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Abstract

East African highland banana (Musa acuminata genome group AAA-EA; hereafter referred

to as banana) is critical for Uganda’s food supply, hence our aim to map current distribution

and to understand changes in banana production areas over the past five decades. We col-

lected banana presence/absence data through an online survey based on high-resolution

satellite images and coupled this data with independent covariates as inputs for ensemble

machine learning prediction of current banana distribution. We assessed geographic shifts

of production areas using spatially explicit differences between the 1958 and 2016 banana

distribution maps. The biophysical factors associated with banana spatial distribution and

geographic shift were determined using a logistic regression model and classification and

regression tree, respectively. Ensemble models were superior (AUC = 0.895; 0.907) com-

pared to their constituent algorithms trained with 12 and 17 covariates, respectively: random

forests (AUC = 0.883; 0.901), gradient boosting machines (AUC = 0.878; 0.903), and neural

networks (AUC = 0.870; 0.890). The logistic regression model (AUC = 0.879) performance

was similar to that for the ensemble model and its constituent algorithms. In 2016, banana

cultivation was concentrated in the western (44%) and central (36%) regions, while only a

small proportion was in the eastern (18%) and northern (2%) regions. About 60% of

increased cultivation since 1958 was in the western region; 50% of decreased cultivation in

the eastern region; and 44% of continued cultivation in the central region. Soil organic car-

bon, soil pH, annual precipitation, slope gradient, bulk density and blue reflectance were

associated with increased banana cultivation while precipitation seasonality and mean

annual temperature were associated with decreased banana cultivation over the past 50

years. The maps of spatial distribution and geographic shift of banana can support targeting

of context-specific intensification options and policy advocacy to avert agriculture driven

environmental degradation.
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Introduction

East African Highland Banana (Musa acuminata genome group AAA-EA; hereafter referred

to as banana) provides food and income for over 30 million inhabitants of the African Great

Lakes Region [1]. The plant’s asynchronous fruiting habit allows farmers to harvest throughout

the year [2], providing a continuous supply of food in contrast with seasonal crops. Also,

banana provides soil cover to control soil erosion on hilly landscapes [3]. Uganda has been the

leading producer of banana in Africa for over five decades [4], although current yields of 5 to

30 t ha-1 yr-1 are well below attainable yields of more than 60 t ha-1 yr-1 [5, 6]. Several abiotic

and biotic factors are underlying causes of the yield gap of banana on smallholder farms in

Uganda. Nutrient deficiencies combined with drought stress are the primary abiotic con-

straints [6, 7], with potassium and nitrogen deficiencies accounting for up to 68% of the

banana yield gap [8–10]. Banana is also affected by pests, notably banana weevil (Cosmopolites
sordidus) and nematodes (Radopholus similis; Pratylenchus goodeyi) [11–13], and by diseases

such as Xanthomonas wilt (Xanthomonas campestris pv. musacearum), Fusarium wilt (Fusar-
ium oxysporum fsp. cubense) and Black Sigatoka (Mycosphaerella fijiensis) [14, 15]. The effects

of these constraints are exacerbated by poor agronomic management [6, 7]. Interventions to

address these constraints need to be tailored to the biophysical conditions and socioeconomic

opportunities that vary across agroecological zones.

Wortmann and Eledu [16] used county-level agricultural, economic, demographic, climatic

and soil characteristics for delineating and defining Uganda’s 14 agroecological zones (AEZs).

The differences in acreage of staple food crops (banana, maize (Zea mays L.), cassava (Manihot
esculenta Crantz), sweet potato (Ipomoea batatas [L.] Lam.), potato (Solanum tuberosum L.),
finger millet (Eleusine coracana Gaertn.), common bean (Phaseolus vulgaris L.), groundnut

(Arachis hypogaea L.), sorghum (Sorghum bicolor [L.] Moench), and rice (Oryza sativa L.))

across the country highlight differences in biophysical suitability and socioeconomic impor-

tance of specific crops across AEZs. The principal AEZs for banana are characterised by even

rainfall distribution with less than three dry months each year [17, 18]. A geographic shift in

banana coverage has been reported with reductions in traditional growing areas in the central

region and expansion in the southwestern region [19]. In some districts of the eastern region,

annual crops (i.e., cassava, sweet potatoes, common bean, maize, and groundnut) have

replaced banana [20]. However, the magnitude of change and underlying drivers of these

observed changes are yet to be determined.

We set out to map the current distribution of banana in Uganda and to understand how

this has changed over the past five decades. Our specific objectives were to i) map the current

distribution of banana in Uganda, ii) identify approaches for predicting the spatial distribution

of banana using remote sensing data, iii) determine biophysical factors that influence the spa-

tial distribution of banana, iv) assess the geographic shift in banana production areas, and v)

evaluate the biophysical factors associated with geographic shift in banana distribution over

the past five decades.

Materials and methods

Banana-based cropping systems in Uganda

Banana-based cropping systems in Uganda consist of landscapes where thick banana groves

extend from the lowlands and rise onto upper slopes and hilltops. Banana cultivation is partic-

ularly important in the Lake Victoria region, Mount Elgon, the interior plateau south of Lake

Kyoga, the Ankole ridges and downlands, and the rift valley shoulder [21]. This staple food

crop is cultivated by resource-poor and risk-averse farmers who use traditional farming
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methods and have poor access to quality fertilizers to improve soil fertility or crop protection

inputs to reduce crop losses to pests and diseases. The percentage contribution of bananas to

the total food acreage demonstrates the importance of the crop. Often farmers mix multiple

cultivars of cooking bananas (‘Matoke’), beer bananas (‘Mbide’), roasting bananas (‘Gonja’),

and dessert bananas (‘Ndiizi’ and ‘Bogoya’) within fields, farms or across landscapes [22].

However, the cooking type banana dominate the mixed stands across the country.

Digitizing the historical map of banana

A hand-drawn map from 1958 [21] depicting banana areas using a dot equivalent to 2.02 km2

(500 acres) with a total of 2400 dots or 4,856 km2 across Uganda (Fig 1) was digitised in two

steps. First, the scanned map was processed into a black and white image. Georeferencing was

Fig 1. Scanned map of historical locations with banana in 1958. Each dot represents 2.02 km2 of standing banana. A total of 2400

dots are spread across Uganda equivalent to 4,856 km2 of banana. Image reproduced with permission of Giles Clark, the copyright

holder.

https://doi.org/10.1371/journal.pone.0263439.g001
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performed using the Georeferencer plugin in Quantum GIS (QGIS) version 2.18.13 for Mac

[23]. A series of positions on the black and white image were identified that corresponded to

positions on the current administrative boundaries of Uganda. These ground control points

were used for matching x and y pixel coordinates on the image with the longitude and latitude

coordinates. A second-order polynomial transformation and nearest neighbor resampling

were used to georeference the image to Universal Transverse Mercator (UTM) zone 36N. Bor-

ders were manually erased from the georeferenced image using the GNU Image Manipulation

Program (GIMP) version 2.10.2 for Mac [24] resulting in an image that retained only the dots

representing banana locations. Second, the dots were vectorised, geometries cross-checked,

and anomalies fixed. Centroids of the dots were determined and buffered with 800 m, thereby

creating vectorised circles with areas matching the original dot areas of 2.02 km2 presented in

Fig 1. The hand-drawn nature of the 1958 banana distribution map resulted in a mismatch

between boundaries of the georeferenced image and the Global Administrative Areas

(GADM) boundaries. Visual inspection revealed that average boundary deviation was between

1 and 2 km, rarely more than 5 km. This meant that 1:1 overlay of the historical (1958) and lat-

est (2016) banana distribution maps would be unreliable. Hence, the nearest accuracy that we

could achieve for the 1958 distribution map was to superimpose a vector grid of 5 km × 5 km

on the vector layer of circles to account for the 1–5 km deviations, with each grid cell indicat-

ing the cover of banana area inside.

Geosurvey presence/absence data

Geosurvey is an online platform that facilitates the collection of geospatial data through assess-

ment of high-resolution satellite imagery [25]. A team of 15 analysts examined images of ran-

domly chosen locations within Uganda and determined the presence/absence of banana inside

a 100 m × 100 m quadrat. Google Earth is the default image option for the Geosurvey platform,

but analysts can switch to alternative image sources (i.e., Bing Maps, DigitalGlobe, PlanetLabs,

and MapBox) whenever cloudiness obstructs the visibility of the land surface for a given

image. This resulted in a dataset of 19,130 banana presence/absence observations. Of these,

181 observations were invalid because 174 observations fell outside the boundaries of Uganda

and 7 observations were duplicates. Consequently, the sampled locations were reduced to

18,949 comprising 16,522 absence and 2,427 presence of banana (Fig 2).

Point filtering to remedy spatial dependence

The proximity between presence/absence points means the biophysical conditions at these

locations would probably be more related than if the points were distant from each other.

Point clustering or dispersal invalidates the assumption of spatial independence, which is vital

for unbiased predictions. Hence, spatial filtering was performed to attain the required random

point pattern. First, we created 5 km × 5 km pixels to facilitate a quadrat count of unique pres-

ence/absence points. The polygon of unique point counts aided random sampling of points, so

that no more than one point remained within a 5 km × 5 km pixel. Second, we determined

point patterns through average nearest neighbor analysis executed using the ArcGIS Desktop

version 10.6.1.9270 [26]. The approach involves measuring distances between points and their

nearest neighbors and compares them against a hypothetical random distribution. A clustered

or dispersed pattern exists if the observed mean distances are less or greater than the expected

mean distance of the hypothetical random distribution, respectively. A positive or negative

average nearest neighbour index and statistically significant z-score or p-value indicate a less

than 1% likelihood that a clustered or dispersed pattern in the dataset results from random

chance, respectively.
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Gridded covariates and multicollinearity

Spatially continuous data that are readily available on the internet were acquired. The 71

remotely sensed and gridded covariates consisted of 21 climatic, 19 edaphic, 19 vegetation, 6

socio-economic, and 6 topographic variables. Respective covariates, sources, resolutions, and

time frames are presented in the S1 Table. All covariate variables were resampled to 250 m res-

olution, consistent with the global gridded soil information [27]. The covariates were centered

Fig 2. Sampled locations with banana in 2016. Each dot represents the centroid of a quadrat of 10,000 m2 used for collecting banana presence/absence

information during the Geosurvey. Data acquired with permission of Markus Walsh, Africa Soils Information Service (https://doi.org/10.17605/OSF.IO/

J8Y3Z).

https://doi.org/10.1371/journal.pone.0263439.g002
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(mean minus values) and scaled values divided by standard deviation) to ensure zero mean

and unit variance using the R package raster [28]. We determined an optimal number of inde-

pendent covariates because multicollinearity among covariates could affect model stability and

approximation quality [29]. For this purpose, we employed two approaches for selecting rele-

vant and independent covariates, i.e., recursive feature elimination and subjective feature

selection.

Approaches for selecting independent relevant covariates

Recursive feature elimination with resampling. Recursive feature elimination is a wrap-

per algorithm that assesses multiple covariate subsets while iteratively removing the weakest

covariates until the optimal number of covariates is reached [30]. The algorithm uses ten-fold

cross-validation to score the covariate subsets and select the best ranked collection of covari-

ates that maximises model performance. Applying this approach led to the selection of 29

covariates that describe the biophysical and socio-economic environments of banana in

Uganda. Visual inspection of the correlation matrix of the 29 covariates was done to identify

and eliminate covariates with correlation coefficient (r) greater ± 0.7 [31]. Consequently, 17

uncorrelated covariates were retained for machine learning prediction (Table 1, Fig 3).

Table 1. List of 29 covariates selected from a list of 71 variables using recursive feature elimination and further selection of 17 uncorrelated covariates (shaded

grey).

Covariate type The 29 selected covariates The 17 uncorrelated covariates References

Climatic AMT, Annual Mean Temperature (˚C) [32]

ATR, Annual Temperature Range (˚C)

PCoQ, Precipitation of the Coldest Quarter (mm)

PWaQ, Precipitation of the Warmest Quarter (mm)

PSEA, Precipitation Seasonality (CV)

LSTN, Land Surface Temperature Night-time (˚C) [33, 34]

MFI, Modified fournier index

CHIRPS, Climate Hazard InfraRed Precipitation with Station (mm) [35]

MODCFSPATSD1DEG, Cloud variability 1-degree (Standard deviation) [36]

MODCFINTERSD, Cloud Inter-annual variation (Standard deviation)

MODCFCLDFORPRED, MODIS Cloud Forest Prediction

MODCFMEAN, Cloud Mean Annual Variation (%)

SDPISR, Standard deviation of the potential incoming solar radiation (kWh m-2) [37]

Edaphic BD, Bulk Density (kg m-3) [27]

NTOT, Total Nitrogen (g kg-1)

FE, Extractable Iron (mg kg-1)

MN, Extractable Manganese (mg kg-1)

Vegetation EVI, Enhanced Vegetation Index [38–41]

SDMEVI, Standard Deviation—Monthly Enhanced Vegetation Index

MMMODISEVI, Mean Monthly Enhanced Vegetation Index

RB3BLUE, Blue reflectance (Band 3) (nm)

RB7MIR, Mid infrared reflectance (Band 7) (nm)

RB2NIR, Near Infrared reflectance (Band 2) (nm)

RB1RED, Red reflectance (Band 1) (nm)

Socio-economic MA500K, Time to Market of 500,000 people (hr) [42, 43]

POPDEN, Population Density (persons m−2) [44, 45]

Topography SLOPE, Slope gradient (%) [37, 46, 47]

STWI, Topographic Wetness Index

SRTM, Shuttle Radar Topographic Mission Digital Elevation (m) [48]

https://doi.org/10.1371/journal.pone.0263439.t001
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Subjective feature selection. Biophysical covariates related to light, nutrients, tempera-

ture, and water, the factors known to strongly influence crop growth, were selected subjectively

from the set of 71 variables. Correlation analysis was then performed to identify and exclude

covariates that were strongly correlated (r> ± 0.7). The approach led to the selection of 12

uncorrelated covariates believed to directly affect banana growth and development (Table 2,

Fig 3).

Extraction of covariate values at sampled point locations

We extracted values from the 12 and 17 independent covariates at the filtered presence/

absence locations using the function extract of the package caret [55]. All missing values were

omitted since most tree and rule-based models only consider complete information. The resul-

tant datasets were partitioned into training (67%) and testing (33%) using the createDataParti-

tion function of the package caret [55].

Fig 3. Correlation among selected covariates A) 29 covariates after recursive feature elimination; B) 17 covariates with Pearson’s correlation

coefficient (r) less than ± 0.7; C) 12 covariates selected using a subjective approach.

https://doi.org/10.1371/journal.pone.0263439.g003

Table 2. List of 12 covariates selected subjectively and their underlying reasons for their selection.

Covariate

type

The 12 selected covariates Reason for selection Reference

Climatic AMT, annual mean temperature (˚C) The annual mean and range of temperature discriminate areas with minimum

temperatures below which banana cannot grow.

[49, 50]

ATR, annual temperature range (˚C)

PREC, annual precipitation (mm) Annual amount and distribution of rainfall is important for a perennial crop like

banana.

[18, 22]

PSEA, precipitation seasonality (%)

Edaphic pH, soil pH in solution pH, CEC and SOC are indicators of soil fertility. [51, 52]

CEC, cation exchange capacity (cmol kg-1)

SOC, soil organic carbon (g kg-1).

BD, bulk density (kg m-3) Bulk density and sand fraction are indicators of rooting conditions, drainage,

and soil workability.SAND, Sand fraction (%)

Vegetation FAPARvar, fraction of absorbed photosynthetically

active radiation–variance (μmol m−2 s−1)

FAPARvar is indicative of the rate of photosynthesis, while the

evapotranspiration rate is quantified using net photosynthesis.

[53]

RB3BLUE, Blue Reflectance (Band 3) Blue reflectance helps to eliminate atmospheric noise (cloudiness, smoke) that

could affect accurate observation of banana presence or absence.

[54]

Topographic SLOPE, slope gradient (%) Slope gradient influences water infiltration versus runoff. Steep slopes are prone

to erosive forces that affect nutrient uptake.

[47, 52]

https://doi.org/10.1371/journal.pone.0263439.t002
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Approaches for prediction and mapping banana

We compared two analytical methods, machine learning and logistic regression, to identify the

most efficient approach for predicting the distribution of banana using remotely sensed pres-

ence/absence data and multiple independent covariates.

Machine learning algorithms. Three machine learning algorithms: random forests (RF),

gradient boosting machine (GBM), and neural network (NN) were used to identify patterns in

the dataset of banana presence/absence observations related to the selected covariates. Random

forests generate an exhaustive number of binary decision trees and allows each tree to cast a

random unit vote for the most popular class [56]. The algorithm is computationally effective, a

characteristic that is enhanced by the ability to score and rank input features based on their

importance. Overall, this embedded dimensionality reduction capability ensures better model

stability, reduces risk of overfitting, and increases accuracy of prediction. By contrast, GBM

uses an iterative stagewise process whereby weak predictors are sequentially added or removed

from the training dataset [57]. A special emphasis is put on learning the instances that were

misclassified during the previous training sequence, which decreases the variance of the final

prediction. The risk of overfitting is averted by having a smaller learning rate and larger num-

ber of trees [58]. Neural networks are adaptive models capable of learning the inherent pat-

terns of the input data by mimicking the neuronal structure of the human brain [59]. The

algorithm is particularly effective in handling binary classification problems in which the pre-

dictor variables exhibit strong non-linear relationships with the target variable [60]. However,

it is critical to scale input values prior to training to prevent the process from converging to the

local minimum [61].

Training of algorithms. The algorithms were trained with the 12 and 17 covariates. Class

imbalance in our dataset meant that trained algorithms could have a bias towards detecting

the majority class (banana absence) and a poor recognition of the relatively rare minority class

(banana presence). To address this problem, we explicitly specified the subsampling method

inside the trainControl function of the package caret [55]. The performance estimates were

produced using 10-fold cross-validation repeated five times and default tuning of the relevant

hyper-parameters [62]. Performance of the trained algorithms with oversampling (OS), with

undersampling (US), and without sampling (WS) was compared using assorted metrics. Accu-

racy, Kappa, Sensitivity, Specificity and Receiver Operating Characteristic Area Under Curve

(ROC AUC) were calculated across resamples by explicitly specifying the defaultSummary and

twoClassSummary arguments in the caret trainControl function. ROC AUC was the metric of

preference due to its scale-invariant and classification threshold-invariant measure of predic-

tion quality [63]. However, Adjusted F-measure, Brier score, Geometric mean, and Precision

Recall Area Under Curve (PR AUC) were also calculated to establish comparative advantage of

ROC AUC. Passing the list of trained algorithms to the caret resamples function led to extrac-

tion of 50 resampled estimates per calculated metric.

Ensemble machine learning. The training outputs of RF, GBM and NN were stacked

together to produce an ensemble model that includes a reasonable weighting of each algorithm

during prediction using the testing dataset. This helped to compound the variability existing in

the training predictions of individual algorithms and thus increase the accuracy of mapping

the occurrence of banana in Uganda. The ensemble was fitted using 10-fold cross-validation

repeated 5-times. Elastic net regularization of the R package glmnet [64] resulted in a sparse

model which allows better interpretation [65]. We evaluated performance of the ensemble

models using the metrics Adjusted F-measure, Brier score, Geometric mean, Kappa, PR AUC,

and ROC AUC. Statistical comparisons of the ensemble models from training algorithms on

12 and 17 covariates were done using the Wilcoxon rank sum statistic. Probability maps of
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banana distribution were generated from the ensemble predictions based on algorithm train-

ing on 12 and 17 covariates. The ensemble model by default depicted the spatial coverage of

banana in terms of the probability of banana presence. The major drawback relates to the sev-

eral colours in the map which make it difficult to explicitly discriminate the areas with low,

moderate, and high coverage of banana. Hence, created ensemble prediction maps were con-

verted from probability to categorical using the probability threshold at which the ensemble

model maximises the true positive rate and true negative rate (Max TPR+TNR). We further

refined the maps using the SAGA majority filtering tool in QGIS [23].

Logistic regression. We ran a separate prediction of banana distribution with the logistic

regression model. Banana distribution in the logistic regression model was expressed by the

binary response variable with ‘0’ and ‘1’ representing banana absence and presence, respec-

tively.

p ¼
1

1þ exp� z
2 0 : 1½ � ð1Þ

z ¼ b0 þ b1X1 þ b2X2 þ . . .þ bnXn ð2Þ

Substituting Eq 2 into Eq 1

p ¼
1

1þ exp½� ðb0 þ b1X1 þ b2X2 þ . . .þ bnXnÞ�
2 0 : 1½ � ð3Þ

The general expression of the logistic regression

Y ¼ logitðpÞ ¼ ln
p

1 � p

� �

¼ b0 þ b1X1 þ b2X2 þ . . .þ bnXn þ ε ð4Þ

Where: p is the likelihood of banana presence; β0, β1, β2, . . ., βn are coefficients of the factors

influencing banana spatial distribution; X1, X2, . . ., Xn are factors influencing banana distribu-

tion; z are the linear combinations of βi and Xi; Y is the response variable with values of p 2
[0:1]; ε is the error term (mean 6¼0 and variance dependent on Xi).

Our training dataset with 12 covariates was used for fitting logistic regression models repre-

senting different complexities: the null model without covariates (M0-12); the full model with

all covariates (M1-12); expansion of M1-12 that includes significant two-way interactions

(M2-12). All terms that would not maximise predictive power of M2-12 were iteratively

excluded via stepwise regression implemented with the stepAIC function of the R package

MASS [66]. Model goodness-of-fit was determined based on the smallest values of log-likeli-

hood, deviance, Akaike Information Criterion (AIC), and Bayesian Information Criterion

(BIC) [67]. The best performing model was used to identify covariates that best explained the

variance in the presence/absence of banana. We also made predictions using the testing dataset

to evaluate the performance of our logistic regression models using the metric ROC AUC. Pre-

diction maps of banana distribution were generated through indicator regression kriging [68]

while the presented figures were created using QGIS [23].

Geographic shifts and the associated biophysical factors

Analysing geographic shifts in the occurrence of banana and potential underlying factors can

help different stakeholders along the banana value chain to design strategies to increase pro-

ductivity and enhance sustainability for the future. In this study, the years 1958 and 2016 were

the basis for analysing spatial changes in the distribution of banana in Uganda over a period of

50 years. First, the current (2016) map of banana distribution was resampled from 250 m to 5
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km resolution, matching the gridded map of historical (1958) banana distribution. From our

assessment, we noticed that if banana presence was due to a single banana field, then it would

be much easier to find it in a 250 m × 250 m pixel compared to a 5 km × 5km pixel. The

regional share of banana in both 1958 and 2016 were computed using counts of pixels with

banana in each region divided by the total number of pixels with banana in Uganda. Second,

the gridded maps were overlaid to determine the areas where banana cultivation has decreased

(-1), increased (1) and remained stable (2). Third, the geographic shift map was overlaid using

spatial polygons of administrative regions, and agroecological zones (S1 Fig) [16]. This facili-

tated computation of the percentage of the geographic shift in each region and agroecological

zone, determined by dividing the number of pixels corresponding to the different shift catego-

ries by the total number of pixels of the geographic shift map of Uganda. Fourth, classification

and regression trees (CART), a nonparametric method that recursively splits distribution cate-

gories in terms of the extracted values of the covariate variables [56] was performed to identify

key biophysical factors that could have contributed to geographic shift in banana. Data used

for CART comprised of geographic shift categories and significant covariates of the best per-

forming logistic regression model. We performed CART using the rpart model using the rpart

function of the R package rpart because it keeps track of the complexity of the tree (i.e., size of

the tree) and separates the classes of the target variable [69]. Model fitting used geographic

shift categories for the dependent variable and normalised covariates as the explanatory vari-

ables. Visualization of rpart model outputs was done using the rpart plot [70].

Results

Effect of spatial filtering on point pattern distribution

Spatial filtering resulted in the retention of 7,632 unique data points (1,518 presence; 6,114

absence). Average nearest neighbour analysis implemented with the unfiltered 18,949 data

points revealed a clustered point pattern with less than 1% likelihood of being due to random

chance (Table 3). However, the change in the z-score from -56.117 to 0.056 indicates that spa-

tial filtering helped to achieve the random point pattern required to ensure that extracted

covariates satisfy the assumptions of spatial independence (Table 3).

Algorithm performance under different subsampling scenarios

Resampling of the training data helps to resolve the disparity in the frequencies of presence/

absence observations (class imbalance) which can have significant negative impact on model

fitting and subsequent predictions. We examined the performance of RF, GBM, and NN

trained on the 12 and 17 selected covariates under diverse resampling scenarios (Figs 4; 5).

Effects of oversampling (OS) (i.e., adjusted F-measure, Brier score, Geometric mean, PR AUC,

and ROC AUC) suggest that it significantly affects the performance across algorithms. RF-OS

outperformed GBM-OS and NN-OS for all metrics except for the Geometric mean and Kappa.

Table 3. Average nearest neighbour analysis before and after filtering of data points.

Average nearest neighbour Before After

(n = 18,949) (n = 7,632)

Observed mean distance 1725.313 3453.793

Expected mean distance 2192.531 3452.629

Nearest neighbour ratio 0.786905 1.000337

z-score -56.11747 0.056336

p value 0.000000 0.955074

Type of point pattern Clustered Random

https://doi.org/10.1371/journal.pone.0263439.t003
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Fig 4. Performance metrics (A: Adjusted F-measure, B: Brier score, C: Geometric mean, D: Cohen’s Kappa, E: PR AUC, F: ROC AUC) for random forest (RF),

gradient boosted machines (GBM) and neural networks (NN) trained on the 12 covariates chosen via subjective feature selection. Each algorithm was trained

under three different sampling scenarios: Oversampling (OS), and undersampling (US) and without sampling (WS). The black line and red dot inside the

box are the median and mean, respectively.

https://doi.org/10.1371/journal.pone.0263439.g004
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Fig 5. Performance metrics (A: Adjusted F-measure, B: Brier score, C: Geometric mean, D: Cohen’s Kappa, E: PR AUC, F: ROC AUC) for random forest (RF),

gradient boosted machines (GBM) and neural networks (NN) trained on the 17 covariates selected using recursive feature elimination. Each algorithm was

trained under three different sampling scenarios: Oversampling (OS), undersampling (US) and without sampling (WS). The black line and red dot inside the

box are the median and mean, respectively.

https://doi.org/10.1371/journal.pone.0263439.g005
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Results for undersampling (US) show no significant difference between RF and GBM evalu-

ated using all metrics apart from the Geometric mean. We found that NN-US consistently reg-

isters significantly poor results with all evaluation metrics (Fig 4A–4F). Without sampling

(WS) did not cause a significant difference among algorithms as regards the Geometric mean.

However, it did significantly influence algorithms when measured using the adjusted F-mea-

sure and PR AUC. RF had significantly better average values of adjusted F-measure, Brier

score, Kappa, PR AUC, ROC AUC (Fig 4A–4F). Similarities in the results presented in Figs 4

and 5 relate to oversampling (i.e., adjusted F-measure, Briers score and Kappa) and undersam-

pling (i.e., adjusted F-measure, Briers score and Kappa, PR AUC, and ROC AUC). Algorithms

performed significantly better without resampling (WS) with respect to the adjusted F-mea-

sure and Brier score. All algorithms trained had similar average values of Kappa, PR AUC, and

ROC AUC for the scenarios examined. The significantly lower Geometric mean for algorithms

without sampling indicates that doing nothing to resolve the problem of class imbalance has a

negative impact on performance. In general, OS results in fluctuations in performance among

algorithms compared to US which provides more consistent results among algorithms. This

demonstrated the appropriateness for US to resolve class imbalances in our spatial data. Pre-

diction maps generated from training the algorithms on 12 and 17 covariates without sam-

pling, oversampling and undersampling are available in S2 and S3 Figs, respectively.

Comparison of ensemble models

Fig 6 shows that the number of covariates on which the algorithms were trained has significant

influence on the performance of the built ensemble model. The ensemble from algorithms

trained on the 17 covariates had significantly better performance with respect to the Adjusted

F-measure, Brier score, Kappa, PR AUC, and ROC AUC (Fig 6A, 6B; 6D; 6E and 6F). Recur-

sive feature selection of the 17 covariates enabled the unbiased selection of 2 socio-economic

and 15 biophysical variables that best explained the observed banana presence/absence varia-

tion. In contrast, Geometric mean reveal no significant difference between ensembles from

algorithms trained on 12 and 17 covariates (Fig 6C). Our predicted spatial coverage of banana

demonstrates that the ensemble of algorithms trained on 12 covariates highlights locations of

low and moderate presence probabilities, and few patches of high presence probability particu-

larly within Isingiro district in western Uganda (Fig 7A). In contrast, the ensemble of algo-

rithms trained on 17 covariates emphasises the presence locations with a high probability (Fig

7B). Both ensemble prediction maps reveal that banana is scarce in the northern region but

common in a band that extends from the western through central into the eastern region (Fig

7A and 7B). The foothills of Mount Ruwenzori, Southwestern Highlands, northern and west-

ern shores of Lake Victoria and the foothills of Mount Elgon standout as the hotspots of

banana production (Fig 7A and 7B). Additionally, there is some correlation between the accen-

tuated banana zones with a high presence probability and densely populated cities and towns

(Fig 7B). The socio-economic variables (population density and travel time to a market of

500,000 people) represent better market prospects for crop products and improved access to

inputs and services due to the physical proximity to populated cities and towns [71]. Only five

of the biophysical variables appeared to have a direct relationship with presence or absence of

banana. Therefore, logistic regression model fitting was restricted to the 12 covariates con-

nected with banana growth chosen via subjective feature selection.

Performance of the fitted logistic regression models

The goodness-of-fit statistics indicate that the M2-12 model with significant two-way interac-

tions between covariates included had better performance with respect to the log-likelihood,
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Fig 6. Performance metrics (A: Adjusted F-measure, B: Brier score, C: Geometric mean, D: Cohen’s Kappa, E: PR AUC, F: ROC AUC) for the ensemble

models. The black line and red dot inside the box are the median and mean, respectively. Wilcoxon rank test significance values: Not significant (ns) p> 0.05; �

p< 0.05; �� p< 0.01; ��� p< 0.001; ����p< 0.000.

https://doi.org/10.1371/journal.pone.0263439.g006

PLOS ONE Mapping spatial distribution and geographic shifts of banana

PLOS ONE | https://doi.org/10.1371/journal.pone.0263439 February 17, 2022 14 / 28

https://doi.org/10.1371/journal.pone.0263439.g006
https://doi.org/10.1371/journal.pone.0263439


deviance, AIC, BIC, and ROC AUC (Table 4). We found that adding significant three-way

interactions to M2-12 increased the likelihood and ROC AUC, but the model would suffer a

penalty on the BIC (results not included). M2-12 was thus selected as the most parsimonious

and interpretable model for explaining the banana distribution.

Key factors explaining banana distribution

The estimates obtained from fitting the model M2-12 reveals a significant positive influence of

BD, RB3BLUE, PH, PREC, SLOPE and SOC and a significant negative influence of AMT and

PSEA (Table 5). Significant interactions of certain covariates that appear to have no significant

influence demonstrates the cross-over existing between covariates in the real world (Table 5).

Fig 7. Predicted banana distribution map (2016) using an ensemble model from RF, GBM and NN trained on A) 12 covariates and B) 17 covariates. The

maps were refined using the SAGA majority filtering tool within QGIS. Probabilities were converted into categories of banana presence using the probability

threshold of 0.25 that maximizes the true positive rate and true negative rate (Max TPR+TNR).

https://doi.org/10.1371/journal.pone.0263439.g007

Table 4. Comparison between logistic regression models of different complexity and structure derived from the 12 covariates chosen using subjective feature

selection.

Modela DF Model fit statistics c Analysis of deviance b

Log-like Deviance AIC BIC ROC AUC M0-12 M1-12 M2-12

M0-12 1 -2392.6 4785.2 4787.2 4793.6 0.5

M1-12 13 -1751.5 3503.0 3529.0 3612.3 0.830 1282.1

���

M2-12 46 -1501.0 3001.9 3093.9 3388.7 0.879 1783.2 501.1

��� ���

a M0-12: glm(y~1), the null model; M1-12: glm(y~(x1+x2+. . .+xn)), full model with 12 covariates; M2-12: glm(y~(x1+x2+. . .+xn)^2), full model including also significant

two-way interactions; x and y represent the independent and dependent variables, respectively; n is the number of covariates in the model. DF, degree of freedom.
b Chi-square X2) values followed by ��� are significantly different at p � 0.000.
c Log-Like, Log likelihood, Deviance, Residual deviance, AIC, Akaike Information Criteria, BIC, Bayesian Information Criteria, ROC AUC, Receiver Operator

Characteristic Area Under Curve.

https://doi.org/10.1371/journal.pone.0263439.t004
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Table 5. Summary results of the logistic regression model M2-12 including the significant two-way interactions to maximise loglikelihood.

Variable a Estimate Standard error Pr(>|z|) b Signif. c

(Intercept) -1.54678 0.13822 0.00000 ���

AMT -1.88570 0.20330 0.00000 ���

ATR 0.17487 0.15941 0.27264 ns

BD 0.32422 0.11068 0.00340 ��

RB3BLUE 0.87111 0.27957 0.00183 ��

CEC -0.12797 0.18768 0.49535 ns

FAPARvar -0.12381 0.10350 0.23159 ns

PH 0.39193 0.18416 0.03332 �

PREC 0.92522 0.14596 0.00000 ���

PSEA -1.23541 0.14284 0.00000 ���

SAND 0.01594 0.12305 0.89692 ns

SLOPE 0.30466 0.09359 0.00113 ��

SOC 0.57015 0.17837 0.00139 ��

AMT:BD -0.49688 0.11945 0.00003 ���

AMT:RB3BLUE 1.10388 0.19493 0.00000 ���

AMT:CEC 0.37685 0.17479 0.03108 �

AMT:PH -0.99216 0.19456 0.00000 ���

AMT:PSEA 0.32788 0.18623 0.07831 ns

ATR:RB3BLUE -0.36877 0.24932 0.13912 ns

ATR:PH 1.08080 0.18943 0.00000 ���

ATR:PREC 0.40241 0.13002 0.00197 ��

ATR:PSEA -0.50433 0.13405 0.00017 ���

ATR:SAND 0.29075 0.10360 0.00501 ��

ATR:SOC 0.24250 0.14119 0.08587 ns

BD:CEC -0.41079 0.11244 0.00026 ���

BD:PH 0.38239 0.15333 0.01264 �

BD:PSEA 0.18451 0.09654 0.05598 ns

BD:SAND -0.15018 0.08712 0.08475 ns

BD:SOC -0.21739 0.11208 0.05244 ns

RB3BLUE:CEC 0.85900 0.26187 0.00104 ��

RB3BLUE:FAPARvar 0.40279 0.14081 0.00423 ��

RB3BLUE:PH -1.47099 0.27023 0.00000 ���

RB3BLUE:PSEA 0.66855 0.19178 0.00049 ���

RB3BLUE:SAND -0.39036 0.12896 0.00247 ��

CEC:PH -0.47655 0.14682 0.00117 ��

CEC:PSEA -0.28238 0.16449 0.08604 ns

CEC:SAND -0.23913 0.15338 0.11899 ns

CEC:SLOPE -0.41289 0.11396 0.00029 ���

CEC:SOC -0.34385 0.17305 0.04693 �

PH:SOC 0.29831 0.18076 0.09888 ns

PREC:PSEA 0.31757 0.12801 0.01311 �

PREC:SAND -0.15627 0.09509 0.10030 ns

PREC:SLOPE -0.11390 0.06906 0.09908 ns

PREC:SOC -0.38969 0.12277 0.00150 ��

PSEA:SOC 0.37027 0.14591 0.01116 �

(Continued)
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Fig 8 shows the latest banana distribution map created using indicator regression kriging

[72] with prediction outputs of the logistic regression model M2-12. This was selected because

its predictor variables had a direct role in banana growth unlike in the ensemble model and yet

its performance indices were similar to those for the ensemble model with 12 covariates. The

map highlights active banana production on the northern and western shores of Lake Victoria,

the Southwestern highlands, the foothills of Mount Ruwenzori and of Mount Elgon (Fig 8).

This is consistent with what was revealed by the ensemble prediction maps.

Table 5. (Continued)

Variable a Estimate Standard error Pr(>|z|) b Signif. c

SAND:SOC -0.20258 0.10779 0.06019 ns

a Table 2 for the full names and units of the variables. The sign ‘:’ indicates the interaction between terms.
b Pr(>|z|), probability of the z-score.
c Significance: ��� p< 0.001; �� p < 0.01; � p< 0.05; not significant (ns) p> 0.05

https://doi.org/10.1371/journal.pone.0263439.t005

Fig 8. Predicted banana distribution map (2016) using logistic regression model M2-12 fitted using 12 covariates

and significant two-way combinations.

https://doi.org/10.1371/journal.pone.0263439.g008
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Spatial coverage and geographic shifts of banana

In 1958, most banana was grown in the central (41%), western (29%) and eastern (27%)

regions of Uganda (Fig 9A and 9C). The current (2016) distribution of banana reveals that the

western (44%) had overtaken the central (36%) as the region with the largest banana coverage

of the cropping system in Uganda (Fig 9B and 9C). Banana coverage has remained sparse in

the northern region (Fig 9A, 9B and 9C).

Geographic shifts of banana were classified by locations where cultivation has decreased

(8%), increased (46%), or remained stable (46%) (Fig 10A). At the national level, about 60% of

the increased banana cultivation was in the western region (Fig 10B). The central region con-

tained 44% of the banana cultivation areas that remained stable between 1958 and 2016 (Fig

10B). Half (50%) of the national decrease in banana cultivation occurred in the eastern region

(Fig 10B). There is a comparable increase and decrease in scattered banana locations in the

northern region (Fig 10B). At the agroecological zone level, a geographic shift is significant in

five of the fourteen agroecological zones of Uganda: Southern and Eastern Lake Kyoga Plains,

Western Medium High Farmlands, Western Mid-Altitude Farmlands and the Semuliki Flats,

Southwestern Grass Farmlands and Lake Victoria Crescent and Mbale Farmlands (Fig 10C).

What stands out is that the Lake Victoria Crescent and Mbale Farmlands accounts for about

40% of the stable cultivation at the national level, Southern and Eastern Lake Kyoga Plains for

about 32% of the decreased cultivation, and Southwestern Grass Farmlands for 30% of the

increased cultivation (Fig 10C).

Biophysical factors associated with geographic shifts of banana

We performed the CART analysis using the geographic shift classes and the eight significant

covariates of the model M2-12 (BD, RB3BLUE, PH, PREC, SLOPE, SOC, AMT, and PSEA)

for the dependent variable and explanatory variables, respectively. CART selected PSEA,

AMT, BD, PREC, and RB3BLUE for tree construction (Fig 11). The root node of the tree rep-

resents areas where banana cultivation remained stable. The criteria PSEA< 40% splits the

root node into the left and right-hand branches if true and false, respectively (Fig 11). The left-

hand branch shows a probability of 69% that banana cultivation remained stable in areas with

mild dry periods (PSEA < 40%), characteristic of the Lake Victoria Crescent and Mbale Farm-

lands and Western Medium High Farmlands. In contrast, the right-hand branch indicates a

Fig 9. Spatial distribution of banana A) historical banana distribution (1958); B) latest banana distribution (2016) predicted using ensemble model of RF, GBM

and NN trained on the 12 covariates; C) percentage share of banana among administrative regions: Northern, Eastern, Central and Western. The share of

banana was computed using counts of pixels with banana in each region divided by the total number of pixels with banana in Uganda.

https://doi.org/10.1371/journal.pone.0263439.g009
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Fig 10. Geographic shifts of banana in Uganda. A) geographic shift patterns generated by overlaying the historical

distributions (1958) and latest banana distribution (2016); B) percentage distribution of banana geographic shift between

administrative regions: Northern, Eastern, Central and Western; C) percentage distribution of banana geographic shift among

agroecological zones 1: West Nile Farmlands; 2: Northwestern Farmlands-Wooded-Savanna; 3: Northern Moist Farmlands; 4:

Northeastern Central Grass-Bush Farmlands; 5: Northeastern Semi-arid Short Grass Plains; 6: Western Mid-Altitude Farmlands

and the Semuliki Flats; 7:Central Wooded Savanna; 8: Southern and Eastern Lake Kyoga Plains; 9: Mount Elgon Farmlands; 10:

Western Medium High Farmlands; 11: Southwestern Grass Farmlands; 12: Lake Victoria Crescent and Mbale Farmlands; 13:

Ssese Islands and Sango Plains; 14: Southwestern Highlands. The percentages were computed based on numbers of pixels in

each region that correspond to the different shift categories divided by the total number of pixels in the geographic shift map of

Uganda.

https://doi.org/10.1371/journal.pone.0263439.g010
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probability of 55% that banana cultivation increased in areas that experienced severe dry peri-

ods (PSEA� 40%). A probability of 63% at terminal node 12 reveals that banana cultivation

decreased in areas where high temperature (AMT� 23˚C) worsened the negative effects of

severe dry periods (PSEA� 42%). On the contrary, terminal node 13 indicates a 62% probabil-

ity of stable cultivation in locations where mild dry periods (PSEA < 42%) reduced the nega-

tive effects of high temperature (AMT� 23˚C). Similarly, the right-side split of node 3 reveals

a 62% probability that banana cultivation increased in locations where lower temperatures

Fig 11. Classification and regression tree (CART) showing the biophysical factors associated with geographic shift in banana at national level.

Probabilities for each geographic shift class are included within the coloured boxes. The node number at which a split occurs are shown above the coloured

boxes.

https://doi.org/10.1371/journal.pone.0263439.g011
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(AMT < 23˚C) offset the negative effects of severe dry periods (PSEA� 40%) (Fig 11). The

terminal node 14 associates 76% probability of stable cultivation with PSEA� 40%,

AMT < 23˚C, and BD� 1398 kg m-3. Additionally, a series of right-side splits that terminate

at node 31 show significant increase in the probability of increased cultivation from 62% to

78% when PSEA� 40%, AMT < 23˚C, BD< 1398 kg m-3 and PREC< 938 mm. The left-side

split at node 15 coupled with a right-side split at node 30 that terminated at node shows a 66%

probability of increased cultivation. Moreover, the left-side split at node 30 that terminated at

nodes 120 and 121 indicates a 65% and 74% probability of stable and increased cultivation,

respectively. The above evidence intimates that factors associated with crop water require-

ments have facilitated geographic shift (or lack of it) in the banana cropping system over the

past five decades.

Discussion

We mapped the distribution of banana by collecting presence/absence data from high-resolu-

tion satellite imagery. Coupling the presence/absence information with multiple gridded

covariates resulted in a robust geospatial dataset for predicting the spatial distribution of

banana. Performing data pre-processing was prudent to deal with general issues often associ-

ated with large spatial datasets for prediction modelling. Multicollinearity detected among the

acquired 71 covariates underscored the need to select relevant and independent covariates so

that built models are not subject to overfitting. Other issues we identified were spatial autocor-

relation and class imbalance of response variables. These two problems are often ignored in

spatial prediction modelling, yet they can increase spatial bias and uncertainty especially when

model predictions must be made outside the scope of learned relationships between covariates

and response outcomes [73].

Our second objective was to identify approaches for predicting the spatial distribution of

banana using remote sensing data. Spatial filtering helped to ensure randomness of the out-

come but could not eliminate class imbalance and residual spatial autocorrelation. We

accounted for class imbalance and residual autocorrelation by resampling. The effects of over-

sampling and undersampling on the accuracy of random forests (RF), gradient boosting

machines (GBM) and neural networks (NN) were compared. Unlike oversampling which

caused fluctuations in performance between the algorithms, the results from undersampling

were more consistent which favoured its selection to resolve class imbalance. Robinson et al.

[74] found that undersampling increased the accuracy of machine learning models when both

spatial filtering and resampling are used to correct for class imbalance and spatial bias. Com-

pared with the algorithms trained on 12 and 17 covariates with undersampling, the perfor-

mance of the ensemble models was superior based on the metrics Adjusted F-measure, Brier

score, Kappa and PR AUC and ROC AUC. Others have documented the robustness and accu-

racy of ensemble models [75]. This is in line with various studies of ecosystem services that

have endorsed ensemble models as a cost-effective decision support tool in formulating evi-

dence-based policies and actions in sustainable development [76]. Yet, the logistic regression

(ROC AUC = 0.879) performed nearly as well as the ensemble models (ROC AUC = 0.895;

0.907 with 12 and 17 covariates, respectively), as others have observed [77].

The third objective focused on determining biophysical covariates that influenced the spa-

tial distribution of banana. Logistic regression facilitated making inferential statements about

the relationship the 12 subjectively chosen covariates and the presence or absence of banana.

Model estimates revealed a positive influence of blue reflectance, soil organic carbon annual

precipitation, slope gradient, soil pH and soil bulk density, and a negative relationship with

mean annual temperature and precipitation seasonality. The reasons associated with crop
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growth and development that guided subjective selection of 12 covariates helped to rationalize

the importance of these covariates. Unlike other covariates that have direct influence on

banana growth and development, we incorporated blue reflectance among covariates primarily

to correct for atmospheric disturbances due to smoke and cloudiness that occasionally

obstructed visual interpretation of satellite images [54]. Banana requires well-drained soils

with at least 2 m depth to develop an extensive root system for better water and nutrient uptake

[78]. Soil physicochemical factors like bulk density and organic carbon influence growth and

development via their effect on water and nutrient availability [51]. Reducing bulk density

through tillage can improve soil structure and infiltration with the benefits of enhanced

banana root and shoot growth [79]. Banana is very sensitive to water stress and a good yield

under rain-fed conditions requires an annual precipitation above 1000 mm evenly distributed

over the year. A combination of adequate rainfall and minimum precipitation seasonality

explain the banana concentrations at elevations between 900–2000 meters above sea level [80].

For the fourth objective, we assessed geographic shifts in banana production areas using

spatially explicit differences between maps of banana distribution in 1958 and 2016. Most

bananas were grown in the central region in 1958 but the western region is now the main hub

of banana cultivation. Reports on geographic shift of banana have mostly provided details of

production timelines, magnitudes of changes, and hypothetical causal factors but limited spa-

tial evidence of the changes [19]. Our results show that banana cultivation has mostly declined

in the eastern region, remained stable in the central region, and expanded in the western

region. The lifespan of well-managed banana plantations used to exceed 30 years in the central

and eastern regions, however, they now last for less than 10 years. Farmers have responded in

various ways to the deterioration of their banana plantations by i) replanting within existing

fields, ii) establishing new plantations, iii) replacing banana with other crops. The first

response is prevalent in the central region, where it is common to encounter gardens integrat-

ing banana, coffee, cereals, root crops, and shade trees into an agroforestry system. Increased

competition between urban land use and agriculture prevents both expansion of existing plan-

tations and the establishment of new plantations in the central region. A blend of the first and

second responses is noticeable in the western region, where market opportunities induced area

expansions with marked conversion of native vegetation, rangeland, and other croplands into

banana plantations. Most of the banana in the region was grown for domestic consumption

but it later evolved into a commercial crop. Existing evidence shows that production declines

in the central region provided the impetus for the booming domestic trade witnessed today in

the western region. The third response is evident in the eastern region where banana has been

replaced with cereals and root crops [20]. The success of coffee on the slopes of Mount Elgon

reflects a historical preference for a crop with a higher profit to volume ratio that was relatively

easy to transport on foot to markets downhill [81]. The disappearance of banana in some areas

has serious implications for food security. Famines are rare where banana is the primary staple

crop. The loss of the permanent canopy and self-mulch cover that banana provides can lead to

greater soil erosion on hilly landscapes.

In the fifth objective, we used the classification and regression tree (CART) to evaluate the

biophysical factors associated with geographic shifts in banana distribution over the past five

decades. Our results indicate that the expansion of banana cropping system has largely

occurred in either marginal areas with relatively poor soils and low rainfall or in ecologically

sensitive areas like the tropical rain forests of western Uganda and erosion-prone steep foot

slopes of Mount Ruwenzori. Main drivers of decline in banana cropping system are variables

linked to soil water supply. Uganda’s banana cultivation is rain-fed [82] and highly dependent

on rainwater capture and retention in the soil for crop uptake. Drought prone areas are found

in the Southern and Eastern Lake Kyoga Plains where the soils are derived from lacustrine
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parent material, which tend to be highly sorted with either fine texture in the valleys or coarse

texture on the upslopes. The valleys are generally unsuitable for growing banana due to water-

logging [83]. Meanwhile, the sandy nature of the soils on the upslopes renders them prone to

rapid drainage and leaching. It is thus likely that the primary cause of decline in banana cover-

age in the eastern region was drought stress. Although soil cover with organic mulches helps to

conserve moisture there is an urgent need to enhance resilience of banana to climate change

induced temperature rises and dry spells [84].

Climatic and edaphic factors alone cannot account for geographic shifts in banana. The

role of various biotic and cultural factors cannot be ignored. Banana weevil and nematodes

have for several decades contributed to the reduced lifespan of banana plantations in the cen-

tral and eastern regions. The most damaging and costly diseases are Black Sigatoka, Fusarium

wilt and Xanthomonas wilt. Also, transitions in dietary habits of people have influenced the

crops cultivated as banana is a staple food in the central, eastern, and western region.

Conclusions

We set out to map the current distribution of banana in Uganda and to understand how this

has changed over the past five decades. The resulting map revealed that banana cultivation was

concentrated in the western (44%) and central (36%) regions, with small proportions in the

eastern (18%) and northern (2%) regions. A logistic regression model showed that banana dis-

tribution was positively influenced by annual precipitation, bulk density, soil organic carbon,

soil pH and slope gradient, but negatively influenced by mean annual temperature and precipi-

tation seasonality. Geographic shifts in banana cultivation were defined by areas where the

crop has decreased (8%), increased (46%), or remained stable (46%). About 60% of increased

cultivation was in the western region, a half of decreased cultivation in the eastern region, and

44% of stable cultivation in the central region. The key variables associated with geographic

shifts were biophysical factors related to soil water supply, which signifies the importance of

irrigation and soil water conservation to mitigate impacts of climate change induced tempera-

ture rises and dry spells. The nature of the geographic shifts emphasises the need to enhance

resilience to climate change in the agenda for sustainable intensification of banana.

Supporting information

S1 Fig. Aggregated agroecological zones of Uganda (adapted from Wortmann & Eledu,

1999). Zone 1: West Nile Farmlands; 2: Northwestern Farmlands-Wooded-Savanna; 3: North-

ern Moist Farmlands; 4: Northeastern Central Grass-Bush Farmlands; 5: Northeastern Semi-

arid Short Grass Plains; 6: Western Mid-Altitude Farmlands and the Semiliki Flats; 7:Central

Wooded Savanna; 8: Southern and Eastern Lake Kyoga Plains; 9: Mountt Elgon Farmlands;

10: Western Medium High Farmlands; 11: Southwestern Grass Farmlands; 12: Lake Victoria

Crescent and Mbale Farmlands; 13: Ssese Islands and Sango Plains; 14: Southwestern High-

lands.

(TIF)

S2 Fig. Predictions of random forests (RF), gradient boosting machines (GBM), and neural

networks (NN) trained on 12 covariates chosen using subjective feature selection. Each

algorithm was trained under three different sampling scenarios: Oversampling (OS), under-

sampling (US) and without sampling (WS). A) RF–OS; B) RF–US; C) RF–WS; D) GBM–OS;

E) GBM–US; F) GBM–WS; G) NN–OS; H) NN–US; I) NN–WS.

(TIF)
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S3 Fig. Predictions of random forests (RF), gradient boosting machines (GBM), and neural

networks (NN) trained on 17 covariates selected after recursive feature selection. Each

algorithm was trained under three different sampling scenarios: Oversampling (OS), under-

sampling (US) and without sampling (WS). A) RF–OS; B) RF–US; C) RF–WS; D) GBM–OS;

E) GBM–US; F) GBM–WS; G) NN–OS; H) NN–US; I) NN–WS.

(TIF)

S1 Table. List of 71 remotely sensed and gridded covariates acquired from the internet.
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73. Meyer H, Reudenbach C, Wöllauer S, Nauss T. Importance of spatial predictor variable selection in

machine learning applications–Moving from data reproduction to spatial prediction. Ecological Model-

ling. 2019; 411:108815. https://doi.org/10.1016/j.ecolmodel.2019.108815

PLOS ONE Mapping spatial distribution and geographic shifts of banana

PLOS ONE | https://doi.org/10.1371/journal.pone.0263439 February 17, 2022 27 / 28

http://dx.doi.org/10.1016/0304-4238(86)90123-8
http://dx.doi.org/10.1016/0304-4238(86)90123-8
https://iahs.info/uploads/dms/iahs_174_0079.pdf
https://iahs.info/uploads/dms/iahs_174_0079.pdf
https://doi.org/10.1016/0273-1177(81)90379-3
https://doi.org/10.1016/0273-1177(81)90379-3
http://CRAN.R-project.org/package=caret
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1111/j.1365-2656.2008.01390.x
http://www.ncbi.nlm.nih.gov/pubmed/18397250
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
http://www.ncbi.nlm.nih.gov/pubmed/6953413
http://dx.doi.org/10.1038/323533a0
https://doi.org/10.1093/bioinformatics/bti499
http://www.ncbi.nlm.nih.gov/pubmed/15905277
http://dx.doi.org/10.1145/347090.347126
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1016/j.mcm.2012.11.028
https://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf
https://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf
https://doi.org/10.1016/j.ecolmodel.2019.108815
https://doi.org/10.1371/journal.pone.0263439


74. Robinson OJ, Ruiz-Gutierrez V, Fink D. Correcting for bias in distribution modelling for rare species

using citizen science data. Diversity and Distributions. 2018; 24(4):460–72. https://doi.org/10.1111/ddi.

12698

75. Rokach L. Ensemble-based classifiers. Artificial intelligence review. 2010; 33(1):1–39. https://doi.org/

10.1007/s10462-009-9124-7

76. Bryant BP, Borsuk ME, Hamel P, Oleson KL, Schulp C, Willcock S. Transparent and feasible uncer-

tainty assessment adds value to applied ecosystem services modeling. Ecosystem Services. 2018;

33:103–9. https://doi.org/10.1016/j.ecoser.2018.09.001

77. Kuhle S, Maguire B, Zhang H, Hamilton D, Allen AC, Joseph K, et al. Comparison of logistic regression

with machine learning methods for the prediction of fetal growth abnormalities: a retrospective cohort

study. BMC pregnancy and childbirth. 2018; 18(1):1–9. https://doi.org/10.1186/s12884-017-1633-9

PMID: 29291732

78. Wairegi L, van Asten P, Giller KE, Fairhurst T. Banana-coffee system cropping guide. Nairobi, Kenya:

Africa Soil Health Consortium; 2015. 104 p. https://africasoilhealth.cabi.org/wpcms/wp-content/

uploads/2014/10/390-Banana-coffee-English-low-res.pdf

79. Blomme G, Swennen R, Tenkouano A. The effect of soil bulk density on root and overall plant develop-

ment in six banana varieties. Advances in Agronomy. 2002; 38:95–155. www.musalit.org/seeMore.

php?id=14202

80. Bhattacharyya R, Rao VM. Water requirement, crop coefficient and water-use efficiency of ‘Robusta’ba-

nana under different soil covers and soil moisture regimes. Scientia horticulturae. 1985; 25(3):263–9.

https://doi.org/10.1016/0304-4238(85)90124-4

81. Sassen M. Conservation in a crowded place: forest and people on Mount Elgon Uganda. PhD Thesis:

Wageningen University & Research, The Netherlands; 2014.

82. van Asten PJ, Fermont A, Taulya G. Drought is a major yield loss factor for rainfed East African highland

banana. Agricultural water management. 2011; 98(4):541–52. https://doi.org/https%3A//doi.org/10.

1016/j.agwat.2010.10.005

83. Aguilar EA, Santos PJA, Tamisin L Jr. Root characteristics of five local banana cultivars (Musa spp.)

under waterlogged conditions. The Philippine Journal of Crop Science. 2008; 33:14–23. https://www.

cabi.org/gara/FullTextPDF/2009/20093005655.pdf

84. Sabiiti G, Ininda JM, Ogallo L, Opijah F, Nimusiima A, Otieno G, et al. Empirical relationships between

banana yields and climate variability over Uganda. J Environ Agric Sci. 2016; 7:3–13.

PLOS ONE Mapping spatial distribution and geographic shifts of banana

PLOS ONE | https://doi.org/10.1371/journal.pone.0263439 February 17, 2022 28 / 28

https://doi.org/10.1111/ddi.12698
https://doi.org/10.1111/ddi.12698
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1016/j.ecoser.2018.09.001
https://doi.org/10.1186/s12884-017-1633-9
http://www.ncbi.nlm.nih.gov/pubmed/29291732
https://africasoilhealth.cabi.org/wpcms/wp-content/uploads/2014/10/390-Banana-coffee-English-low-res.pdf
https://africasoilhealth.cabi.org/wpcms/wp-content/uploads/2014/10/390-Banana-coffee-English-low-res.pdf
http://www.musalit.org/seeMore.php?id=14202
http://www.musalit.org/seeMore.php?id=14202
https://doi.org/10.1016/0304-4238(85)90124-4
https://doi.org/https%3A//doi.org/10.1016/j.agwat.2010.10.005
https://doi.org/https%3A//doi.org/10.1016/j.agwat.2010.10.005
https://www.cabi.org/gara/FullTextPDF/2009/20093005655.pdf
https://www.cabi.org/gara/FullTextPDF/2009/20093005655.pdf
https://doi.org/10.1371/journal.pone.0263439

