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Abstract

Background: The Fibroblast Growth Factor (FGF) pathway is driving various aspects of cellular responses in both
normal and malignant cells. One interesting characteristic of this pathway is the biphasic nature of the cellular
response to some FGF ligands like FGF2. Specifically, it has been shown that phenotypic behaviors controlled by
FGF signaling, like migration and growth, reach maximal levels in response to intermediate concentrations, while
high levels of FGF2 elicit weak responses. The mechanisms leading to the observed biphasic response remains
unexplained.

Results: A combination of experiments and computational modeling was used to understand the mechanism
behind the observed biphasic signaling responses. FGF signaling involves a tertiary surface interaction that we
captured with a computational model based on Ordinary Differential Equations (ODEs). It accounts for FGF2 binding
to FGF receptors (FGFRs) and heparan sulfate glycosaminoglycans (HSGAGs), followed by receptor-phosphorylation,
activation of the FRS2 adapter protein and the Ras-Raf signaling cascade. Quantitative protein assays were used
to measure the dynamics of phosphorylated ERK (pERK) in response to a wide range of FGF2 ligand concentrations on
a fine-grained time scale for the squamous cell lung cancer cell line H1703. We developed a novel approach
combining Particle Swarm Optimization (PSO) and feature-based constraints in the objective function to calibrate
the computational model to the experimental data. The model is validated using a series of extracellular and
intracellular perturbation experiments. We demonstrate that in silico model predictions are in accordance with
the observed in vitro results.

Conclusions: Using a combined approach of computational modeling and experiments we found that
competition between binding of the ligand FGF2 to HSGAG and FGF receptor leads to the biphasic response. At
low to intermediate concentrations of FGF2 there are sufficient free FGF receptors available for the FGF2-HSGAG
complex to enable the formation of the trimeric signaling unit. At high ligand concentrations the ligand binding
sites of the receptor become saturated and the trimeric signaling unit cannot be formed. This insight into the
pathway is an important consideration for the pharmacological inhibition of this pathway.
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Figure 1 Schematic of sigmoidal (A) and biphasic (B) response.
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Background
Signaling pathways are arguably one of the most import-
ant components driving how biological systems respond
to environmental cues [1,2]. The ability of cells to per-
ceive and respond to their microenvironment is the basis
of development, tissue repair, and immunity as well as
normal tissue homeostasis. Errors in cellular information
processing contribute towards diseases such as cancer.
By understanding the intricacies of cell signaling and
processing, diseases may be treated more effectively.
The FGF pathway plays a pivotal role in the stimulation

of cell proliferation, cell migration and differentiation of a
large number of cell types including muscle, neurons, cartil-
age and bone cells [3,4]. FGF ligand - receptor signaling is
regulated both by primary sequence differences between
the 18 FGF ligands, the 7 main FGF receptors (FGFR1b,
FGFR1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c and FGFR4),
by temporal and spatial expression patterns of FGFs, FGFRs
and HSGAGs and FGF Binding Proteins. Tissue-specific
alternative splicing in the second half of Ig-like domain 3
(D3) of fibroblast growth factor receptors 1–3 generates
epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-
FGFR3c splice isoforms. This splicing event establishes a
selectivity filter to restrict the ligand binding specificity of
FGFRb and FGFRc isoforms to mesenchymally and epithe-
lially derived fibroblast growth factors (FGFs), respectively
[5]. FGF Binding Proteins (FGF-BP) have been described to
function as a chaperone molecule that can mobilize FGF lo-
cally and present it to the FGF receptor. The FGF-BPs have
been described to enhance proliferation and signaling in
NIH-3T3 cells [6].
HSGAG has been assigned multiple roles: it is known

to serve as a co-receptor essential for signaling, as trans-
port mediator to increase the local concentration of
growth factors close to the cell surface or as a regulator
to accelerate or attenuate signaling [7]. HSGAG are
known to be essential for FGF signaling [8] and typical
HSGAG levels on the cell surface are with 105-106 mole-
cules per cell [9] much higher than typical FGFR levels
(<50,000 molecules per cell Merrimack unpublished
data). Thus, the benefits of understanding this pathway
and the role of HSGAG in regulating FGF signaling are
several fold: reveal greater insights into the fundamental
principles of signaling pathway regulation by HSGAG in
the case of FGF and more generally to understand the
effect of inhibitors targeting the FGF pathway that are
currently in development [10,11].
Disregulation of the FGF pathway components lead

to various diseases, including multiple forms of malig-
nant cancers [12]. FGFs are expressed ectopically in al-
most 20% of different identified breast cancer cell lines
[13]. It has also been shown that FGFs act as angio-
genic growth factors that control capillary endothelial
cell proliferation for vascular development [14]. A central
paradigm of signaling pathways is that ligands bind to and
activate cell-membrane bound receptors, which in turn
leads to activation of intracellular cascades [15,16]. Typic-
ally, binding of a monomeric ligand to a monomeric
receptor follows Michaelis-Menten reaction kinetics. In-
creasing the concentration of the ligand leads to an in-
crease in receptor activation until ligand concentrations
are high enough such that receptor activation is saturated.
Intracellular receptor activation is followed by a cascade
of enzymatic reactions that lead to the phosphorylation of
effector molecules like ERK and AKT. Thus, increasing
ligand concentration from low to intermediate levels
increases the activation of ERK and AKT while at high lig-
and concentrations, ERK and AKT are maximally acti-
vated and therefore don’t respond to further increases in
ligand levels. Accordingly, one would expect that cells
would respond to ligands in a saturable fashion as well
(Figure 1A). This is indeed true for various signaling path-
ways and physiological ligand concentrations, including
ErbB and IGF1-R [17,18].
Interestingly, some cells respond to activation by FGF

ligands atypically [3,4,19]. Instead of the typical satur-
able response (Figure 1A), these cells respond in a bi-
phasic manner (Figure 1B). Specifically, cellular response
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increases from low to intermediate levels of FGF ligand
but then decreases at high levels of the ligand. For in-
stance, Williams et al. demonstrated that FGF2-induced
neurite outgrowth reaches a maximum at intermediate
concentrations of FGF2 and that the outgrowth decreases
at higher levels of FGF2 [3]. Garcia-Maya et al. demon-
strated that FGF-induced proliferation of NIH3T3 cells
also reaches a maximum at intermediate concentrations
of FGF2 [4,20]. Similar results have been shown for fibro-
blasts and osteoblasts as well [19]. Notably, biphasic re-
sponse to FGF ligands has most commonly been reported
at the level of cellular phenotype, while the underlying
molecular signaling events that lead to the biphasic re-
sponse remain unexplored.
Recently, Zhu et al. measured protein levels using

Western Blots and indicated that FRS2- (FGFR adaptor
protein) and ERK-phosphorylation is biphasic in re-
sponse to FGFR activation by FGF2 [19]. Thus, they pro-
vide hints that FGF signaling response does not follow
the typical Michaelis-Menten reaction kinetics. How-
ever, owing to the labor-intensive and low throughput
nature of the experimental technique, protein levels
were measured at a small number of time points and
only for a small number of ligand concentrations.
Moreover, they did not provide any mechanistic insight
into how the FGFR pathway activation cascade drives
this biphasic behavior.
Efforts to model the FGFR pathway previously have

primarily focused on the interactions taking place on
the surface of the cell while completely ignoring the
intracellular cascade [21-24]. Their efforts were di-
rected towards understanding the effect of adding hep-
arin, a soluble source of HSGAGs, on FGFR pathway
activation. However, the time-course and dose–re-
sponse of pERK to activation by ligand alone remains
unexplored. In contrast, Yamada et al. built a combined
mathematical model for the extracellular and intracel-
lular components of the FGFR pathway but completely
ignored the biphasic nature of response upon activation
by the ligand [25].
Here, we investigate the mechanistic rationale for bi-

phasic response to FGFR pathway activation utilizing a
combination of high-density signaling data and Ordinary-
Differential-Equation (ODE)-based mathematical model-
ing. We report the dynamic pERK response to FGF2
stimulation using a fine-grained time grid over 120 minutes.
The model was calibrated to the experimental results using
a published particle swarm optimization (PSO) algorithm
[26] combined with a novel feature-based constrained
optimization. Finally, we apply Markov-chain Monte Carlo
sampling to explore nonidentifiability and uncertainty in
the model calibration [27]. The computational model rep-
resents the extracellular and intracellular components as
well as the feedback regulation of the pathway. To validate
the model, multiple simulations were conducted to predict
signaling response to extracellular and the intracellular per-
turbations of the pathway. The model predictions were val-
idated by in vitro experiments. We demonstrate that
without any fitting, the model explains each of these per-
turbation experiments. We demonstrate that the complex
protein interactions at the cell surface are necessary to ex-
plain the observed biphasic dose–response while the nega-
tive feedback loop from pERK to FRS2 controls the
magnitude of the biphasic response. At low to intermediate
concentrations of FGF2 there are sufficient free FGF recep-
tors available for the FGF2-HSGAG complex to enable the
formation of the trimeric signaling unit. At high ligand
concentrations the ligand binding sites on FGFR become
saturated and the trimeric signaling unit cannot be formed
because binding of FGF2-HSGAG is weak, thereby leading
to a decrease in pERK response.

Results and discussion
To uncover the underlying mechanism of biphasic FGF
signaling response and to simplify the interpretation of
the results, we use a representative non-small cell lung
cancer cell line NCI-H1703 that was previously shown to
primarily express FGFR1c and to induce Erk1/2 phos-
phorylation upon stimulation with FGF2 [28]. The expres-
sion of FGFR1c was confirmed by qPCR (Materials and
methods Section 1). To calibrate the kinetic parameters in
the model, dose-time matrices for ERK1/2 phosphoryl-
ation in response to FGF2 were measured (Figure 2). A
transient peak in ERK1/2 phosphorylation was observed
at around 5 minutes of FGF2 exposure for all six doses.
However, the rates of decay of ERK1/2 phosphorylation
differed between doses, with sustained ERK1/2 phosphor-
ylation observed even 120 minutes after ligand addition
for intermediate doses (Figure 2B). This resulted in the bi-
phasic dose response to FGF2 stimulation observed con-
sistently after 10 minutes of exposure (Figure 2C).
These detailed measurements increase the identifiabil-

ity of the system, and allows the signaling cascade to be
modeled mechanistically using a set of Ordinary Differ-
ential Equations (ODEs) describing the biochemical re-
actions. We constructed a mathematical description of
the FGFR pathway that includes all the ligand-receptor
interactions on the cell surface as well as the intracellu-
lar MAP kinase signaling cascade.

Description of the computational model
The mathematical description consists of two major com-
ponents – network topology and the corresponding
network parameters. A schematic representation of the
model structure is shown in Figure 3. The proposed struc-
ture is based on previously published crystal structures
with a 1:1:1 stoichiometry [29,30]. Briefly, the ligand binds
to HSGAG to form a ligand-HSGAG complex, which
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Figure 2 Mathematical model for pERK response to FGF2: the mathematical model explains the dynamics of pERK response to FGF2
concentrations varying over three orders of magnitude. Experimental results are plotted as circles with standard deviations and model fits
are plotted as solid lines. A). Feature-based constraints for fitting the mathematical model to pERK dose response data. B). Dynamics of pERK
response to varying levels of FGF2-ligand (0.16 ng/ml to 500 ng/ml). pERK is measured at 1,2,3,4,5,8,10,20,30,60 and 120 min post ligand
stimulation. C). pERK dose response curves at 5, 20 and 60 min post ligand stimulation.
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further binds to FGFR to form a trimeric complex [31].
This particular order of binding reactions was chosen for
the formation of the trimeric complex since previous mea-
surements have shown that FGF2-FGFR binding is much
weaker than the binding of FGF2 to HSGAG. Moreover,
they also showed that FGFR binding to to FGF:HSGAG
complex is much stronger than FGFR binding to FGF2
alone [32]. These results suggests that HSGAGs might
have a regulatory function to control signaling by concen-
trating FGF ligand on the cell surface, explaining how low
concentrations of FGF are capable of activating signaling
[7]. While other orders of binding reactions are possible,
they are less likely to be important for the formation of
trimer FGF:FGFR:HSGAG. Therefore, they have not been
considered in this model to keep the size of the model
and number of unidentifiable parameters small. The tri-
meric complex dimerizes to form a 2:2:2 signaling unit
that activates the intracellular signaling cascade. Specific-
ally, the signaling unit binds to FRS2 and enzymatically
phosphorylates it. In our model we assumed that FRS2
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Figure 3 Schematic of the FGFR signaling pathway. Based on published surface plasmon resonance data, we assume that FGF binds first to
HSGAG before it binds to the receptor. The Ras-Raf signaling cascade is reduced to a two-step cascade to increase model identifiability. The
model also accounts for negative feedback from pERK to FRS2 and nuclear localization of pERK.
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directly binds to the signaling unit which is distinct from
a model described previously [25]. pFRS2 subsequently ac-
tivates the Ras-Raf signaling cascade. In the model, the
intracellular signaling cascade is reduced to a two-step
phosphorylation cascade. pFRS2 enzymatically phosphory-
lates MEK and finally pMEK acts as an enzyme for phos-
phorylation of ERK. The model also accounts for the
negative feedback from pERK to FRS2 as described previ-
ously: pERK binds to FRS2 and pFRS2 which ultimately
leads to their degradation [33]. We also accounted for
subcellular localization of pERK by considering its accu-
mulation into the nucleus (detailed equations in Materials
and methods Section 2).
It should be recognized that the reactions included in

this scheme are not necessarily direct protein-protein in-
teractions. Some of these reactions represent a combin-
ation of multiple interactions within the cascade. The
underlying principle of such a reductionist approach is
that for large non-identifiable systems like signaling path-
ways, most components remain unmeasured. Therefore, a
reduced mathematical model with appropriate features
can better describe the experimental results while allowing
for easy interpretation as compared to a model that ac-
counts for each protein-protein interaction individually.
The applicability of such reduced models is tested by
verifying whether it can quantitatively fit experimental re-
sults (Figure 2) with physically meaningful rate constants
followed by validation of independent perturbation experi-
ments without any fitting.
Most of the kinetic rate constants described in the

mathematical model remain unmeasured to date. Even
for those rate constants that have been measured, for
instance the ligand-receptor binding constants, a wide-
range of values have been reported in the literature de-
pending upon the experimental system and technique
used [22,32,34]. Therefore, model calibration against
the experimental data with physically meaningful pa-
rameters is critical in order to gain a better understand-
ing of the system.

Calibration of the computational model using particle
swarm optimization and feature-based constraints
As is typical for signaling pathways, the mathematical
model is parametrically non-identifiable with many more
components than the number of measurements avail-
able. Accordingly, there exists no unique solution for the
parameter values and purely deterministic parameter es-
timation techniques will fail to provide good estimates
unless the initial parameter guess is in the vicinity of the
global optimum itself. Therefore a global parameter esti-
mation technique, Particle Swarm Optimization (PSO),
was utilized to estimate the parameters of the model
[35]. The approach allows for a more exhaustive and ef-
ficient exploration of the objective function manifold to
find good parameter fits. The version of PSO utilized in
this report has been published previously and was par-
ticularly useful for fitting parameters to signaling models
[26,35]. The only inputs required for this approach are
the physical constraints for the parameter values.
Given the network structure, a critical aspect of esti-

mating the parameters is the choice for the objective
function to be minimized. We noted that minimization
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of the most commonly used objective function, root
mean square error (RMSE) between experimental data
and simulation predictions was insufficient and the esti-
mated parameters provide poor solutions. Therefore we
developed a hybrid objective function that accounts for
RMSE as well as differences between qualitative features
of experimental and simulation data. Figure 2A summa-
rizes the feature-based constraints used in the objective
function. The objective function was penalized if the
pERK level reached peak values in response to ligand
stimulation too early or too late (detailed penalty func-
tion expressions in Materials and methods Section 3).
Similarly, the objective function was penalized if the
pERK dose response at the relevant time points was not
qualitatively biphasic. Minimizing the hybrid objective
function using PSO led to physically meaningful param-
eter estimates and was used to obtain the parameters
used in this report. In contrast, using RMSE as the ob-
jective function provided parameter estimates that had
low objective function values but provided biophysically
meaningless solutions. A detailed comparison between
the two objective functions used and the corresponding
parameter estimates obtained is described in Materials
and methods Section 3. Based on these results, we
propose a more general hypothesis that optimization of all
signaling pathway models might benefit from utilizing a
combination of qualitative constraints and RMSE values
as compared to the simple RMSE-based objective func-
tion. The applicability of this approach to other models re-
mains to be tested and is the subject of future research.
Using PSO and a combination of RMSE together with

qualitative constraints as the objective function, multiple fits
to the experimental data were estimated. Figure 2B shows
the fit from one such typical data set in red and the gray
lines represent fits of 6 additional parameter sets that are
reported in Table 1. Additional file 1: Figure S1A shows that
pERK response at all time-points is highly correlated (Pear-
son correlation coefficient > 0.95) with the simulation results
for multiple parameter sets. However, nonidentifiability of
model parameters and uncertainty in parameter space in
general can compromise the predictability of a mathematical
model [36]. Therefore, parameter uncertainty was analyzed
using the well-established Markov-chain Monte Carlo
(MCMC) sampling approach. Recently, Hug et. al. showed
that the approach was able to map uncertainty efficiently
even for high-dimensional and non-linear models [27]. We
tested the uncertainty of FGF model-parameters using a
similar approach (detailed description in Materials and
methods Section 6) and validated that the seven parameter
sets identified by PSO are representative for the acceptable
fits determined by the MCMC approach (Additional file 2:
Figure S2).
The model recapitulates pERK activation data at all

different FGF2 concentrations. The model captures the
experimental observations that at low FGF2 concentra-
tions (below 4 ng/ml), the peak level of ERK activation
increases with FGF2 concentration; however, at higher
concentrations (above 4 ng/ml), the peak level of ERK
activation remains constant (Figure 2B). Careful observa-
tion reveals that at high FGF2 concentrations, the time
to peak ERK activation decreases as FGF2 levels in-
crease. Most importantly, the model also captures the
fact that pERK de-activation varies with FGF2 concen-
tration. Specifically, at intermediate levels of FGF2,
pERK levels reach a peak after 5 minutes and then slowly
decrease over the next hour. In contrast, at the high levels
of FGF2, pERK levels peak before 5 minutes and decrease
to low levels within 20-30 minutes. Therefore the dose re-
sponse curve at time points later than 10 minutes shows a
strong biphasic response (Figure 2C). Thus, the reduced
model adequately captures all of the essential features of
pERK dynamics in response to FGF2 stimulation.
As described previously, even with the fine-grained

pERK response measurements, the model is highly uniden-
tifiable and therefore multiple parameter sets that might
correspond to different response mechanisms explain the
data equally well (Additional file 1: Figure S1A). Accord-
ingly, before utilizing the aforementioned model and par-
ameter sets shown in Figure 2 for further investigation of
the underlying mechanisms, we tested and validated the
model against multiple perturbation experiments. The val-
idation will help rule out parameter sets that fit the training
data-set well but do not describe the FGFR signaling path-
way. Specifically, we perturbed the extracellular and intra-
cellular components of the model and tested model
validity by comparing the predictions with in vitro experi-
mental measurements of pERK. The objective was to valid-
ate the underlying mechanisms predicted by the model
rather than exact quantitative numbers. Therefore, the
model was not trained on any these new experimental re-
sults and all model predictions were qualitatively compared
to the experimental results.

Addition of soluble heparin decreases the pERK response
at low and intermediate FGF2 levels but increases the
pERK response at high levels of FGF2
One of the essential components of the model is the

binding of FGF2 to HSGAGs. It is known that FGF2 also
binds to soluble heparin and this binding in solution can
compete with the binding of FGF2 to HSGAG. Soluble
heparin can also rescue signaling behavior in cells that
have been stripped of cell surface HSGAGs. Therefore,
to validate the ligand binding and signaling complex for-
mation module of the model, we tested how the pERK
response changes with addition of soluble heparin to
media. The effect of heparin on the FGF pathway has
been explored previously at the level of surface interac-
tions and ligand-receptor complex formation [21,24].



Table 1 Parameter values

Name Unit Set1 Set2 Set3 Set4 Set5 Set6 Set7

Fixed parameters

NA molecules/mole 6.02E+23 6.02E+23 6.02E+23 6.02E+23 6.02E+23 6.02E+23 6.02E+23

Vshell liter 4.85E-15 4.85E-15 4.85E-15 4.85E-15 4.85E-15 4.85E-15 4.85E-15

Ncell cells 4.00E+04 4.00E+04 4.00E+04 4.00E+04 4.00E+04 4.00E+04 4.00E+04

Vfluid liter 1.24E-04 1.24E-04 1.24E-04 1.24E-04 1.24E-04 1.24E-04 1.24E-04

FGFR molecules/cell 2.00E+04 2.00E+04 2.00E+04 2.00E+04 2.00E+04 2.00E+04 2.00E+04

Fitted parameters

HSGAG molecules/cell 1.00E+05 1.00E+05 1.27E+05 1.00E+05 1.00E+05 1.00E+05 1.00E+05

FRS2 molecules/cell 1.00E+04 5.27E+05 4.37E+04 1.00E+04 1.00E+04 1.16E+04 1.02E+04

MEK molecules/cell 1.00E+06 7.24E+05 3.08E+05 3.20E+05 3.73E+05 1.55E+05 3.66E+05

ERK molecules/cell 1.30E+06 1.52E+06 1.34E+06 1.88E+06 4.93E+06 1.09E+06 3.61E+06

kf0 1/((molecule/cell)*s) 2.67E-08 1.10E-08 8.61E-09 1.97E-08 1.46E-08 1.52E-08 2.60E-08

kr0 1/s 1.94E-03 8.00E-04 6.29E-04 1.44E-03 1.07E-03 1.11E-03 1.95E-03

kf1a 1/((molecule/cell)*s) 7.89E-10 1.13E-09 3.14E-09 9.28E-10 1.32E-09 2.04E-09 2.37E-09

kr1a 1/s 9.17E-05 1.31E-04 3.63E-04 1.07E-04 1.52E-04 2.36E-04 2.75E-04

kf5a 1/((molecule/cell)*s) 8.62E-09 1.72E-08 2.47E-08 5.65E-09 1.19E-08 6.57E-08 3.10E-06

kr5a 1/s 2.60E-07 1.27E-03 1.90E-04 3.03E-08 2.84E-06 3.24E-07 2.14E-01

kfdim 1/((molecule/cell)*s) 8.48E-02 1.50E-01 2.05E-03 1.30E-01 2.01E-02 5.26E-02 3.87E-06

krdim 1/s 9.94E+00 1.00E-05 2.90E-04 1.92E-04 1.09E-01 5.83E-04 1.35E-02

kfph 1/s 3.30E+00 4.92E-01 1.58E-02 5.36E+00 2.49E-01 5.02E-02 2.08E-03

kfint1 1/s 1.38E-04 2.14E-03 1.00E-06 9.53E-05 9.90E-06 4.38E-04 2.45E-05

krint1 1/s 4.70E-07 4.26E-04 2.52E-03 2.31E-07 2.42E-03 9.73E-08 9.03E-04

kf15 1/((molecule/cell)*s) 2.41E-04 4.61E-04 5.86E-04 2.09E-04 2.14E-04 4.43E-04 1.73E-04

kr15 1/s 4.21E-03 4.87E-06 3.40E-03 1.66E-04 2.11E-02 8.33E-05 1.20E-05

kf19 1/s 4.72E-01 5.47E-01 5.88E+00 3.95E+00 1.00E+01 5.50E-01 9.03E+00

kf35 1/((molecule/cell)*s) 3.58E-04 5.43E-04 1.48E-04 1.47E-04 9.23E-05 1.40E-04 5.80E-05

kr35 1/s 2.34E-01 1.13E-01 5.24E-05 2.74E-02 2.00E-03 4.15E-06 1.70E-05

kf36 1/s 3.04E-01 2.34E-01 5.53E-02 1.33E-02 2.57E-02 4.08E-02 3.78E-02

kf39 1/((molecule/cell)*s) 2.61E-05 4.14E-08 3.28E-07 8.15E-06 1.00E-03 8.73E-05 5.78E-06

kr39 1/s 1.66E-06 4.91E-06 6.60E-05 3.94E-05 2.99E-01 3.55E-04 1.04E-04

kf40 1/s 9.95E-02 2.62E-01 1.11E-01 1.74E+00 1.51E+00 1.71E-01 1.04E+00

kfdp1 1/s 4.71E+00 6.65E+00 4.29E+00 9.96E+00 1.00E+01 5.43E+00 5.45E+00

kfdp2 1/s 1.03E+00 8.93E-03 1.83E-02 3.10E-02 8.29E+00 1.78E+00 6.56E-02

kfdp3 1/s 1.28E+00 6.37E-03 5.71E-03 4.66E-03 4.64E-03 5.07E-03 1.51E-02

kf43 1/((molecule/cell)*s) 1.06E-04 9.66E-06 3.08E-06 3.13E-07 1.53E-07 8.09E-07 3.92E-07

kr43 1/s 3.34E-05 7.34E-01 5.43E-01 1.71E-04 1.71E-04 2.21E-02 8.90E-05

kf44 1/s 2.14E-04 4.28E-02 2.10E-01 4.39E-04 3.91E-04 3.05E+00 3.05E-04

kf47 1/s 3.36E+00 2.32E-04 9.67E-05 2.10E-05 2.01E-05 1.52E-04 8.06E-02

kr47 1/s 1.47E-02 8.25E-05 6.01E-07 1.15E-07 9.96E-02 5.54E-06 4.00E-02
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However, those results and interpretations have never been
extended to include the effect on the intracellular signaling
cascade. Using our model, we explore the effect of heparin
on pERK dynamics at the same fine time-grid as discussed
in the previous section (Materials and methods Section 4).
Model simulation of heparin addition to extracellular
medium provided some non-intuitive insights (Figure 4A,
B solid curves). At low to intermediate levels of FGF2,
addition of heparin was predicted to decrease the level of
ERK activation at all the time points. This is in line with
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Figure 4 Model validation: extracellular pathway perturbation. A). pERK time-response curves up to 2 hrs upon addition of FGF2 with (red)
and without (black) soluble heparin. Experimental results are plotted as circles with standard deviations and model fits are plotted as solid
curves. Note that the red curves are model predictions and not fitted to pERK response to FGF2 with heparin. B). Model prediction for pERK
dose–response curve at 10 min upon addition of varying amounts of heparin into the extracellular medium. C). Experimental validation of pERK
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the role of heparin as a ligand trap. However, surprisingly,
at high levels of FGF2, addition of heparin was predicted to
increase the level of pERK response. Model prediction for
change in time-course and dose–response of pERK upon
addition of heparin were validated using in vitro experi-
ments (Figure 4A, C symbols and dotted curves).
Without any fitting, the model accurately captures

pERK response to FGF2 in the absence/presence of hep-
arin (Figure 4). Note that the same qualitative predic-
tions were made by all the different parameter sets
(Additional file 1: Figure S1B). Therefore, the level of
confidence in the explanation provided by the simula-
tions is high: The model indicates that at low levels of
FGF2, heparin acts as a ligand trap and reduces the level
of FGF2 binding to HSGAG and subsequent formation
of signaling complexes while at high levels of FGF2,
there is enough excess FGF2 present in the extracellular
medium to overcome the ligand trap and to form signal-
ing complexes. Additionally, a small number of heparin-
FGF2 complexes bind to FGFR and initiate signaling



Kanodia et al. Cell Communication and Signaling 2014, 12:34 Page 9 of 18
http://www.biosignaling.com/content/12/1/34
complex formation, leading to an increase in pERK re-
sponse. Thus, without fitting any of the parameters for
soluble heparin, the model captures pERK response to
extracellular perturbations. It is noteworthy here that
some experimental data points do not match perfectly
with simulation results. We hypothesize that the differ-
ences could be due to non-pathway specific interactions
or other higher order interactions that are indeed a part
of the FGFR pathway but have a small influence on the
overall response and are not captured by the current
model. Explanation of these differences would require
measurement of more proteins within the cascade com-
bined with a more detailed model and will be the subject
of future work.

Delayed inhibition of MEK post FGF2 stimulation
amplifies the biphasic pERK response
To validate the intracellular ERK activation module of

the pathway, MEK was inhibited using a small molecule
inhibitor U0126 (henceforth referred to as ‘MEKi’) with
two different schedules. In the first experiment, MEKi was
added to the media at the same time as the ligand itself
(Figure 5A). Five different concentrations of MEKi were
used in combination with seven different concentrations
of FGF2. For each combination of MEKi-FGF2, the pERK
response was measured in cells 10 minutes after FGF2
stimulation. As predicted by the computational model
only the 0.37 μM and 1.11 μM concentrations of MEKi
lead to a significant pERK inhibition across the entire
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Figure 5 Model validation: intracellular pathway perturbation. A). pER
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post ligand stimulation for MEKi addition 5 min post FGF2 ligand stimulatio
range of FGF2 concentrations. It is noteworthy that the bi-
phasic shape of the FGF2 dose–response curve remained
the same for different MEKi levels. pERK levels reach a
peak at 4-20 ng/ml of FGF2 and then decrease at higher
FGF2 concentrations. These results were in line with
the predictions made by the model. The ODEs used to
describe MEKi interactions are outlined in Materials
and methods Section 5 in the Appendix.
It is not surprising that co-incubation of MEKi with

FGF2 was expected to show uniform inhibition of pERK.
Therefore, another experiment was conducted where the
MEK inhibitor was added 5 minutes post ligand stimula-
tion and pERK response was measured 5 minutes post
MEKi addition (Figure 5B). In this experiment, the cells
respond to ligand stimulation for 5 minutes under
MEKi-free conditions and then for 5 minutes in the
presence of MEKi. Thus, this perturbation experiment is
a more stringent test of the model since it is required to
accurately predict the combination of control as well as
perturbation conditions within the same simulation.
Similar to the co-inhibition experiment in Figure 5A
the model predicted reduced pERK levels – however to
a much lesser extent than in the co-inhibtion experi-
ment. Specifically, the model predicted that the peak
ERK response at intermediate FGF concentrations is sig-
nificantly inhibited while the signal at the low and high
FGF concentrations are inhibited to a lesser extent. This
prediction was validated as showed in Figure 5B in the
delayed addition experiment. The fact that the model
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captures the partial inhibition of pERK in the delayed
inhibition experiment indicates that the negative feed-
back loop from pERK to FRS2 is accurately captured by
this parameter set. It should be noted here that there
are differences between pERK response under control
conditions (i.e. no MEKi) for the two experimental setups.
This difference can be attributed to the super-sensitivity
of pERK to fluid movement and addition rather than
biological response to growth factors or inhibitors. There-
fore, it is further emphasized in this case to focus on
the qualitative prediction of model compared with ex-
perimental results and interpret the changes in pERK
response with respect to control conditions rather than
absolute values.
It is also noted that not all the parameter sets pre-

dicted the effect of MEKi accurately. One of the sets
gave almost no response to MEKi while two others in-
correctly predicted pERK response to stimulation by
FGF2. As expected previously, matching model predic-
tion with the more stringent experimental test of fitting
pERK response to FGF2 and MEKi scheduled with a
time lag helps identify physiologically relevant parameter
sets for the FGFR pathway. Finally, only four out of the
seven parameter sets that predicted both perturbation
experiments correctly were used for subsequent model
interpretation and analysis. Overall, one can be fairly
confident that the model significantly captures the be-
havior of intracellular ERK activation by FGF pathway
and that the observed biphasic pERK dose response can
be explained by the complex interplay between FGF re-
ceptor, FGF2 ligand and HSGAG.

Conclusion
Biphasic phenotypic responses to FGF signaling have
been observed in multiple cell types in varying contexts.
However, an investigation of the mechanism behind bi-
phasic response at the level of signaling components
remains unexplored. Here, we utilize high-throughput
measurements of ERK activation for measuring the dy-
namic signaling response to a wide range of FGF2 con-
centrations. Such detailed quantification allows us to
tease apart subtle changes in ERK activation dynamics
and thus provide a more complete picture of the system.
The quantification also serves as an excellent training
dataset for a mechanistic ODE-based model of the FGFR
pathway. Given the lack of identifiability of the model,
the global parameter estimation method PSO was uti-
lized with a custom-built objective function to estimate
the parameters. Finally, we validated that the identified
sets of parameters are representative using an MCMC
approach. We demonstrate that the model successfully
captures the subtle changes in the timing of pERK peak
levels as well as the change in pERK decay rates. To
validate the assumptions made to build the pathway
network structure and the estimated parameter values,
the model was tested against multiple perturbation ex-
periments. Without any fitting, the model accurately
predicted changes in pERK response to both extracellu-
lar and intracellular perturbation conditions. Thus, we
assert that the reduced model captures the essential fea-
tures of the system appropriately and can be utilized for
further investigation. It is noteworthy that the objective
of our approach was to build a mathematical model
based on commonly understood aspects of FGFR path-
way biology and uncover a plausible mechanism for
biphasic pERK response. Therefore, we did not exhaust-
ively explore the space of model structures for alterna-
tive theoretical models that can also explain the data.
Such an exploration can be instrumental for uncovering
completely unknown or less well-understood biology
and will be the subject of future research.
One of the primary goals of the model is to help un-

cover the underlying mechanism of biphasic signaling
response to activation by FGF2 ligand. In our model we
assume a 2:2:2 stoichiometry with FGF binding first to
HSGAG and subsequent binding of the FGF:HSGAG
complex to FGFR before dimerization occurs. A close
look at the model indicates that the competition be-
tween binding of FGF2 ligand to HSGAG and FGFR
leads to the observed biphasic response. At low to inter-
mediate concentrations of FGF2, despite the binding of
ligand to both HSGAG and FGFR, there are enough free
FGFRs on the cell surface for the FGF2-HSGAG com-
plex to bind and initiate a trimeric signaling-unit forma-
tion. However, at high levels of FGF2, ligand binding
sites become saturated; specifically, a large fraction of
the FGFR molecules are bound to FGF2 and trimeric
signaling units cannot form, because binding of FGF2-
HSGAG is weak, thereby leading to a decrease in pERK
response (Figure 6A). Recently, Brown et al published
data that favors a pre-assembly model where FGF binds
first to HSGAG in a transdimeric manner before it binds
to two receptors forming a 2:2:1 complex [37]. This 2:2:1
structure aggravates the competition for free FGFRs to
form a signaling unit compared to the 2:2:2 structure
implemented in our model. This strengthens the model-
based prediction that lack of free FGFRs at high ligand
concentration can explain the observed biphasic behav-
ior. Although the presence of biphasic response is driven
by surface interactions, the strength of biphasic-ness is
also regulated by the intracellular cascade. For instance,
in the absence of pERK-pFRS2 feedback loop, pERK
levels increase according to our model simulations in re-
sponse to FGFR activation and remain maximal until the
receptor is internalized and degraded. In this case, the
time point at which pERK reaches peak level changes for
each FGF2 concentration but the sustained biphasic re-
sponse after 5min can not be observed. Therefore, the
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nature and the level of biphasic response are regulated
by a combination of receptor competition on the surface
as well as signaling feedback inside the cells.
The computational model was explored in silico and

then tested experimentally by using another cell-line.
According to the model, a system with a large number
of FGF receptors is predicted to show a sigmoidal pERK
response (Figure 1A). At high FGF receptor levels, there
is no competition between FGF2 binding to FGFRs and
HSGAG and thus, as expected, pERK response saturates
at high FGF2 levels rather than showing a biphasic
response. This model interpretation was verified experi-
mentally by using another cancer-cell line MDA-MB-
134 (Figure 6B). This cell line has about 8× more FGFR1
mRNA and ~2× more HSGAG and syndecan-1, a cell-
surface proteoglycan containing HSGAGs [38]. Under
high FGFR and high HSGAG conditions, the model
predicts that the pERK response looks sigmoidal up to
500 ng/ml of FGF2. The model prediction was verified
by measuring pERK in MDA-MB-134 cells 10 min post
FGF2 stimulation. These results highlight the import-
ance of HSGAG and soluble heparin in regulating FGFR
pathway activation. They indicate that HSGAG is not
just a passive scaffold that facilitates binding of FGF
ligands to FGFRs but actively participates in the local
regulation of the dynamics of intracellular signal activa-
tion [5]. It is noteworthy at this point that currently
there are no good methods for accurately quantifying
levels of HSGAGs. HSGAGs are not homogeneous, but
rather a mixture of HSGAG species of different lengths
and sulfation patterns. The sugar sequence and level
of sulfation can impact the level of binding and its
role in the signaling complex [39]. Therefore, in the
absence of such measurements, the model provides an
effective alternative approach for investigating the im-
portance of HSGAGs in modulating signaling response
to FGF ligands.
The FGFR pathway signaling model and estimated par-

ameter fit presented in this report is specific for the FGF2
ligand interacting with the FGFR1 receptor. However, the
quantitative approach, including measurements, model
topology and estimation approaches are generalizable.
HSGAGs affect the kinetics of ligand-binding and thus
signaling of several other growth factors including HB-
EGF, HGF, PDGF, MBPs, TGF-β or wingless (a member of
the Wnt family) [40-45]. In the case of HB-EGF binding
to the EGF receptor, binding is enhanced at relatively
low levels of heparin but higher heparin concentrations



Table 2 Primer sequences for FGFRs

Primer name Sequence (5'-3')

FGFR1 forward CAACCTGCCTTATGTCCAGATC

FGFR1IIIb reverse CTCCGCATCCGAGCTATTAA

FGFR1IIIc reverse ATCTCTTTGTCGGTGGTATTAACTC

FGFR2 forward GGGCTGCCCTACCTCAAG

FGFR2IIIb reverse GCCAGCACTTCTGCATTGGA

FGFR2IIIc reverse ATCTCTTTGTCCGTGGTGT

FGFR3 forward ACGGCACACCCTACGTTA

FGFR3IIIb reverse ACGTCGGCCTCCACACTCT

FGFR3IIIc reverse CTCCTTGTCGGTGGTGTTAGC
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lead to inhibition of receptor, as is the case in FGF sys-
tem [42]. In contrast, despite strong in vivo evidence
for a stimulatory role for endogenous HSGAGs in
bone-morphogenetic-protein (BMP) signaling, the re-
sults of in vitro studies have been inconsistent [46,47].
Since FGF and BMPs differ in the way they form signal-
ing competent dimers, the biphasic response that can
be observed with FGF may not be observable with
BMPs or other growth factors [48]. Therefore, the role
of HSGAGs in different signaling pathways will need to
be evaluated individually.
In summary, this work increases the quantitative un-

derstanding of the FGF signaling pathway and its intri-
cate regulation on the cell surface as well as downstream
of the receptor, which is important to understand cellu-
lar decision making.

Materials and methods
Section 1. Experimental details of quantitative pERK
measurements & perturbation experiments
Cell culture
NCI-H1703 cells were obtained from American Type Cul-
ture Collection (ATCC CRL-5889). Cells were maintained
in RPMI 1640 medium (Lonza) supplemented with 10%
fetal calf serum (Tissue Culture Biologicals, Lot # 107197),
2 mM L-Glutamine (Gibco), penicillin (100 U/mL) and
streptomycin (100 μg/mL) (Gibco), and grown in a hu-
midified atmosphere of 5% CO2 and 95% air at 37°C.

In vitro signaling studies
For in vitro signaling studies, cells were seeded in 96-well
tissue culture plates, allowed to attach overnight, then
switched to serum-free media supplemented with 0.5%
bovine serum albumin (Sigma-Aldrich) for 16 to 20 hours.
For dose-time matrices, serum-starved cells were stimu-
lated with serial dilutions of FGF-2 (R&D Systems, 4114-
TC-01 M) starting at 500 ng/mL for 1, 2, 3, 4, 5, 7, 10, 15,
30, 60, 120 minutes. After stimulation, cells were washed
with ice cold phosphate-buffered saline (PBS), then lysed
in cold 1× lysis buffer from the AlphaScreen SureFire p-
Erk1/2 Assay Kit (Perkin-Elmer TGRES10K).
For perturbation with exogenous heparin addition, cells

were seeded as described above, then switched to serum-
free media supplemented with 0.5% bovine serum albumin
with or without 500 μg/mL heparin sodium salt (Sigma-
Aldrich H3149-250KU). Serum-starved cells were stimu-
lated with serial dilutions of FGF-2 in the starvation media
and lysed as before. For perturbation with MEK inhibition,
cells were seeded and starved as described above. Serum-
starved cells were treated with one of two protocols: 1)
simultaneous addition of a dose matrix of serially diluted
FGF-2 starting at 500 ng/mL and U0126 starting at 10 μM
(EMD Chemicals 662005-1MG) for 10 minutes followed
by PBS wash and lysis, 2) addition of serially diluted
FGF-2 followed by addition of serially diluted U0126
after 5 minutes of incubation and finally PBS wash and
lysis 10 minutes after ligand addition.
Measurement of phospho-Erk1/2 levels on all samples

were performed with the AlphaScreen SureFire pErk1/2
assay kit (Perkin-Elmer TGRES10K), according to the
manufacturer protocol in 384-well plate format (Alpha
Plate, PerkinElmer 6008350) and read using the EnVision
2013 Multilabl Plate Reader (Perkin-Elmer).

FGF Receptor Expression by qPCR
RNA was isolated from 2×10^6 cells using RNeasy kit (Qia-
gen) following manufacturer protocols. Genomic DNA was
eliminated using deoxyribonuclease (DNase) treatment
using DNase I (Roche). 6 g RNA was reverse transcribed to
cDNA in a 60 L reaction using a High Capacity cDNA Re-
verse Transcription kit (Life Technologies Cat#4368814),
and samples were stored at -80°C until qPCR.
FGFR isoform expression levels were measured in

duplicate in a 384-well reaction plate on an Applied Biosys-
tems Viaa7 instrument (Life Technologies) with SYBR
Green chemistry. 50 ng cDNA per well, and primer con-
centrations of 150 nM were used. Primer pairs were de-
signed to detect receptor IIIb and IIIc isoforms selectively
based on Fon Tacer et al. [49]. (see Table 2 below) For GusB
and GAPDH, primers were purchased from Integrated
DNA Technologies (Hs.PT.51.2648420, Hs.PT.51.1940505
respectively). FGFR primer pairs were validated using plas-
mids from Origene for specificity and efficiency.
qPCR data was analyzed by Viaa 7 Software v1.2.2 . Base-

line values were set automatically, and threshold values
were kept constant. Samples with Ct values of >35 were
considered below the limit of detection. Expression levels
were normalized to the average of the housekeeping genes
using the delta Ct method, and normalized expression is
calculated as 2^-deltaCt. These results are plotted below.
Results - The relative expression of each of the FGF re-

ceptor isoforms was measured in NCI-H1703 cells as part
of a wider screen. Based on the expression levels, FGFR1c
contributed more than 95% of the total while FGFR1b,
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FGFR2b, FGFR2c, FGFR3b and FGFR3c combined con-
tribute less than 5% of the total. Consistent with previous
reports, NCI-H1703 cells predominantly express FGFR1c.

Section 2. Equations and parameters (table of seven sets)
of the mathematical model
Additional file 3: Figure S3 summarizes the reaction net-
work of the model in graphical form. The ordinary dif-
ferential equations and parameters used are as described
below (Table 3).

Set of ordinary differential equations

ds1
dt

¼ − kf 1a � s2 � s1−kr1a � s9
� �

− kf 5a � s1 � s8−kr5a � s10
� �

ds2
dt

¼ − kf 0 � s2 � s3−kr0 � s8
� �

− kf 1a � s2 � s1−kr1 � s9
� �

ds3
dt

¼ − kf 0 � s2 � s3−kr0 � s8
� �

ds4
dt

¼ − kf 15 � s4 � s12−kr15 � s20
� �
þkfdp1 � s14− kf 43 � s19 � s4−kr43 � s16

� �
Table 3 List of species

Name Species

s1 FGFR

s2 FGF

s3 HSGAG

s4 FRS2

s5 MEK

s6 ERK

s7 pERKnuclear

s8 FGF:HSGAG

s9 FGF:FGFR

s10 FGF:HSGAG:FGFR

s11 (FGF:HSGAG:FGFR)2

s12 p(FGF:HSGAG:FGFR)2

s13 i(FGF:HSGAG:FGFR)2

s14 pFRS2

s15 pMEK

s16 pERK:FRS2

s17 FRS2ubiquitinated

s18 pERK:pFRS2

s19 pERK

s20 p(F:H:R)2:FRS2

s21 pFRS2:MEK

s22 pMEK:ERK
ds5
dt

¼ − kf 35 � s14 � s5−kr35 � s21
� �þ kfdp2 � s15

ds6
dt

¼ − kf 39 � s15 � s6−kr39 � s22
� �þ kfdp3 � s19

ds7
dt

¼ kf 47 � s19−kr47 � s7
� �

ds8
dt

¼ − kf 0 � s2 � s3−kr0 � s8
� �

− kf 5a � s1 � s8−kr5a � s10
� �

ds9
dt

¼ − kf 1a � s2 � s1−kr1a � s9
� �

ds10
dt

¼ kf 5a � s1 � s8−kr5a � s10
� �

−2

� kfdim � s10 � s10−krdim � s11
� �

ds11
dt

¼ kfdim � s10 � s10−krdim � s11
� �

−kfph � s11

ds12
dt

¼ − kfint1 � s12−krint1 � s13
� �þ kfph � s11
þkf 19 � s20− kf 15 � s12 � s4−kr15 � s20

� �
ds13
dt

¼ − kfint1 � s12−krint1 � s13
� �

ds14
dt

¼ kf 19 � s20−kfdp1 � s14− kf 35 � s14 � s5−kr35 � s21
� �

þ kf 36 � s21− kf 43 � s19 � s14−kr43 � s18
� �

ds15
dt

¼ kf 36 � s21−kfdp2 � s15− kf 39 � s15 � s6−kr39 � s22
� �

þ kf 40 � s22

ds16
dt

¼ kf 43 � s19 � s4−kr43 � s16
� �

−kf 44 � s16

ds17
dt

¼ kf 44 � s16 þ kf 44 � s18

ds18
dt

¼ kf 43 � s19 � s14−kr43 � s18
� �

−kf 44 � s18

ds19
dt

¼ kf 40 � s22−kfdp3 � s19− kf 43 � s19 � s4−kr43 � s16
� �

þkf 44 � s16− kf 43 � s19 � s14−kr43 � s18
� �

þkf 44 � s18− kf 47 � s19−kr47 � s7
� �

ds20
dt

¼ kf 15 � s4 � s12−kr15 � s20
� �

−kf 19 � s20

ds21
dt

¼ kf 35 � s14 � s5−kr35 � s21
� �

−kf 36 � s21

ds22
dt

¼ kf 39 � s15 � s6−kr39 � s22
� �

−kf 40 � s22
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Section 3. Comparing different forms of objective
function for optimization
One of the most commonly used forms of objective func-
tion for minimization using local and global optimization
methods is the root mean square error (RMSE). The
error term serves as a scale-dependent estimation of the
deviation between observed and predicted values. This
functional form is the exact equation that needs to be
minimized for fitting a linear relationship between input
and output. However, for highly non-linear models, such
as the ODEs described above, the RMSE-based objective
function manifold in the multi-parameter space is rife with
a large number of local minima and therefore not suitable
for parameter estimation. An alternative to RMSE-based
objective functions is to construct hybrid objective func-
tions that combine RMSE error with feature-based con-
straints incorporated as cost functions. The details of the
hybrid objective function used for fitting the pERK data
(Figure 2B) to FGFR model (Materials and methods,
Section 2) are as follows.
Based on the physics of biological systems, the follow-

ing constraints were incorporated into the objective
function.

1. Total number of phosphorylated molecules of all
intracellular molecules should exceed 100 at peak
activation (This constraint needs to be satisfied so
that the mean field approximation required for
building ODE-based models is valid). If this was not
fulfilled the following penalty was added

p1 ¼
Ym
i¼1

Yn
j¼1

100
m i; jð Þ

where m is equal to the number of FGF concentrations
used, n is equal to the number of intracellular molecules
considered (ERK, MEK, FRS2 and FGFR) and m(i,j) is
equal to the peak level of phosphorylated molecules of
species j for FGF concentration i.

2. pERK should be a sizable fraction of total-ERK
present in the system (This constraint needs to be
satisfied to ensure that the parameters don’t fall
into a regime where only a small fraction of pERK
molecules get phosphorylated and control the
system).

p2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ERKfrac � totERK

max pERKð Þ

s

where totERK is the number of molecules of total ERK
present in the system, ERKfrac is the minimum fraction
of totERK that must be phosphorylated and max(pERK)
is equal to the maximal level of pERK molecules across
all doses of FGF treatment.

3. The number of phosphorylated molecules down the
cascade should not decrease by more than 25%
within a single step (This constraint is expected to
be true since kinases act as catalyst for
phosphorylation of the molecule down the cascade
and therefore it is expected that the input signal
amplifies down the cascade).

p3 ¼
Ym
i¼1

Yn
j

0:75 � max kinase i; jð Þð Þ
max substrate i; jð Þð Þ

where m is equal to the number of FGF concentra-
tions, n+1 is equal to the number of kinases in the
system (FRS2, MEK and ERK) and max(kinase(i,j)) or
max(substrate(i,j)) is maximum level of upstream or
downstream kinase respectively for FGF dose i and
kinase j.
Based on the experimental data, the following con-

straints were incorporated into the objective function

4. The pERK time response curve should reach a peak
between 4-10 min after ligand stimulation

if t peakð Þ > 10 min : p4 ¼ t peakð Þ
7

;

if t peakð Þ < 4min : p4 ¼ 7
t peakð Þ

where t(peak) is the time point of the peak of the pERK
time response in minutes.

5. The pERK time response curve should be smooth
and not oscillate like an under-damped second order
control system. If there were more than 3 peaks, the
following penalty was defined:

p5 ¼
Ym
i¼1

4θ ið Þ−1

where m is equal to the number of FGF concentrations
and ϑ(i) is the number of peaks in pERK time response
to FGF2 concentration i.

6. pERK dose-response curve should be biphasic at cer-
tain time-points as observed in experiments.

p6 ¼
Yk
i¼1

σ ið Þ
ζ ið Þ � μ ið Þ

� �2
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where k is the number of time points, σ(i) is the mimi-
mal concentration of pERK at high FGF2 concentrations
at time point i, ζ(i) is the approximate factor by which
pERK should decrease from its maximal to its minimal
response (determined from the experimental data) and
μ(i) is the maximal level of pERK for time point i. ζ was
chosen to be equal to [1.0, 1.0, 1.0, 1.0, 1.0, 0.95, 0.85,
0.5, 0.5, 0.9, 0.9] for the different time points.
The final objective function value was calculated as

the product of all penalty values and the RMSE error.
We compared the two objective functional forms for

their ability to estimate the parameters of the FGFR
model. The estimation was done 40 times, 20 with RMSE-
based and 20 with hybrid objective function. For each of
the 40 estimations, initialization was made completely
randomly based on the range of parameter values pro-
vided as input to the algorithm. The following key obser-
vations were made -

a. Although the final objective function value obtained
was, in general, lower for the RMSE-based objective
function than the hybrid objective function, param-
eter estimates from RMSE-based function provided
physically meaningless solutions. For instance, 19
out of 20 parameter estimates predicted that less
than 2% of total ERK gets phosphorylated by FGFR
pathway. In contrast, 12 out of 20 parameter esti-
mates obtained using hybrid objective function satis-
fied all the experimental and physicality constraints.
Each of these fits can be used as good initial esti-
mates for obtaining more refined parameter
estimates.

b. Visual inspection of the fits showed that many of the
parameter sets obtained using RMSE-based function
showed only minimal to no biphasic dose response.
Further investigation revealed that these parameter
sets fit the low and intermediate doses of FGF2 ex-
tremely well but completely failed to fit the response
to high doses. In addition, many fits failed to match
the time point of peak phosphorylation.

Based on these observations, we hypothesize that the
objective function manifold that uses a combination of
RMSE and constraints gets rid of various local minima
that correspond to physically meaningless parameter
estimates and thus facilitates a much more efficient es-
timation of parameter values. It can be expected that
these findings can be extended to parameter estima-
tion problems for various other signaling pathway
models and other systems of ODEs. However, a formal
comparison of the RMSE-based and hybrid objective
function for benchmarked problems is beyond the
scope of this work and remains to be verified in future
studies.
Section 4. Additional/modified equations and parameters
for the heparin addition experiment (Table 4)

ds1
dt

¼ − kf 1a � s2 � s1−kr1a � s9
� �

− kf 5a � s1 � s8−kr5a � s10
� �

− kf 5a1 � s1 � s24−kr5a � s25
� �

ds2
dt

¼ − kf 0 � s2 � s3−kr0 � s8
� �

− kf 1a � s2 � s1−kr1 � s9
� �

− kf 0H � s2 � s23−kr0H � s24
� �

ds4
dt

¼ − kf 15 � s4 � s12−kr15 � s20
� �þ kfdp1 � s14

− kf 43 � s19 � s4−kr43 � s16
� �

− kf 15 � s4 � s29−kr15 � s32
� �

− kf 15 � s4 � s28−kr15 � s33
� �

ds10
dt

¼ kf 5a � s1 � s8−kr5a � s10
� �

−2

� kfdim � s10 � s10−krdim � s11
� �
− kfdim � s25 � s10−krdim � s26
� �

ds14
dt

¼ kf 19 � s20−kfdp1 � s14− kf 35 � s14 � s5−kr35 � s21
� �

þ kf 36 � s21− kf 43 � s19 � s14−kr43 � s18
� �

þ kf 19 � s32 þ kf 19 � s33
ds23
dt

¼ − kf 0H � s2 � s23−kr0H � s24
� �

ds24
dt

¼ kf 0H � s2 � s23−kr0H � s24
� �

− kf 5a1 � s1 � s24−kr5a � s25
� �

ds25
dt

¼ kf 5a1 � s1 � s24−kr5a � s25
� �

−2

� kfdim � s25 � s25−krdim � s27
� �
− kfdim � s25 � s10−krdim � s26
� �

ds26
dt

¼ kfdim � s25 � s10−krdim � s26
� �

−kfph � s26

ds27
dt

¼ kfdim � s25 � s25−krdim � s27
� �

−kfph � s27

ds28
dt

¼ kfph � s26− kfint1 � s28−krint1 � s30
� �

− kf 15 � s4 � s28−kr15 � s33
� �þ kf 19 � s33

ds29
dt

¼ kfph � s27− kfint1 � s29−krint1 � s31
� �

− kf 15 � s4 � s29−kr15 � s32
� �þ kf 19 � s32

ds30
dt

¼ − kfint1 � s28−krint1 � s30
� �

ds31
dt

¼ − kfint1 � s29−krint1 � s31
� �



Table 4 List of additional species and parameters in heparin perturbation model

Name Species

s23 Heparin (HE)

s24 FGF:HE

s25 FGF:HE:FGFR

s26 (FGF:HE:FGFR)2

s27 (FGF:HE:FGFR):(FGF:HSGAG:FGFR)

s28 p((FGF:HE:FGFR):(FGF:HSGAG:FGFR))

s29 p(FGF:HE:FGFR)2

s30 i((FGF:HE:FGFR):(FGF:HSGAG:FGFR))

s31 i(FGF:HE:FGFR)2

s32 p(FGF:He:FGFR)2:FRS2

s33 p((FGF:HE:FGFR):(FGF:HSGAG:FGFR)):FRS2

Name Unit Set1 Set2 Set3 Set4 Set5 Set6 Set7

kf5a1 1/((molecule/cell)*s) 6.74E-11 1.34E-10 1.93E-10 4.42E-11 9.33E-11 5.14E-10 2.42E-08

kf0H 1/((molecule/cell)*s) 2.67E-08 1.10E-08 8.61E-09 1.97E-08 1.46E-08 1.52E-08 2.60E-08

kr0H 1/s 1.94E-03 8.00E-04 6.29E-04 1.44E-03 1.07E-03 1.11E-03 1.95E-03
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ds32
dt

¼ kf 15 � s4 � s29−kr15 � s32
� �

−kf 19 � s32

ds33
dt

¼ kf 15 � s4 � s28−kr15 � s33
� �

−kf 19 � s33

Section 5: Additional equations and parameters for the
MEKi addition experiment (Table 5)

ds5
dt

¼ − kf 35 � s14 � s5−kr35 � s21
� �
þ kfdp2 � s15− kfMEKi � s23 � s5−krMEKi � s25

� �
ds14
dt

¼ kf 19 � s20−kfdp1 � s14− kf 35 � s14 � s5−kr35 � s21
� �

þ kf 36 � s21− kf 43 � s19 � s14−kr43 � s18
� �

− kf 35 � s25 � s14−kr35 � s26
� �þ kf 36 � s26
Table 5 List of additional species and parameters in MEKi per

Name Species

s23 MEKi (=U0126)

s24 pMEK:MEKi

s25 MEK:MEKi

s26 pFRS2:MEK:MEKi

Name Unit Set1 Set2 S

kfMEKi 1/((molecule/cell)*s) 2.61E-05 4.14E-08 3

krMEKi 1/s 1.66E-06 4.91E-06 6
ds15
dt

¼ kf 36 � s21−kfdp2 � s15− kf 39 � s15 � s6−kr39 � s22
� �

þ kf 40 � s22− kfMEKi � s23 � s15−krMEKi � s24
� �

ds23
dt

¼ − kfMEKi � s23 � s15−krMEKi � s24
� �

− kfMEKi � s23 � s5−krMEKi � s25
� �

− kfMEKi � s21 � s23−krMEKi � s26
� �

ds24
dt

¼ kfMEKi � s23 � s15−krMEKi � s24
� �
þ kf 36 � s26−kfdp3 � s24
� �

ds25
dt

¼ kfMEKi � s23 � s5−krMEKi � s25
� �
þ kf 35 � s25 � s14−kr35 � s26
� �þ kfdp3 � s24

ds26
dt

¼ kfMEKi � s21 � s23−krMEKi � s26
� �
þ kf 35 � s25 � s14−kr35 � s26
� �

−kf 36 � s26
turbation model

et3 Set4 Set5 Set6 Set7

.28E-07 8.15E-06 1.00E-03 8.73E-05 5.78E-06

.60E-05 3.94E-05 2.99E-01 3.55E-04 1.04E-04
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Section 6: Analyzing parameter uncertainty using
Markov-chain Monte Carlo sampling.
Parameter uncertainty for the seven sets identified using
PSO was analyzed using Markov-chain Monte Carlo
(MCMC) sampling approach as described previously
[27]. Hug et. al. showed that a multi-chain sampling ap-
proach can efficiently sample the posterior probability
distribution for high-dimensional and non-linear models
such as the FGF signaling model presented in this paper.
Initializing from each of the seven parameter sets,
Markov chains of length 100,000 were run using a modi-
fied version of ‘adaptive metropolis’ algorithm as de-
scribed in Haario et. al. [50]. Additional file 2: Figure S2
shows the results of MCMC sampling for each of the 39
parameters with the initial positions marked as red stars.
For some parameters like ‘H’ or ‘Kd1a’, the estimated op-

timal value for all seven optimal parameter sets are close
together and located at the boundary of the allowed par-
ameter range. Accordingly, the MCMC samples show par-
ameter distribution close to the boundary. Importantly,
the distribution shows that other parameter sets with
values away from the boundary are able to explain the ex-
perimental data equally well. Thus, this analysis gives a
more realistic impression of the objective function mani-
fold as a function of parameter values. For some other
parameters like ‘kf44’, two distinct clusters of MCMC sam-
ples were observed. This indicates that the parameter sets
belong to two distinct basins of attraction. In summary,
these results indicate that the seven sets of parameters
identified by PSO are representative for the distribution
of good fits that can be identified by MCMC sampling
and provide the argument for limiting the further model
analysis to these representative sets. The model was fur-
ther analyzed using this large set of parameter values.
For each of the parameter set represented in Additional
file 2: Figure S2, the model satisfies all the qualitative con-
straints as described in Materials and methods section
3, including the constraint for biphasic pERK response.
Thus, the model predicts biphasic pERK response for a
wide range of parameter values represented in Additional
file 2: Figure S2.
Additional files

Additional file 1: Figure S1. Comparison of model simulations with
experimental results. The title of each subplot indicates the Pearson
correlation coefficient between simulations and experiments. A). Model
fits vs experimental data for pERK response at all time-points to
stimulation by FGF2 ligand. B). Model predictions vs experimental data
for pERK response at all time-points to stimulation by FGF2 in the
presence of external heparin.

Additional file 2: Figure S2. Representation of all the parameters
sampled using Monte-Carlo Markov chain (MCMC) approach starting from
the seven previously-identified parameter sets.
Additional file 3: Figure S3. Detailed schematic of the model-reaction
network for FGFR pathway.
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