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TP53 mutated AML subclones exhibit engraftment in a humanized
bone marrow ossicle mouse model
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Dear Editor,
Despite extensive efforts to develop novel therapies,

the prognosis of patients with acute myeloid leukemia
(AML) is still poor. One of the reasons is the genetic
heterogeneity of AML with the majority of patients
exhibiting distinct mutational subclones and diverse bio-
logical characteristics [1, 2]. TP53 mutated AMLs are
frequently resistant to intensive treatments and we recent-
ly showed that subclonal TP53 mutations confer an equal-
ly devastating prognosis [3]. This observation lead us to
hypothesize that TP53 mutated subclones display charac-
teristics of leukemic stem cells (LSCs) thus contributing
to relapse or resistant disease. We, therefore, tested LSC
properties of these subclones in a recently developed,
highly sensitive humanized bone marrow (BM) ossicle
xenotransplantation mouse model [4, 5].

Patient specimens, experimental methods, and ethical
approvals are described in detail in the Supplementary
Data. Briefly, BM-derived mesenchymal stromal cells
(MSCs) from healthy donors were expanded in vitro and
subcutaneously injected into four sites of immunodeficient

NOD/SCID/γnull (NSG) mice. These MSCs underwent en-
dochondral ossification leading to the formation of a hu-
manized BM ossicle microenvironment. We transplanted
three diagnostic, T cell depleted AML specimens into
ossicle-bearing NSG mice either by tail vein or direct
intraossicle injection. Two specimens showed subclonal
TP53 mutations with a variant allele frequency (VAF) of
<20%, one a clonal TP53 mutation serving as control
(Supplementary Table 1). Mice were sacrificed 16–
18 weeks post transplantation and humanized ossicles as
well as mouse BM were analyzed for the engraftment of
human leukemia. Leukemia engraftment was analyzed by
multicolor flow cytometry, and different engrafted cell
populations were sorted based on the expression of
hCD45, hCD33 and hCD19 (Supplementary Fig. 1).
gDNA of sorted cells was analyzed for patient-specific
TP53 and cooperating mutations using high-resolution mu-
tation profiling allowing for the detection of mutations
with a VAF of <0.1% [6].

All three AML specimens showed engraftment in hu-
manized ossicles as well as mouse BM. However, human
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cells preferentially engrafted in the humanized ossicle mi-
croenvironment (Fig. 1a, Supplementary Fig. 2). For both
AML samples with subclonal TP53 mutations, CD33+ leu-
kemic cells constituted the predominant cell population
within the graft. Interestingly, differentiation into CD19+
B-lymphoid cells was also observed and the subclonal
TP53 mutations could be detected in both, the engrafted
myeloid and lymphoid compartments (Figs. 1b, c;
Supplementary Figs. 3,4; Supplementary Tables 2,3).
These data indicate that subclones with TP53 mutations
reveal characteristics of LSCs and pre-leukemic hematopoi-
etic stem cells (pHSCs) being in line with our previous re-
port on clonal TP53 mutations in AML [7]. Stem cell fea-
tures may contribute to the fact that AML patients with
subclonal TP53mutations do also face an adverse prognosis
since LSCs and pHSCs are considered less vulnerable to
cytotoxic therapy ultimately giving rise to relapsed or resis-
tant disease [8]. Similarly, expansion of clones with TP53
aberrations was also shown in murine models exposed to
genotoxic stress [9, 10]. Finally, our data re-emphasize the
usefulness of the humanized BM ossicle mouse model, par-
ticularly for the engraftment of small myeloid clones.
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Fig. 1 Engraftment of TP53
mutated AML specimens in a
humanized bone marrow ossicle
mouse model. a, Median human
engraftment of AML specimens
following tail vein injection in
humanized bone marrow ossicles
and mouse bone marrow of three
mice 16 weeks post
transplantation. b,c, Engraftment
of two AML specimens with
subclonal TP53 mutations. The
left panels depict human
hematopoietic cells being
hCD45+ and HLA-ABC+ and
sorted into CD33+ myeloid and
CD19+ B-lymphoid cells. The
right panels depict variant allele
frequencies (VAFs) of the partic-
ular TP53 and cooperating muta-
tions in the respective compart-
ments. Error bars denote 95%
confidence intervals.
Abbreviation: BM, bone marrow
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