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ABSTRACT
Objective  The benefits of a low-salt diet for patients 
with chronic kidney disease (CKD) are controversial. We 
conducted a systematic review and meta-analysis of the 
effect of a low-salt diet on major clinical outcomes.
Design  Systematic review and meta-analysis.
Data sources  MEDLINE by Ovid, EMBASE and the 
Cochrane Library databases.
Eligibility criteria for selecting studies  We included 
randomised controlled trials (RCTs) and cohort studies 
that assessed the effect of a low-salt diet on the renal 
composite outcomes (more than 50% decline in estimated 
glomerular filtration rate (eGFR) during follow-up, doubling 
of serum creatinine or end-stage renal disease), rate of 
eGFR decline, change in proteinuria, all-cause mortality 
events, cardiovascular (CV) events, and changes in systolic 
blood pressure and diastolic blood pressure.
Data extraction and synthesis  Two independent 
researchers extracted data and evaluated their 
quality. Relative risks (RRs) with 95% CIs were used 
for dichotomous data. Differences in means (MDs) or 
standardised mean differences (SMDs) with 95% CIs 
were used to pool continuous data. We used the Cochrane 
Collaboration risk-of-bias tool to evaluate the quality of 
RCTs, and Newcastle–Ottawa Scale to evaluate the quality 
of cohort studies.
Results  We found 9948 potential research records. After 
removing duplicates, we reviewed the titles and abstracts, 
and screened the full text of 230 publications. Thirty-three 
studies with 101 077 participants were included. A low-
salt diet produced a 28% reduction in renal composite 
outcome events (RR: 0.72; 95% CI: 0.58 to 0.89). No 
significant effects were found in terms of changes in 
proteinuria (SMD: −0.71; 95% CI: −1.66 to 0.24), rate of 
eGFR (decline MD: 1.16; 95% CI: −2.02 to 4.33), risk of 
all-cause mortality (RR: 0.92; 95% CI: 0.58 to 1.46) and CV 
events (RR: 1.01; 95% CI: 0.46 to 2.22).
Conclusion  A low-salt diet seems to reduce the risk for 
renal composite outcome events in patients with CKD. 
However, no compelling evidence indicated that such 
a diet would reduce the eGFR decline rate, proteinuria, 
incidence of all-cause mortality and CV events. Further, 
more definitive studies are needed.
PROSPERO registration number  CRD42017072395.

INTRODUCTION
Chronic kidney disease (CKD) has become 
an important global public health burden. 

Dietary interventions aimed at delaying the 
CKD progression and reducing complications 
play a crucial role in its management. Dietary 
sodium restriction can augment the antipro-
teinuric effects of ACE inhibitors (ACEIs)/
angiotensin receptor blockers1 and decrease 
blood pressure (BP).2 In the 2021 Kidney 
disease improving global outcomes (KDIGO) 
guidelines for glomerulonephritis, reducing 
dietary sodium intake to <2 g/day is a primary 
tenet for controlling BP and oedema and 
improving urinary protein excretion inde-
pendently of medications. However, it is 
unclear whether these effects translate into a 
significant total risk decrease in patients with 
CKD, including kidney failure events, cardio-
vascular (CV) events and all-cause mortality. In 
the Chronic Renal Insufficiency Cohort Study, 
which recruited patients with an estimated 
glomerular filtration rate (eGFR) 20–70 mL/
min/1.73 m2 depending on age, in contrast 
to the lowest quartile of urinary sodium excre-
tion (<116.8 mmol/24 hours), high urinary 
sodium excretion (>194.6 mmol/24 hours) 
was related to a 54% risk increase in end-stage 
renal disease (ESRD) or 50% decrease in 
eGFR and with a 43% risk increase in all-cause 
mortality.3 However, other cohort studies have 

Strengths and limitations of this study

	► This is the first meta-analysis of the effect of a low-
salt diet on hard clinical outcomes, such as renal 
composite outcomes, all-cause mortality and car-
diovascular events in patients with chronic kidney 
disease.

	► We included cohort studies and randomised con-
trolled trials without language restriction, and 
screened reference lists from included articles, max-
imising the number of studies included in our review.

	► The existence of significant heterogeneity may re-
strict the explanation and clinical application of the 
results.

	► Confounding factors in the observational studies 
cannot be ignored, which might affect the results of 
the meta-analysis.
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suggested that sodium intake does not affect the progres-
sion of CKD to ESRD or eGFR decline.4 5 Furthermore, in 
one study, restricting salt intake to <6 g/day was related to 
an increased risk of all-cause mortality and CV mortality 
in haemodialysis patients, resulting in an L-shaped asso-
ciation curve.6 In the NHANES II Study, which recruited 
7154 community elderly people in the USA, restriction of 
sodium intake to <2.3 g daily resulted in increases of 37% 
in CV mortality and 28% in all-cause mortality compared 
with individuals whose sodium intake was >2.3 g daily for 
more than 13.7 years of follow-up period.7 Evidence from 
randomised controlled trials (RCTs) of the effect of a low-
salt diet in patients with CKD on kidney failure events, CV 
events and all-cause mortality is controversial. It is hard to 
make clinical strategy based on results from these studies, 
considering their small sizes, highly selected patients, 
short follow-up period and short assessment of hard 
clinical outcomes. Thus, the effect of dietary salt reduc-
tion on clinical endpoints in patients with CKD remains 
unclear. We performed this systematic review of relevant 
clinical studies and evaluated the effect of a low-salt diet 
on renal outcomes, all-cause mortality and CV events in 
patients with CKD.

MATERIALS AND METHODS
Data sources and retrieval strategy
We performed this systematic review following a prespec-
ified protocol registered at the International Prospective 
Register of Systematic Reviews (online supplemental file 
1),8 and reporting was performed in accordance with 
Preferred Reporting Items for Systematic Reviews and 
Meta-analyses guidelines.9 A comprehensive search was 
conducted using the following databases: MEDLINE by 
Ovid (1946–July 2021), EMBASE (1966–July 2021) and 
Cochrane Central Register of Controlled Trials (no date 
limitation), with related keywords and medical subject 
headings that included all spellings of “CKD”, “RCT”, 
“Cohort Studies”, “Sodium Chloride”, “Sodium”, and 
“Sodium-Restricted” (see online supplemental file 2 
for full search terms). Studies were considered without 
any language restriction. To ensure an overall literature 
search, we also screened reference lists from included 
studies. The ​ClinicalTrials.​gov website was also searched 
for ongoing, but unpublished studies in this field.

Study screening and outcome evaluation
We included data from RCTs and cohort studies in which 
a low-salt diet was given to adults with CKD (as defined by 
the KDIGO 2012 Clinical Practice Guideline for the Eval-
uation and Management of CKD) compared with usual 
therapy or different levels of salt intake. Salt reduction 
was defined as that recommended by guidelines: sodium 
<2.3 g/day (<100 mmol sodium, <6 g salt), or as defined 
by the authors of the study.

Predefined outcomes that contained analysable data 
were as follows: renal composite outcome events, defined 
as more than 50% decline in eGFR from baseline during 

follow-up,10 doubling of serum creatinine or ESRD; the 
rate of change in eGFR per year; changes in urinary 
protein or urinary albumin during follow-up, including 
urinary protein excretion, urinary albumin excretion 
and urinary albumin/creatinine ratio; all-cause mortality 
events; CV events, defined as a composite, including 
fatal or non-fatal myocardial infarction, fatal or non-fatal 
stroke, coronary artery revascularisation, CV disease and 
CV death; and changes in systolic blood pressure (SBP) 
and diastolic blood pressure (DBP).

Data extraction and quality estimation
Two independent reviewers (HS and XS) extracted data 
and assessed their quality according to the prespecified 
protocol. Disagreements were resolved by a third reviewer 
(LW). Data from all eligible studies were extracted into a 
spreadsheet. The data sought included characteristics of 
studies (study type, randomisation method, follow-up time, 
withdrawals/dropouts), baseline patient traits (age, sex, 
baseline eGFR and baseline BP), intake of salt and outcome 
events.

We used Cochrane Collaboration risk-of-bias tool11 to 
assess all potential sources of bias for the included RCTs. 
Trials were assessed as being at low, some concerns or high 
risk, and the overall risk of bias generally corresponded to 
the worst risk of bias in any of the domains. However, if a 
study was judged to have some concerns about risk of bias 
for multiple domains, it might be judged as being at high 
risk for bias overall. We used the Newcastle–Ottawa Scale 
(NOS) checklist to assess the quality of cohort studies. The 
NOS contains eight items, categorised into three dimen-
sions: selection of cohorts, comparability of cohorts and 
assessment of outcome.12 A star system is used for semiquan-
titative assessment of study quality, such that the highest 
quality studies are awarded a maximum of one star for each 
item, except the item related to comparability, which can be 
assigned two stars. The NOS ranges from zero to nine stars.

Data synthesis and analyses
When dichotomous outcome data from individual trials 
were analysed, relative risks (RRs) and 95% CIs were used. 
If the RR and 95% CI for an individual study were unavail-
able in the original article, we calculated them using event 
numbers extracted from each study before data pooling. 
In calculating the RR values, we used the total number of 
patients randomised in each group as the corresponding 
denominator. Continuous outcome data from individual 
trials were analysed using mean differences (MDs) with 
95% CIs to pool eGFR, and standardised mean differences 
(SMDs) with 95% CIs were used to pool the proteinuria or 
albuminuria data. When continuous outcome data were 
analysed, the change in MD between baseline and end of 
treatment was used. If these data were not available in the 
studies, we calculated using correlations estimated from 
other included studies that had a similar follow-up and 
reported their results in considerable details according to 
the imputed formulation and its related interpretations in 
the Cochrane Handbook.13
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Given the poor stability of the DerSimonian-Laird 
procedure for a small number of studies,14 we used the 
empirical Bayes procedure15 to estimate all outcomes. 
We also used DerSimonian-Laird random-effects model16 
and restricted maximum likelihood approach17 to assess 
the summary effects as part of the sensitivity analyses. 
Considering the inevitable heterogeneity among studies, 
subgroup, meta-regression and sensitivity analyses were 
performed. Subgroup analyses were performed according 
to a prespecified protocol, including study type, baseline 
eGFR, baseline BP and comparator of control group. In 
addition, we performed sensitivity analyses excluding 
studies with a sample size of <50, studies with a follow-up 
of <12 months, studies of low quality (high risk for overall 
bias in RCTs, NOS <5 stars for cohort studies) and studies 
with extreme outliers. Heterogeneity among studies was 
evaluated using the I2 or τ2 statistic. I2 values of 25%, 
50%, and 75%, respectively, represent low, moderate, and 
high heterogeneity. Publication bias was assessed using 
a funnel plot, Egger’s test or Begg’s test, and a p value 
of <0.05 indicated obvious publication bias. Stata V.15.0 
(StataCorp, College Station, Texas, USA) was used for 
statistical analyses, and a two-sided p value of <0.05 was 
considered indicative of significance.

Patient and public involvement
No patient or member of the public was involved in the 
development of the research question, selection of the 
outcome measures, design and implementation of the 
study or interpretation of the results.

RESULTS
Overview of included trials
We identified 9948 potential relevant records. After 
removing duplicates, we screened the titles and abstracts, 
and the full text of 230 publications were reviewed. As shown 
in figure 1, online supplemental files 3 and 4, a total of 33 
eligible studies3–6 18–48 including 13 RCTs18 20 25–27 31 32 35–40 45 
and 19 cohort studies3–6 19 21–24 28 30 33 34 41–44 46–48 reported 
in 35 publications with 101 077 participants were included 
in our review. The median follow-up was 6 months (IQR 
3–21 months). Participants were enrolled at an average 
age of 56 years, and male participants accounted for 60% 
of the total. The average eGFR of the participants was 
47.45 mL/min/1.73 m2. Twelve studies were usual care 
or usual diet controlled, and 21 compared different levels 
of sodium intake.

The risk of bias varied substantially across the RCTs. 
The results from the Cochrane Collaboration risk-of-bias 
tool are shown in online supplemental file 5. Bias arising 
from the randomisation process was considered to be low 
in 61.54% of the RCTs, and all studies had a low risk of 
bias due to missing outcome data, bias in measurement of 
the outcome and bias in selection of the reported results. 
In terms of overall bias, 61.54% of the trials were consid-
ered to have low risk, and 38.46% had some concern of 
bias.

According to the NOS checklist, all included cohort 
studies were generally high quality and awarded six to 
eight stars (online supplemental file 6).

Figure 1  PRISMA flow chart of the included studies. CKD, chronic kidney disease; PRISMA, Preferred Reporting Items for 
Systematic Reviews and Meta-analyses.
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Effect of a low-salt diet on renal outcomes
One RCT and nine observational studies including 9578 
patients with 2329 events compared a low-salt diet with 
controls in terms of preventing renal composite outcome 
events. As shown in figure  2, compared with controls, a 
low-salt diet produced a 28% reduction in the risk for 
renal composite outcome events (RR: 0.72; 95% CI: 0.58 to 
0.89), with substantial heterogeneity (I2=87.2%, p<0.001). 
Subgroup analyses and meta-regression were conducted 
to assess the source of heterogeneity. No significant differ-
ence between RCTs and observational studies was found, 
whereas the effect sizes were greater in studies that enrolled 
patients aged <58 years (p=0.03) (table  1). In univariate 
meta-regression, no clear relationship between 24-hour 
sodium in urine (p=0.80) or baseline eGFR (p=0.51) and 
the reduction in renal composite outcome events was 
observed (online supplemental files 7 and 8).

Five RCTs and seven observational studies with a total of 
3287 individuals reported data regarding the effect of a low-
salt diet on the rate of change in eGFR. The diet did not 
have a beneficial effect on the rate of change in eGFR (MD: 
1.16; 95% CI: −2.02 to 4.33). There was evidence of signif-
icant heterogeneity across the included studies (I2=98.0%, 
p<0.001) (figure 3). Subgroup analyses showed that there 
was no statistical heterogeneity according to prespecified 
characteristics (online supplemental file 9).

Data on the effect of a low-salt diet on proteinuria or albu-
minuria were available in 13 studies, with 2922 participants. 
The SMD for change in proteinuria or albuminuria was 
not statistically significant at −0.71 (95% CI: −1.66 to 0.24) 
compared with controls, with significant heterogeneity 

(I2=97.3%, p=0.009) (figure 4). No statistical heterogeneity 
was found in subgroup analyses of the effect of a low-salt 
diet on proteinuria or albuminuria (online supplemental 
file 9).

Effect of a low-salt diet on all-cause mortality and CV events
Data on the effect of low-salt diet on all-cause mortality and 
CV events were available for nine studies (two RCTs and 
seven observational studies) and five studies (one RCT and 
four observational studies), respectively. There was no effect 
of a low-salt diet on the risk of all-cause mortality (RR: 0.92; 
95% CI: 0.53 to 1.46; 95 997 participants and 4455 events) 
or CV events (RR: 1.01; 95% CI: 0.46 to 2.22; 93 573 partici-
pants and 1989 events) compared with controls, with signif-
icant heterogeneity across the included studies (I2=98.0%, 
97.6% for all-cause mortality and CV events, respectively, 
both p values for heterogeneity <0.001) (figure 5). A greater 
benefit was found in studies that included patients with an 
eGFR of 30–59 mL/min/1.73 m2 (p for subgroup heteroge-
neity=0.02) in the subgroup analyses of CV events (online 
supplemental file 9).

Effect of a low-salt diet on BP
Twenty studies reported the effect of a low-salt diet on BP, 
including 19 studies (3608 participants) for SBP and 18 
studies (3608 participants) for DBP. The MD changes in 
SBP and DBP were statistically significant at −5.81 mm Hg 
(95% CI: −9.63 to −1.99) and −2.3 mm Hg (95% CI, −3.61 
to −0.98), respectively (online supplemental files 10 and 
11). Significant heterogeneity across the included studies 
was found (I2=87.1% and 68.2% for SBP and DBP, respec-
tively; both p values for heterogeneity <0.05). Subgroup 

Figure 2  Forest plot for renal composite outcome events. Renal composite outcome events were defined as more than 50% 
decline in eGFR from baseline during follow-up or a doubling of serum levels of Cr or ESRD. Cr, creatinine; eGFR, estimated 
glomerular filtration rate; ESRD, end-stage renal disease; Na, sodium; RCTs, randomised controlled trials; RR, relative risk.
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analyses showed that the association between the change 
in SBP or DBP and a low-salt diet was modified by the 
baseline BP. Patients with a baseline SBP >140 mm Hg or 
DBP >90 mm Hg had an average reduction in SBP and 

DBP of 10 and 5 mm Hg, respectively (online supple-
mental file 9).

Table 1  Results of subgroup analysis of renal composite outcome events

Subgroup
Number 
of trials n RR (95% CI)

P value for 
RR I2

P value for 
heterogeneity test*

Study type

 � RCT 1 418 0.64 (0.43 to 0.98) 0.04 – 0.76

 � Cohort study 9 9160 0.72 (0.57 to 0.90) 0.005 88.6%

Baseline eGFR (mL/min/1.73 m2)

 � 60–89 1 171 0.14 (0.02 to 1.14) 0.07 – 0.48

 � 30–59 7 8869 0.71 (0.55 to 0.92) 0.009 90.8%

 � 15–29 2 538 0.77 (0.63 to 0.94) 0.01 0.0%

Mean age (years)

 � <58 5 5691 0.58 (0.49 to 0.70) <0.001 56.4% 0.03

 � ≥58 5 3887 0.85 (0.69 to 1.05) 0.14 70.1%

Baseline BP (mm Hg)

 � <140/90 6 5806 0.62 (0.52 to 0.73) <0.001 58.5% 0.32

 � SBP ≥140 or DBP ≥90 2 1646 0.70 (0.44 to 1.11) 0.13 74.6%

Comparator of control group

 � Usual care or usual diet 2 589 0.43 (0.11 to 1.64) 0.21 50.2% 0.12

 � Different levels of sodium intake 8 8989 0.73 (0.58 to 0.92) 0.008 89.8%

	► The bold P value indicates that there are statistical differences between subgroups.

*P value calculated by meta-regression.
BP, blood pressure; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; n, number of patients; RCT, randomised 
controlled trial; RR, relative risk; SBP, systolic blood pressure.

Figure 3  Forest plot of the rate of change in estimated glomerular filtration rate. Cr, creatinine; MD, mean difference; Na, 
sodium; RCTs, randomised controlled trials.
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Figure 4  Forest plot for the change in proteinuria or albuminuria. CKD, chronic kidney disease; Na, sodium; RCTs, randomised 
controlled trials; SMD, standard mean difference.

Figure 5  Forest plot for all-cause mortality and cardiovascular (CV) events. CV events were defined as a composite of fatal 
or non-fatal myocardial infarction, fatal or non-fatal stroke, coronary artery revascularisation, CV disease and CV death. Cr, 
creatinine; Na, sodium; RCTs, randomised controlled trials; RR, relative risk.
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Sensitivity analyses and publication bias
The results of all sensitivity analyses were robust (online 
supplemental file 12). The most notable exception was 
that the effect of a low-salt diet on the rate of change 
in eGFR became significant when studies with extreme 
outliers were omitted, and proteinuria or albuminuria 
became significant when the DerSimonian-Laird method 
was used to pool data. The risk of publication bias was 
significant for the rate of change in eGFR, proteinuria 
or albuminuria, all-cause mortality, CV events and BP 
(online supplemental files 13 and 14).

DISCUSSION
Behavioural modifications can delay CKD progression 
to ESRD, and dietary salt restriction is one of the main 
concerns. Our meta-analysis showed that compared 
with the control groups, a low-salt diet reduced renal 
composite outcome events and lowered BP (SBP and 
DBP) in patients with CKD. No significant effects were 
observed on the eGFR decline rate, change in protein-
uria, risk of all-cause mortality and CV events. The results 
were concordant across major subgroups and sensitivity 
analyses. However, the significant heterogeneity among 
the studies may restrict their explanation and clinical 
practice.

A prior review of 16 studies on salt consumption and 
kidney disease investigated whether variation in dietary 
sodium intake affects kidney outcomes in patients 
with CKD.49 Increased salt consumption was related to 
increased albuminuria and the possibility of a decrease 
in GFR. In 201550 and 2018,51 two meta-analyses of RCTs 
suggested that moderate dietary salt limitation obvi-
ously reduced BP and proteinuria. However, it is unclear 
whether these benefits convert to clinically obvious 
reductions in renal composite outcome events, all-cause 
mortality events and CV events. Our meta-analysis of 33 
studies (13 RCTs and 20 observational studies), with more 
than 90 000 patients and 2329 renal composite outcome 
events, showed that compared with the control groups, 
a low-salt diet produced a significant 28% reduction in 
renal composite outcome events despite marked hetero-
geneity. Furthermore, the significant effect of a low-salt 
diet on BP (decreases in SBP and DBP of 5.8 and 2.3 mm 
Hg, respectively) was confirmed and is an important 
target for slowing the progression of CKD to ESRD. The 
benefit of proteinuria from low-salt diet became non-
significant when the restricted maximum likelihood or 
empirical Bayes method was used to pool data. The stan-
dard DerSimonian-Laird procedure, which was applied 
in previous meta-analyses, can be unstable with small 
numbers of studies.14 52

Statistical heterogeneity was found in all outcomes, 
and clinical heterogeneity was an inevitable issue. Low-
salt diets are not palatable for some patients.53 There-
fore, it is hard to confirm persistent compliance with a 
salt restriction during long-term follow-up time. Sodium 
intake was quantified using different methods (such as, 

24-hour urine collection, spot urine collection or dietary 
questionnaire). Because diuretics influence urine sodium 
excretion and eGFR, it would influence the accuracy of 
quantified salt intake. Ten studies had data on diuretic 
use, but included only the percentages of patients using 
diuretics in the intervention and control groups. The 
percentage of patients using diuretics was similar in most 
of the studies. There were no data on the type and dose 
of diuretics, or their associations with the eGFR. These 
inherent problems were reflected in paradoxically oppo-
site findings, especially of observational studies with several 
confounding factors. Only three studies (one RCT and 
two observational studies) simultaneously reported the 
outcomes of eGFR and renal composite outcome events. 
Furthermore, the different follow-up periods (52 months 
of renal composite outcome events and 12 months of 
eGFR) should be noted. The inconsistent results of eGFR 
and renal composite outcome events may be explained in 
part by the heterogeneity, which likely limited the inter-
pretation and generalisability of our results.

In patients with CKD, BP is typically sodium sensi-
tive, and renin-angiotensin-aldosterone system (RAAS) 
blockers are considered the first-line therapy for hyper-
tension and proteinuria. The function of RAAS blockers 
is weakened by high salt intake54–56; therefore, the signif-
icant effect of dietary sodium restriction on lowering BP 
and supporting the function of RAAS blockers was spec-
ulated to play a very important part in reducing the risk 
of renal failure. Interestingly, a BP-independent effect 
of dietary sodium on the kidney is substantial by data in 
healthy volunteers, in which dietary sodium restriction 
reduces albuminuria to within the normal range, without 
a detectable effect on BP.57 Similarly, proteinuria reduc-
tion by sodium restriction remained significant after 
adjustment for the decrease in BP.56 These results suggest 
an independent renoprotective function of a low-salt diet.

There was no convincing evidence that a low-salt diet 
was related to a lower incidence of all-cause mortality 
and CV events. Limited data on all-cause mortality (nine 
studies with 4455 events) and CV events (five studies with 
1989 events) in the meta-analysis might introduce a risk 
of false-negative results because of low statistical power. 
A greater benefit for CV events was found in studies that 
included patients with an eGFR 30–59 mL/min/1.73 m2 
in subgroup analyses, whereas the effects were not signifi-
cant in patients with an eGFR <15 mL/min/1.73 m2. The 
substantial subgroup heterogeneity (p=0.02) could be 
attributable to more CV risk factors in patients with ESRD 
than in those with an eGFR 30–59 mL/min/1.73 m2. The 
benefit of a low-salt diet for CV events did not outweigh 
the increase in CV events caused by more risk factors 
(such as hyperuricemia, hyperphosphatemia and vascular 
calcification). Therefore, education on the importance 
of a low-salt diet should be emphasised in patients with 
early-stage CKD.

Observational data showing a J-curve between sodium 
intake and renal and CV outcomes have raised concern 
regarding the safety of rigorous sodium restriction.58–60 
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It is uncertain whether the presence of CKD modifies 
this association. In our meta-regression analysis, no clear 
relationship between 24-hour sodium in urine (p=0.80) 
or baseline eGFR (p=0.51) and the reduction in renal 
composite outcome events was observed. A combination 
of angiotensin-converting enzymes (ACEIs) and strict 
sodium control decreased BP, proteinuria and glomer-
ular lesion but exacerbated tubule-interstitial injury in 
experimental renal disease.61 This could explain the 
reason of worse renal outcomes by very low salt intake. 
High or extremely low-dietary salt intake might be inap-
propriate for patients with CKD. KDIGO recommends a 
daily sodium intake of <2.0 g/day in patients with CKD 
without a clear lower limit. Therefore, an appropriate 
dietary salt intake should be discussed with patients with 
CKD. Further studies are necessary to identify the optimal 
dietary salt intake for renoprotection in patients with 
CKD.

This study had several potential limitations. First, the 
existence of statistical and clinical heterogeneity may 
raise concerns regarding validity, although we attempted 
to resolve these concerns by performing subgroup and 
sensitivity analyses. Heterogeneity in study popula-
tions hampers meaningful interpretation of the results. 
Because the CKD stages varied markedly, it is difficult to 
stratify the outcome analysis by CKD stage. Instead, we 
performed subgroup analyses according to baseline eGFR. 
Second, unlike RCTs, cohort studies are prone to selec-
tion bias. Therefore, pooling the results from RCTs and 
cohort studies will bias the results of the meta-analysis. We 
performed a subgroup analysis according to study design. 
There was no statistical heterogeneity in the outcomes 
according to study design. However, a low-salt diet did not 
exert a beneficial effect on the rate of change in eGFR 
in RCTs (MD: −0.75; 95% CI: −7.58 to 6.08) but did in 
eGFR in cohort studies (MD: 2.48; 95% CI: 0.32 to 4.64). 
Third, many of the included low-quality studies had small 
sample sizes and low incidences of events. Consequently, 
the uncertainty in the analyses was increased, resulting in 
wide CIs of effect measures. Fourth, confounding factors 
in the observational studies cannot be neglected, because 
they might affect the results. Therefore, the findings of 
this study should be viewed as hypothesis generating and 
need to be confirmed by further studies.

CONCLUSION
This meta-analysis suggests that a low-salt diet may reduce 
the risk of renal composite outcome events in patients with 
CKD. However, there was no compelling evidence that a 
low-salt diet reduces the rate of eGFR decline, protein-
uria, incidence of all-cause mortality and CV events. The 
optimal dietary salt intake for patients with different CKD 
stages is unclear. Further well-designed RCTs targeting 
patients with different CKDs are required.
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