this model has a high ability to forecast biodiesel surface tension.

It is also clear that the amount of SD for two models reports a small value, which shows the robustness and 
accuracy of the presented models. Also, the values of APRE for two models, GMDH and GEP, are estimated to 
be − 0.07 and 0.13, respectively, and according to these values, it can be said that no overestimate or underestimate 
occurred in any of the models.

In the following, the accuracy of the established models is checked in the form of a diagram. Figure 3 displays 
the cross-plot diagram for the developed models in the research for two training and testing data sets. As it is 
clear, both models report high accuracy and their  R2 values are close to 1. According to the cross-plot diagram, 
the laboratory data have a good match and overlap with the predicted data. Also, the density and high accumu-
lation of data around the line with a slope of 1 are high, and this indicates the high accuracy of the presented 
models in this research. Also, another diagram has been drawn to check the accuracy of the models in Fig. 4 
called the relative error distribution diagram. In this diagram, it can be perceived that the dispersion of the data 
around the zero error line is low and the density of the data around this line is high. The highest density around 
this line is related to the GMDH model, which has high accuracy. It is also worth mentioning that there was no 
over-fitting or under-fitting in these models. When the accumulation of data is high below the zero error line, 
it can be understood that the model has under-fitting, and also when the accumulation of data is above the zero 
error line, the model predicts the value of the desired parameter much more than the experimental data.

Also, in order to compare the models presented in this research with the existing models in the literature to 
measure biodiesel surface tension, Table 5 was  presented69,70. The statistical parameter used to compare these 
models was considered  R2. It is clear that both presented models in this research are more precise than the models 
in the literature and their  R2 value is close to 1.

APRE = − 0.07, RMSE = 0.44093, SD = 0.000233, R2
= 0.9233

Table 4.  Statistical error parameters to measure the precision of the presented models in this research to 
approximate biodiesel surface tension.

Static error parameters

Models

GEP GMDH

Training set

AAPRE 1.88 0.98

APRE − 0.08 − 0.16

RMSE 0.681554 0.429125

SD 0.000569 0.000228

R2 0.824 0.9266

Number of data points 63 63

Test set

AAPRE 1.90 0.95

APRE 0.99 0.30

RMSE 0.659574 0.4874

SD 0.000132 0.000274

R2 0.8484 0.9168

Number of data points 15 15

Total

AAPRE 1.89 0.97

APRE 0.13  − 0.07

RMSE 0.677046 0.44093

SD 0.000479 0.000233

R2 0.831 0.9233

Number of data points 78 78
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Compatibility and overlapping of laboratory data and data predicted by the model are of great importance. 
In order to check this purpose in detail, Fig. 5a,b was presented. In this diagram, the horizontal axis represents 
the index of data points and the vertical axis represents the experimental and predicted surface tension by the 
GMDH. Also, Fig. 5a is for checking the training data and Fig. 5b is for checking the compatibility of the test data. 
Finally, it can be concluded that the data predicted by the GMDH follows the same trend as the laboratory data.

In order to specify the data that report the highest amount of absolute error, a three-dimensional diagram was 
used. Figure 6 shows a cumulative chart for the models developed in this research to compare their efficiency 
and accuracy. The absolute error of each model is shown on the X-axis of this diagram, and the Y-axis shows the 
cumulative frequency. In this graph, the steeper the slope of the graph and converges towards the Y axis, the less 
error the model reports. According to the explanations mentioned and according to this graph, the line related 
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Figure 3.  The cross-plot diagrams of the presented models in this research for estimating the surface tension of 
biodiesel.
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Figure 4.  The relative error distribution diagram of the presented models in this research.

Table 5.  Comparing the precision of the developed models in the research with the presented models in 
literature to approximate biodiesel surface tension.

Models Accuracy(R2)

Kay’s mixing rule 0.627

Dalton mass-average method 0.6462

UNIFAC69 0.8483

GMDH 0.9233

GEP 0.831
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to the GMDH model reports an accuracy of about 4% for 95% of the data. Also, according to the graph related 
to the GEP model, it can be found that this model reports an error of 4% for 80% of the data.
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Figures 5.  Comparison between the laboratory data of surface tension of biodiesel with the data predicted by 
the GMDH model for (a) training and (b) testing sets.
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Trend analysis
In general, liquids’ surface tension reduces with growing temperature and reaches zero when the critical tempera-
ture is reached. The cause for decreasing surface tension with increasing temperature is that when the temperature 
rises, the kinetic energy of the molecules increases and leads to a diminution in the energy of attraction between 
 molecules71. As it is clear in Fig. 7, with the increase in temperature, the value of surface tension decreases and 
the data predicted by the model follow the same trend as the laboratory data and have high overlap and accuracy.

Sensitivity analysis
In order to check the effectiveness of the output of the most accurate model in this research of the input param-
eters, sensitivity analysis is used. The basis of this method is to use the relevancy factor  function64. The purpose of 
this function is to find the effect of inputs on the output, and the values obtained by this function are between − 1 
and 1, where the positive value indicates the direct behavior of the input with the output, while the negative value 
indicates the inverse behavior of the input parameter with the  output67. The relevancy factor is measured based 
on the relationships presented  below59.

Inpk,i and Inpk represent the ith and kth average values of the input, respectively. In this relationship, ST 
represents the predicted value of surface tension and ST  represents the average value of surface tension. Also, 
k can be any of the input parameters including temperature or mass fractions. The outcomes of the mentioned 
method are given in Fig. 8. According to the diagram, temperature has the highest relevancy factor, and it can 
be concluded that surface tension is more affected by temperature than other input parameters, and the nega-
tive value of temperature indicates the inverse effect of temperature on surface tension. Also, the mass fractions 
related to esters, esters with molecular weight of less than 200 have the greatest effect, and esters with molecular 
weight of more than 300 report the least effect on surface tension.

Detection of outliers and suspected data
William’s chart was used to find outlier data and suspicious experimental data. In the chart, the horizontal axis 
indicates Hat values and the vertical axis demonstrates the value of standardized residuals. How to calculate the 
cap and Standardized Residuals is as  follows60,67:
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Figure 7.  Investigating changes in biodiesel surface tension at different temperatures using laboratory data and 
predicted data by the GMDH method.
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In Fig. 9, the vertical line drawn in the middle of the graph represents the  Hat*, which is determined by the 
value of the  Hat*of outlier data. According to the figure, it is clear that only three data points of their hat are 
more than the  Hat* and they are out of the applicable range of the model. This shows the uniformity and validity 
of the dataset used, as well as the reliability of the models provided by this dataset. Also, suspicious laboratory 
data are data that their standardized residuals are out of the range of 3– − 3. According to the graph, only three 
data points from the dataset have been identified as suspicious laboratory data. It can also be seen that there is a 
large amount of data within the range of the model validity area and reliability, and their Hats are less than the 
 Hat*, and their standardized residuals are between 3 and − 3.

Conclusions
It is clear that one of the sources of clean fuels for energy production is biodiesel. For this reason, the importance 
of this fuel is clear to everyone, and measuring its properties is of considerable importance. In this research, 
the surface tension of biodiesel was approximated by GMDH and GEP methods. The input parameters include 
mass fraction of fatty acid ethyl esters and temperature (T), and esters are divided into three groups according 
to their molecular weight: less than 200  (Mw1), between 200 and 300  (Mw2), and greater than 300  (Mw3). The 
advantage of this model compared to the presented models in the literature is the higher accuracy and ease of 
use of these models. The presented models in this research are white boxes and are available for use, while the 
presented models in the literature are all black boxes and special software and codes are needed to use them. 
After performing calculations to check the accuracy of the presented models, it was concluded that the GMDH 
model with the value of AAPRE = 0.97% and  R2 = 0.9233 has higher accuracy than the GEP method. Also, the 
accuracy of the presented models in this research was checked using the error-determining diagram including 
the cross-plot diagram and the relative error distribution diagram, in which satisfactory results were observed. 
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Then, the surface tension behavior of biodiesel was investigated at different temperatures and it was concluded 
that the surface tension of biodiesel decreases with increasing temperature, which was well predicted by the 
model. As well as that, the effect of input parameters on the surface tension obtained from the GMDH method 
was investigated and it was found that the maximum effect of the input parameters on the surface tension of 
biodiesel is related to temperature. Finally, only five data points were identified as outliers and suspicious labora-
tory data using the Leverage technique.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon reasonable request.
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